
Programming Distributed Multi-Agent Systems
in simpAL

Andrea Santi
DEIS, University of Bologna

Cesena, Italy
Email: a.santi@unibo.it

Alessandro Ricci
DEIS, University of Bologna

Cesena, Italy
Email: a.ricci@unibo.it

Abstract—Distribution is one of the essential features char-
acterizing multi-agent systems (MASs), giving developers the
opportunity to seamlessly conceive and then engineer a physically
distributed application as a MAS spread among different network
nodes. Nevertheless, the current support given by state-of-the-art
Agent Programming Languages (APLs) and related platforms
for programming distributed multi-agent systems as well as
for handling distribution when deploying, running, debugging
the distributed MAS is still quite primitive. In this paper we
tackle this problem by introducing simpAL, a new agent-oriented
programming language and platform which has been conceived
from the beginning to provide a more comprehensive support
for programming, deploying and executing physically distributed
MASs.

I. INTRODUCTION

Multi-Agent Systems (MASs) are a main paradigm for
designing and developing complex software systems [12],
distributed systems in particular. Agent programming lan-
guages (APLs) have been introduced to ease the development
of MASs, providing agent-oriented first-class abstractions di-
rectly at the language level [4], [5], [6]. To deal with distri-
bution – i.e., programming physically distributed MASs – the
support provided by state-of-the-art APLs is typically limited
to mechanisms enabling the communication among agents and
by services available at runtime that provide facilities such as
agent discovery, message routing, ontology management, and
so on. The program of a distributed MAS is typically given
then by a set of separate MASs programs, to be deployed,
run and managed by hand or by using OS scripts on the
distinct network nodes. This makes the programming as well
as the deployment and execution of physically distributed
MASs using state-of-the-art APLs significantly harder than the
centralized case, i.e. MASs running on the same host.

In this paper we aim at tackling this problem and, finally,
easing the programming of physically distributed MASs, by
devising at the language level proper abstractions and mech-
anisms suitably supported by the runtime. To this purpose,
we will use a novel agent-oriented programming language
called simpAL. simpAL has been devised with the purpose of
exploring agent-oriented programming as a high-level general
purpose programming paradigm for concurrent and distributed
programming, as a natural evolution of object-oriented and
actor-based approaches [17]. The language is based on the
A&A (Agents and Artifacts) meta-model [14], thus providing

first-class abstractions to define agents – based on a BDI-like
model [16] – and the distributed environment where the agents
are logically situated, in terms of artifacts and workspaces.
Concerning distributed programming in particular, simpAL
provides specific language abstractions such as the notion of
organization and workspace and related runtime support that
ease the programming as well as the deployment and execution
of distributed MASs.

The remainder of the paper is organized as follows: in
Section II we provide the background of this contribution
by relating the current support of state-of-the-art APLs for
realizing physically distributed MASs with the one we want to
obtain in simpAL. In Section III we present the main concepts
of the language, and then we describe how a distributed multi-
agent system can be programmed in simpAL (Section IV)
and executed on the simpAL distributed runtime infrastructure
(Section V). Finally, we conclude the paper by highlighting
the main good points of the approach (Section VI) as well
as its current limitations and related ongoing and future work
(Section VII).

II. BACKGROUND

Many APLs have been proposed so far in literature for the
programming of agents and multi-agent systems [4], [5], [6].
Recently, a strong effort has been put in devising practical
languages, i.e. thought to be used primarily for concretely pro-
gramming MASs and not (only) for theoretical investigations.
Main examples include Jason [3], GOAL [10], 2APL [8],
AFAPL [19], JACK [11].

Such languages and platforms provide a good support for
developing agent and multi-agent programs running on a single
host; conversely, the support provided for the engineering, de-
ployment, execution and management of physically distributed
MASs – i.e., MASs running on multiple network nodes – is
still quite primitive [7]. It is essentially limited to:

• enabling direct communication among agents based on
some agent communication languages – such as FIPA
ACL [1] or KQML [9] – or indirect ones, based on some
coordination abstractions or the environment [15];

• exploiting some well-known services, typically repre-
sented by facilitator agents, provided by default by the
runtime infrastructure to help agent discovery, message
routing, interoperability, ontology management, etc.

1 /* .mas2g file related to the MAS1 */
2 agentfiles {
3 "agent0.goal".
4 }
5 launchpolicy {
6 launch a0:agent0.
7 }

1 /* agent a0 */
2 init module {
3 beliefs{
4 started(true).
5 }
6 ...
7 }
8 main module {
9 if bel(started(true)) then sendonce (a1, helloMsg)

10 + insert (sentMsgToA1).
11 if bel(sentMsgToA1) then sendonce (ag2, hello_msg)
12 + insert (sentFirstMsgToA2).
13 if bel(sentFirstMsgToA2) then sendonce (a2, !do_job).
14 ...
15 }

1 /* .mas2g file related to MAS2 */
2 agentfiles {
3 "agent1.goal".
4 "agent2.goal".
5 }
6 launchpolicy {
7 launch a1:agent1.
8 launch a2:agent2.
9 }

1 /* agent a1 */
2 ...
3 event module {
4 forall bel(received(Sender, hello_msg))
5 then insert(helloMsgReceived(Sender)).
6 }

1 /* agent a2 */
2 ...
3 event module {
4 forall bel(received(Sender, imp(doJob)))
5 then insert(newDoJobGoalDelegated(Sender)).
6 }

Fig. 1. An example of physically distributed MAS programmed in GOAL highlighting: (i) the need to define a separate MAS (in this case two) for each
node in which the distributed application needs to execute, and (ii) typical programming errors related to message-based interactions that can be detected only
at runtime (i.e., the sending of wrong messages to agents (bottom-left line 9), the use of misspelled agents identifiers (bottom-left line 11), the assignment of
wrong goals to agents (bottom-left line 13)).

To this end, almost all APLs in the state-of-the-art are
provided with a FIPA-compliant platform, often based on
existing middleware such as JADE [2]. Given this support,
programming a physically distributed MAS on these APLs
concretely means creating a collection of separate programs,
each one meant to be run on a different host. Each program
will spawn then agents that eventually will locate themselves
at runtime by exploiting discovery services and will com-
municate by exchanging ACL messages. A concrete example
written in GOAL – other APLs could have been chosen as
well since the support they provide to program a physically
distributed MAS is analogous – is reported in Fig. 1, in which
a physically distributed MAS is programmed defining two
separated MASs (i.e., MAS1 and MAS2). In the example agent
a0, part of MAS1, interacts via speech acts with both agent
a1 and agent a2, part of MAS2, which is in execution in a
separated network node.

On the one side, this approach is quite effective to handle
dynamism and openness giving hence MASs the opportunity
to evolve freely, on the basis of the interaction dynamics
experienced at runtime. For example: (i) new parts can be
dynamically added to running applications by simply launch-
ing new MASs and then making them interact with existing
ones, (ii) new agents, possibly unknown at design time, can
be instantiated, made interact with MASs already in execution
and also dynamically looked up by the original agents of the
MASs through the exploitation of discovery services.

On the other side, this approach makes the programming
as well as the deployment and execution management of
distributed MASs quite complicated and troublesome jobs [7].
From the programming point of view, a main problem is
the lack of proper abstractions and mechanisms that allow
for discovering errors related to message-based interactions
among agents before running the MAS. In this case the

problem is not related to physical distribution, but simply
distribution (of control) among multiple agents that need to
interact. An example of the problem is shown in Fig. 1 using
GOAL. In GOAL all the errors related to message-based
interactions such as the sending of wrong messages to agents
(Fig. 1 bottom-left line 9 where helloMsg is used instead of
hello_msg), the use of misspelled agents identifiers (Fig. 1
bottom-left line 11 where ag2 is used instead of a2), the
assignment of wrong goals to agents (Fig. 1 bottom-left line
13 where do_job is used instead of doJob), etc. can be only
detected at runtime.

Discovering these kinds of errors only by running the MASs
makes the development hard and time-consuming, especially
when the MASs are physically distributed. To this purpose,
we aim at having suitable abstractions at the language level
that would allow to detect such programming errors statically
and systematically, in order to: (i) reduce the cost of errors
detection from both a temporal and economic point of view,
and (ii) avoid complicated – and possibly long – debugging
sessions for detecting errors at run-time—e.g., an error that
occurs only after several complex computations and long
interaction dynamics.

From the point of view of the management of MASs
deployment and execution, we want the runtime to hide all
the complexities related to the physical distribution, so that
physically distributed MASs are launched, terminated and
managed in the same way of MASs that are running on a
single node. This is not possible in current APL, where this
kind of management still need to be done by hand. In fact, in
order to deploy and run a physically distributed MAS, one has
typically to deploy by hand on the different nodes the various
parts that constitute the MAS, and then execute the whole
program by launching in proper order the different parts—i.e.,
taking into account application-specific constraints in order to

guarantee a correct initialization of the whole system. To stop
the MAS, one needs typically to terminate by hand all the
individual parts.

For instance, taking Jason to make a concrete example –
but as well as in GOAL, AFAPL, etc. – the runtime execution
of a whole physically distributed MAS is managed exploiting
a FIPA-compliant agent platform – JADE in this case – in
order to create a distributed runtime infrastructure among the
interested network nodes. To this end, a typical execution of
a distributed MAS in Jason follows this dynamics. First, the
program is manually deployed in the target network nodes.
Terminated the deploy process, the first part of the distributed
MAS to be executed is launched, manually, and the related
Jason runtime takes in charge the creation of a main JADE
container for the distributed application. Then, all the other
parts are launched in the desired order, manually one by one,
and for each of them the dedicated Jason runtime creates
under the hood a new JADE container linked to the main one,
in order to create the distributed runtime platform that has in
charge the execution of the whole program. Also application
termination needs to be managed by hand, manually shutting
down on each node the different Jason applications.

Dealing with these processes by hand is both tiresome – i.e.,
the steps described above need to be repeated at each launch
– and error-prone – e.g., miss the deployment of updated
sources in some node, wrong initialization sequence of the
different application parts, etc. – thus calling for a better,
possibly automatized, support for their management. We argue
that this goal can be made easier by having specific first-
class abstractions/constructs at the language level that make it
possible describe a MAS along with its (possibly) physically
distributed structure. The introduction of such constructs can
then make APLs’ runtime infrastructures aware of all those
information required to manage the deployment and the coor-
dinated launch/termination of physically distributed MASs in
a automatized manner, limiting as much as possible developers
intervention, since the information needed to manage such
processes has become part of the program itself.

In the following, we discuss how all the issues concerning
the programming and execution management of physically
distributed MASs introduced in this section are managed by
simpAL both at the programming and runtime/infrastructure
level.

III. PROGRAMMING MODEL OVERVIEW

The programming model adopted in simpAL for designing
and implementing MASs integrates concepts defined in the
A&A (Agents and Artifacts) conceptual model [14] and the
BDI (Belief-Desire-Intention) agent model [16]. A distributed
MAS is designed and programmed as an organization of
agents working together inside a shared possibly distributed
environment organized in workspaces.

Agents in simpAL are task-oriented entities designed to
perform autonomously some tasks, possibly interacting with
other agents via message-passing and with the environment
where they are situated. They pro-actively decide what are

the best actions to perform and when to do them, reacting to
relevant events from their environment, fully encapsulating the
control of their behavior.

The environment plays a key role in mediating and sup-
porting members’ individual and cooperative tasks. In simpAL
– as well as in A&A – the environment is modularized into
a dynamic set of first-class computational abstractions called
artifacts, which represent the resources and tools that agents
share and may exploit concurrently and cooperatively. Arti-
facts are useful to directly model non-autonomous software
components, encapsulating and modularizing functionalities
that can be suitably exploited by agents. Examples of artifacts
are bounded buffers, a clock, a database, an external web
service, etc. Like artifacts in the human case, artifacts in
simpAL can be dynamically instantiated and disposed (by
agents), and, when needed, designed to be composed so as
to create complex artifacts by connecting simpler ones.

Then, a further concept is needed in order to explicitly
define the overall structure of the program which can be
physically distributed over (possibly) different network nodes.
To this end, in simpAL we introduce the notion of workspace.
The overall set of agents and artifacts of an organization may
be partitioned into a set of workspaces as logical containers,
possibly running on different nodes of the network, defining
the logical structure of the application. Actually, while being
located in a specific workspace, an agent can work concur-
rently and transparently also with agents and artifacts of other
workspaces belonging to its organization.

Finally, pure objects – as defined in modern OOP – are used
to define the data model (and related purely transformational
computations, e.g. retrieving the value of an object field) of
programs. That is, agents, artifacts and workspaces are meant
to be used as coarse grained abstractions to define the shape
of the organization (i.e., of the program), in particular of
the control part of it (decentralized, distributed). Objects are
then the basic data structures used inside agents, artifacts and
related communications and interactions.

IV. PROGRAMMING DISTRIBUTED MASS IN SIMPAL

In simpAL, a physically distributed multi-agent system is
programmed as an organization whose logical structure is
defined in terms of workspaces distributed among different
network nodes. In this perspective, the notion of workspace
represents the key to conceive and model the logical structure
of the MAS, by properly grouping, on the basis of both
application requirements and decisions made at design time,
agents and artifacts in the set of workspaces that define the
organization. This grouping is meant to define only the logical
structure of the application – i.e. the organization – abstracting
from all the details concerning its deployment, which is instead
managed through the definition of a run/deploy configuration,
specified into a dedicated configuration file (see the next sub-
section).

In this section we show how a distributed multi-agent
system can be programmed in simpAL using a guiding toy

p1

Action
Communication
Perception

producers workspace

theGUI

stopPressed false

stop
p2

console

println (msg: String)monitor agent

main workspace

consumers workspace

theCounter

inc

count 100

theBuffer

put (it: int)
nItemsAvailable 3

get (it: int #out)

c1

c2

137.204.107.188:8000 67.104.7.88:8000

92.10.45.40:8000

SimpleProdCons

Fig. 2. An abstract view of the producers-consumers organization, distributed among three different simpAL nodes.

example, based on a slightly revised producer-consumer ar-
chitecture (see Fig. 2). The source code of the example is
available for download on the simpAL website, as part of its
standard distribution. In the example, a set of producer agents
have the task of producing continuously some items that must
be consumed by a bunch of consumer agents. Consumer agents
must stop their activities as soon as the total number of items
processed is greater than a certain value. Also, producer agents
must stop the production as soon as the user stops it through a
GUI. A monitor agent – observing the overall activities – may
communicate directly to the producer agents that more items
need to be produced. Some artifacts are exploited to support
agent work and coordination: a bounded buffer artifact (with
the obvious functionalities), a counter (used by consumers to
keep track of the overall number of items processed) and a
GUI (used by producers to observe user inputs).

In the following we proceed top-down. First we focus on
the programming of the organization, defining the distributed
structure of the system, and then we introduce the program-
ming of agents and artifacts as basic components of a simpAL
program.

A. Defining the Organization

Following the basic principle of separation between inter-
face and implementation, the definition of a simpAL orga-
nization is characterized on the one side by the notion of
organization model, which is introduced for specifying the
description of the abstract structure of the overall program,
and on the other side by the notion of a concrete organization
which allows instead to define a concrete application instance
referring to an existing organization model. An organization
model is identified by a proper name and it defines:

• The workspace-based logic structure of the organization,
in which, for each workspace, it is possible to define,
statically, the name (identifier) and the type of agents
and artifacts that, for that workspace, will be automat-
ically instantiated and initialized at each launch of the
organization. Dynamic instantiation is addressed later on.

• The set of roles and the set of artifact models defining
the types that can be used, for agents and artifacts, in the

context of that organization.
Fig. 3 shows a simple example of an organization model

definition that refers to our producer-consumer sample. As a
design choice we decided to structure the topology of our
application in three workspaces (but other topologies could
have been chosen as well): producers, consumers, and
main—the latter is available by default in every organization.
The workspace producers hosts a couple of producer
agents (p1,p2) and the GUI artifact (theGUI), while the
workspace consumers hosts a couple of consumer agents
(c1,c2), the counter and the buffer artifacts (theCounter,
theBuffer). Finally, the main workspace hosts the monitor
agent (monitor) and a console artifact used for purely
logging functionalities.

An organization can contain further agents/artifacts in-
stances besides those statically declared in the organization
model—since both agents and artifacts can be dynamically
spawned and created by agents by means of specific actions.
The static case is useful anyway to specify the identifier of
those components whose name and type must be known at the
organizational level, in other words to define global symbols
that can be resolved, in a transparent manner w.r.t. where they
will be actually deployed, and checked in that simpAL sources
explicitly declared in the context of an organization of this type
(see next subsection).

Then, the definition of a concrete organization accounts
for specifying the concrete instances of agents and artifacts
declared in the organization model. For artifacts, the artifact
template – i.e., the name of the source containing the artifact
implementation, see Section IV-C – is provided, possibly
including also the value of some parameters required by the
artifact initialization operation. For agents, the initial script
(see Section IV-B) to be loaded must be specified, possibly
including parameters needed to boot the script, along with the
initial task to do, and task initial parameters. Fig. 5 shows an
example of a SimpleProdCons organization for the case
of our producer-consumer sample, where the agents/artifacts
declared into the ProdConsOrg organization model are
here properly initialized in order to characterize the specific
SimpleProdCons organization instance.

1 /* ProdConsOrg organization model */
2 org-model ProdConsOrg {
3

4 roles: Producer, Consumer, ProductionMonitor;
5 interfaces: Console, GUI, Buffer, Counter;
6

7 workspace producers {
8 p1, p2: Producer
9 theGUI: GUI

10 }
11

12 workspace consumers {
13 c1, c2: Consumer
14 theCounter: Counter
15 theBuffer: Buffer
16 }
17

18 workspace main {
19 console: Console
20 monitor: ProductionMonitor
21 }
22 }

Fig. 3. Example of a simple organization model.

1 /* SimpleProdCons organization deployment file */
2 workspace-addresses {
3 main = localhost
4 producers = localhost:1000
5 consumers = 137.204.107.188:8000
6 }

Fig. 4. Example of deployment configuration file.

1 /* SimpleProdCons organization */
2 org SimpleProdCons implements ProdConsOrg {
3

4 workspace producers {
5 theGui = SimpleGUI ()
6 p1 = SimpleProducer(bufferToUse: theBuffer@consumers)
7 init-task: Producing(numItems: 20)
8 p2 = SimpleProducer(bufferToUse: theBuffer@consumers)
9 init-task: Producing(numItems: 20)

10 }
11

12 workspace consumers {
13 theCounter = Counter(startValue: 0)
14 theBuffer = SimpleBuffer(maxElems: 10)
15 c1 = SimpleConsumer()
16 init-task: Consuming(maxItemsToProcess: 40)
17 c2 = SimpleConsumer()
18 init-task: Consuming(maxItemsToProcess: 40)
19 }
20

21 workspace main {
22 console = Console()
23 monitor = SimpleProductionMonitor
24 init-task: Monitor(buff: theBuffer@consumers)
25 }
26 }

Fig. 5. The implementation of a concrete organization.

Finally, the deployment configuration of an organization
(details about the deploy process are given in Section V) is
managed through a dedicated deployment configuration file.
Such file is used in order to specify the binding of the logical
workspace-based structure of the organization into the proper
set of simpAL nodes targeted for hosting its execution. A
simpAL node is a generic machine available on the net-
work, on top of which the simpAL kernel has been properly
installed and launched (see Section V for further details).
An example configuration file for the SimpleProdCons
organization is reported in Fig. 4. In this case we distribute
the organization on top of three different simpAL nodes
(i.e., 137.204.107.188:8000, 92.10.45.40:8000,
67.104.7.88:8000). The model easily allows to swap one
configuration file with another giving hence the opportunity
to change, even radically, the whole deployment model of a
distributed application—e.g., moving, for the same applica-
tion, from a deployment configuration with all the workspaces
hosted on local host to another one in which each workspace
is hosted on a different remote simpAL node.

It is up to developers decide how to organize both the
logical and physical topology of the application, by taking
into account both available hardware resources and appli-
cation requirements—e.g., an application in which a set of
independent tasks are managed by a group of agents and
artifacts located in separated and dedicated workspaces can
be deployed, to exploits concurrency at its best, either on a
set of normal desktops machines or on a server with high
computing capabilities.

Applications that do not require to be distributed over the
network can simply avoid to specify a deployment configu-
ration file. In this case the simpAL runtime will execute the

MAS as a (local) standalone application.

B. Programming the Agents

Analogously to the organization case, the agent program-
ming model separates the definition of the agents’ interface
from their concrete implementation. For this purpose on the
one side is introduced the notion of roles, which are used
to explicitly define the type of tasks that all the agents that
declare to play those roles are capable to do, and on the other
side the notion of agent scripts, containing the implementation
of concrete plans useful to accomplish the tasks related to one
or multiple roles.

Fig. 6 shows both an example of definition of role
(Producer) and an example of a script implementing that
role (SimpleProducer). A role is identified by a name
and includes the definition of a set of task types. Each task
type (e.g. Producing, lines 3-8) is defined by a name and
the declaration of a set of typed parameters (e.g. maxItems,
line 4), representing information about the task to do. Besides
parameters, the definition of a task type can include a set of
predefined attributes to refine task type specification. Among
the others, understands makes it possible to specify
the beliefs that can be told to agents performing the task
(e.g., Producer agents can be told about the value of
newItemsToProduce belief, line 6). So roles define the
type of agents, used for typing the reference or identifier of
an agent. This allows for doing a set of error checking controls
at compile time. For instance it is possible verifying, statically,
that an agent is assigned only of those tasks which is capable
to do or receive only messages that it can understand (because
they are both specified in the role the agent is meant to play).
It is worth remarking that the notion of role in simpAL is used

to type both local and remote agents references, so this give
us the opportunity to perform the above mentioned checks in a
transparent manner, without the need to take into the account
the actual location of the agents.

A script represents a module of agent behavior, containing
both the definition of a set of plans useful to accomplish the
tasks of the role declared to be implemented by the script, and
a set of beliefs that can be accessed by all the plans declared
in that script. Beliefs in simpAL have a value and a type—
ranging from primitive data types, objects instances of class,
or references to specific simpAL abstractions (agents/artifacts,
tasks, etc.)1.

The SimpleProducer shown in Fig. 6 has a global belief
– buffer, used to keep track of the buffer to be used in
doing its job – and a couple of plans: one for handling the
Producing task (lines 23-52) and one for the predefined
Booting task (lines 19-21), which is executed by default
when the script is loaded the first time. Moreover, being
the SimpleProducer script declared in the context of the
ProdConsOrg organization model (Fig. 6 line 14), it is
possible to directly refer inside the script all the agents and
artifacts, both locals and remotes w.r.t the node in which
a SimpleProducer agent is located, declared in such a
model as literals (e.g., console@main at line 41 and 47, or
theGui@producers at line 30).

The definition of a plan includes the specification of the
type of task for which the plan can be used (e.g. Producing,
line 23) and a plan body, containing a specification of the
procedural knowledge that the agent can use in order to
accomplish the task. Such a knowledge can be specified in
terms of action rules, that are ECA-like rules each specifying
an action todo along with the event and condition specifying
when the action must be done. An action rule block – which
constitutes the body of a plan, denoted by { ... } – is a
set of action rules, possibly including also the definition of
local beliefs, i.e. beliefs whose scope is the block. In the
most general case, an action rule is of the kind:

(every-time | when) Ev : Cond => Act #Lbl

meaning that the specified action Act can be executed
every-time or once that (when) the specified event Ev
occurs and the specified condition Cond – which is a boolean
expression of the agent beliefs base, including local beliefs
– holds. If not specified, the default value of the condition
is true. Events, coming transparently from both local and
remote workspaces, concern percepts related to either the
environment (e.g., the rule at line 40 reacts to the change of
theGUI artifact stopPressed observable property), or
messages sent by agents (e.g. line 46), or actions execution,

1It is worth remarking that in existing agent-oriented languages beliefs
are typically represented by first-order logic literals, denoting information
that can be used by reasoning engines. However the logic representation is
not necessarily part of the belief concept, as remarked by Rao and Georgeff
in [16]:“[beliefs] can be viewed as the informative component of the system
state” and “[beliefs] may be implemented as a variable, a database, a set of
logical expressions, or some other data structure”([16], p. 313).

1 /* Definition of the Producer role */
2 role Producer {
3 task Producing {
4 maxItems: int;
5 understands {
6 newItemsToProduce: int;
7 }
8 }
9 ...

10 }
11

12 /* Definition of the SimpleProducer script */
13 agent-script SimpleProducer implements Producer
14 in ProdConsOrg{
15 /* global beliefs */
16 buffer: Buffer
17

18 /* plans */
19 plan-for Booting (bufferToUse: Buffer) {
20 buffer = bufferToUse
21 }
22

23 plan-for Producing {
24

25 noMoreItemsToProduce: boolean = false;
26 item: int = 0;
27 nItemsTodo: int = maxItems;
28

29 completed-when: noMoreItemsToProduce
30 using: buffer, theGui@producers {
31

32 /* purely active part */
33 repeat-until items > nItemsTodo {
34 item = item + 1
35 put(item: item) on buffer
36 }
37 noMoreItemsToProduce = true
38

39 /* reactive part */
40 when changed stopPressed in theGui@producers =>
41 using: console@main {
42 println(msg: "stopped!")
43 noMoreItemsToProduce = true
44 }
45

46 every-time told newItemsToProduce =>
47 using: console@main {
48 println(msg: "new items todo: "+newItemsToProduce)
49 nItemsTodo = nItemsTodo + newItemsToProduce
50 }
51 }
52 }
53 }

Fig. 6. Definition of the Producer role and of the SimpleProducer
script.

or rather time passing. Actions can be either internal – i.e.,
affecting the agent internal state like a belief assignment
or update – or external—i.e., or given operations provided
by some artifact (e.g. put, (line 35) or println (line
42 and 48)), or communicative actions, to asynchronously
send messages to other agents (tell, ask, do-task,
drop-task, suspend-task, etc.). In the former case,
such event is immediately enqueued with the execution of
the action itself. In the latter case instead, the completion of
the actions (with success or failure) may arrive in the future,
as an asynchronous event enqueued in the external event
queue. The action rule model has been specifically devised to
ease the definition of blocks of behavior which may need to
integrate and mix the execution of some workflow of actions
along with the reactions to some events or condition over the
state of the agent (e.g. lines 29-51).

As mentioned before, actions execution can fail, causing

the generation of proper failures that an agent may perceive
as asynchronous events (like in the case of action completion
with success), to which it can suitably react. As in previous
cases, distribution issues, in this case concerning actions
execution and related failures – i.e., external actions involving
operation execution over remote artifacts or communications
with remote agents – are managed under the hood by the
simpAL runtime infrastructure, hence they remain completely
transparent from the point of view of the simpAL program-
ming model, which allows, for example, to use the same
code to invoke external actions and react to action failures
concerning either local or remote components.

Some attributes can be specified for an action rule block
to further control its execution and behavior. using: specify
the list of the identifiers of the artifacts, used inside the block
(lines 30, 41, 47). At runtime, when entering a block where an
artifact is used, automatically the observable properties of the
artifact are continuously perceived and their value is stored in
corresponding beliefs in the belief base. Like in the previous
cases, also the mapping of observable properties to the agent
beliefs is managed transparently by the simpAL runtime
infrastructure, shielding the programmer from any possible
complexities required for dealing with remote artifacts. The
completed-when: attribute can be used to specify the
condition for which the action rule block execution can be
considered completed (line 29).

Agents’ behavior is managed by a proper control architec-
ture, that allows for integrating both an active, task-driven and
reactive, event-driven behavior and then the execution cycle (or
control loop) that conceptually defines such behavior. Such
architecture is inspired to the reasoning cycle of BDI agents,
and can be framed here as an extension of the basic event loop
found in actors [13]. Conceptually, an agent is a computational
entity executing continuously a loop which involves three
distinct stages executed in sequence: a sense stage, in which
the agent fetches percepts (inputs) from the environment –
available in an event queue – updating its internal state, a plan
stage in which, given the current state and the set of current
tasks that the agent is actually pursuing, the set of actions to
do is selected, and finally an act stage in which the selected
actions are executed. From a conceptual point of view, an agent
is never blocked: it is continuously looping on these stages,
possibly without choosing any action to perform if there are
no active tasks or there is nothing to do in a specific moment
in the tasks it is pursuing.

C. Programming Artifact-Based Environments

The programming model of artifacts is definitely simpler
than the agents’ one, more similar to the model used for
classic passive entities, such as monitors or objects. Artifacts
are simple modules encapsulating the implementation and
execution of sets of operations as actions that the artifact
makes it available to agents, and a set of observable properties
that agents using the artifact may perceive.

Analogously to the agent case, also for artifact programming
we separate the abstract description of the artifact function-

1 /* Buffer usage interface */
2 interface Buffer {
3 obs-prop nAvailItems: int;
4 operation put (item: int);
5 operation get (?item: int);
6 }
7

8 /* Counter usage interface */
9 interface Counter {

10 obs-prop count: int;
11 operation inc();
12 operation reset();
13 }

Fig. 7. Examples of artifact usage interfaces.

alities from their concrete implementation, defining artifact
structure and behavior. The former is specified in artifact
models, defining the usage interface (e.g., Fig. 7 shows the
Buffer and Counter usage interfaces) of all the artifacts
implementing that model. Such interface includes (i) a set
of operations, that correspond to the set of actions available
to agents for using artifacts (so the repertoire of an agent’s
actions at runtime depends on the artifacts that the agent
knows and can use); and (ii) observable properties, as variable-
like information items storing those properties of an artifact
which may be perceived and exploited by the agents using
the artifact. Artifact models are used to define the type of
artifacts, used for instance in beliefs on the agent side keeping
track of artifacts to be used. Analogously to the agent case,
this allows to do a proper set of checks at compile time. For
instance, on the agent side, given a typed artifact reference it
is possible verifying errors about the actions – i.e., external
actions can refer only to artifacts operations specified in the
artifact interface (e.g. put, Fig. 6 line 35) – and percepts—
i.e., belief references related to the observable state of the
artifact can refer only to the observable properties defined in
the artifact models (e.g., the reference to the stopPressed
observable property in Fig. 6 at line 40). As in the case of
roles, being the notion of artifact model used to type both local
and remote artifact references, the static checks just presented
apply transparently to any artifact reference, independently
from the actual location of the referenced artifact.

The implementation of an artifact is defined in artifact
templates. The definition of an artifact template includes a
name, the declaration of the implemented artifact model, the
concrete implementation of operations and the definition of
those internal variables that are used in operation implemen-
tations. Fig. 8 shows the implementation of a simple buffer
and of a counter. Like classes in OOP, artifact templates are a
blueprint for creating instances of artifacts. On the agent side,
a specific action (make-artifact) is available for creating
a new artifact, specifying initial parameters and a belief where
to store the reference to the artifact created.

Operation behavior is given by a simple sequence of state-
ments, in pure imperative style, using classic control flow
constructs, assignment operators, etc. Besides classic state-
ments, specific primitives are introduced to control operation
execution. For instance, the await statement – used in the
get and put operations – allows for suspending the operation

1 artifact SimpleBuffer implements Buffer {
2

3 /* hidden state variables */
4 int maxNumElems;
5 java.util.LinkedList<Integer> elems;
6

7 /* constructor */
8 init (maxElems: int) {
9 count = startValue;

10 nAvailItems = 0;
11 maxNumElems = maxElems;
12 elems = new java.util.LinkedList<Integer>();
13 }
14

15 /* operations */
16 operation put (item: int) {
17 await nAvailItems < maxNumElems;
18 elems.add(item);
19 nAvailItems = nAvailableItems + 1;
20 }
21

22 operation get (?item: int) {
23 await nAvailItems > 0;
24 nAvailItems = nAvailableItems - 1;
25 item = elems.remove();
26 }
27 }

1 artifact CounterImpl implements Counter {
2 c0: int;
3

4 init (startCount: int) {
5 count = startCount;
6 c0 = startCount;
7 }
8

9 operation inc() {
10 count = count + 1
11 }
12

13 operation reset(){
14 count = c0;
15 }
16 }

Fig. 8. Source code of the artifact templates SimpleBuffer and CounterImpl.

until the specified condition is met (allowing then other
operations to be executed). As in the case of monitors, only
one operation can be in execution: so if multiple suspended
operations can be resumed a certain time, only one is selected.
Operation execution in artifacts is transactional, in the sense
that they are executed in a mutually exclusive way and the
changes to the observable state of the artifact (properties) are
done atomically. Changes are perceived by agents observing
the artifact only when an operation completes (with success).

V. THE SIMPAL DISTRIBUTED RUNTIME
INFRASTRUCTURE

The deployment, execution and life-cycle management of
programs written in simpAL are in charge of a distributed
runtime infrastructure, developed in Java, which has been
explicitly devised for managing all this issues transparently
with respect to distribution. The background idea that guided
the development process of this infrastructure is: the execution
and management of distributed MASs should be, from a
developer perspective, as simple as the case of centralized,
not distributed ones.

To this end the notions of simpAL kernel and simpAL
node have been introduced. The former is in charge of the
concrete execution of simpAL programs or parts of them (in
case of distributed execution). The latter instead is a generic
network node in which the simpAL kernel is installed and
executed – typically like a demon running in background,
launched when the machine boots – used as the basic building
block for providing a robust and flexible distributed runtime
infrastructure for executing MASs—i.e., a simpAL node can
be considered as a generic network node on top of which a
user may want to host the execution of simpAL programs, or
parts of them.

Once the kernel is up and running in all the interested
network nodes, a user can start the execution of a simpAL
application by launching it from a generic simpAL node that

assumes the role of launch manager. Once the launch starts, the
manager, using the information specified into the application
deployment configuration file (if any), properly distributes the
simpAL program, in its compiled version, among the others
target nodes. It is worth remarking that the simpAL runtime
infrastructure guarantees the consistency and the alignment of
programs’ sources either in the case of multiple local launches
and in the case of distributed ones—i.e., only the up-to-date
version of the compiled sources is loaded or distributed among
the interested nodes. Since this phase does not involve any kind
of logical dependency, is done in a concurrent manner to speed
up the boot process. Then, when the simpAL kernels installed
in the interested nodes receive their part of the application,
each one of them autonomously starts the booting by properly
initializing the workspaces that need to be hosted in that node.
During this process, the simpAL kernels communicate with
each others using a simple handshake protocol in order to keep
track of the current status of the application and to guarantee
a proper initialization of the MAS. Finally, only when all the
workspaces have been deployed and all the static artifacts
contained in them properly created, the agents are spawned
and then the MAS can start its execution.

The termination of a running application can be triggered
from any of the simpAL nodes in which it is hosted. Once
triggered, the termination is managed, exploiting a proper
shutdown protocol, in a coordinated manner by all the kernels
involved in the shutdown process.

VI. DISCUSSION

Given the presentation of both the simpAL runtime infras-
tructure and programming model, in this section we provide
a critical discussion about some relevant points, in relation to
the programming, deployment and management of distributed
multi-agent systems in simpAL.

The first one concerns the support given by the simpAL
programming model to handle distribution when programming

an application. simpAL has been conceived from the beginning
for (also) distributed programming, hence distribution is a
feature which is directly part of its agent-oriented program-
ming model. This allows, on the one side to have first class
abstractions to conceive and define, in a explicit manner during
the design phase, the application structure from both a logical
and physical point of view. To authors’ knowledge, there are
not other APLs in the state-of-the-art that give this opportunity.
Indeed, usually the application structure is implicit, depicted
almost entirely into developers’ minds, and it is possible to
have a clear picture of it only at runtime when all the MAS’s
parts have been properly deployed and initialized. On the other
side, the programming model makes it possible to get a full
transparency with respect to distribution when programming
agents and artifacts—e.g., the code that one needs to write
for implementing an agent communicating with (or spawning)
other agents, or an agent using/observing/creating artifacts is
the same in spite of the fact that agents/artifacts are in the
same workspace (node) or not. A similar transparency level is
provided by JADE and by all the APLs in the state-of-the-art
that exploit some generic agent platform to enable transparent
message-based interactions among local and remote agents
(e.g., Jason, AFAPL, etc.). However, usually, transparency
related to distribution issues is limited to message exchanges
among agents, while instead interactions with other language
specific components (e.g. Platform Services in AFAPL) still
need to be handled in an ad-hoc manner, taking into account
the actual location of such components.

The second point concerns instead the capability to detect
programming errors, in particular related to the interactions
with distributed components, at compile-time. Indeed, be-
ing simpAL a statically typed programming language, it is
possible to detect statically, before running the system, a
proper set of errors: the referencing of non-existing symbols
due to typos, sending to an agent a message that it can
not understand, invoking an artifact operation with wrong
arguments types, etc. In particular, as described in detail in
Section IV, the presence of a proper type system and the
transparency provided by the simpAL programming model,
give us the opportunity to seamlessly perform a vast set of
compile-time error checks concerning the interaction with both
local and remote components, without having the burden to
deal with distribution issues. A comprehensive description of
all the compile-time checks that can be performed in simpAL
is outside the scope of the paper. Interested readers can find
further details here [18]. Others state-of-the-art APLs provide,
in general, a quite weak typing support. Some languages –
e.g., Jason, GOAL, AFAPL – do not support at all a notion
of type, therefore is not possible perform compile-time errors
detection neither for what concerns classical programming
errors (e.g., assign to a belief meant to store integer numbers
a string value) nor for the ones concerning interactions with
distributed components (e.g., requesting the achievement of
goals unknown to the agents) [18]. Other ones instead (e.g.
JADE), being frameworks realized on top of mainstream OO-
based programming languages, exploit the underlying type

system for enabling some kind of basic error checks. However,
in this APLs part of the abstractions characterizing the agent-
oriented paradigm (goals, messages exchanged, etc.) can not
be explicitly modeled at the language level (i.e., they are
not part of the OO programming model), and therefore this
limits the compile-time error checking mechanisms that can
be introduced in such languages, in particular the ones related
to the interactions with distributed components (e.g., checks
for detecting wrong goals assignment to agents).

Finally, the last point we consider, concerns the easy man-
agement of the deployment and execution of distributed MASs.
We argue that the infrastructural support given by current
state-of-the-art APLs makes these tasks quite troublesome,
causing developers to manually manage specific deploy/launch
procedures that can be instead automatized and taken in
charge by APLs’ runtime infrastructures. Accordingly, sim-
pAL provides both a programming model and a distributed
runtime infrastructure aimed at giving developers the means to
manage distributed applications like local ones. However, even
if from the one side several efforts have been made in order
to engineer a distributed infrastructure that goes beyond the
ones provided by state-of-the-art APLs – e.g., no more need
to manually deploy / initialize / terminate the different parts
of a distributed application, trivial management of different
deployment configurations for the same application, etc. –
on the other side such infrastructure is still at the prototype
level, therefore, it can not be considered as mature and robust
as reference agent-based ones, e.g. like the one provided by
JADE, used also in industrial contexts.

VII. ONGOING AND FUTURE WORK

Ongoing and future work concern both topics and arguments
which are related to the main contribution of this article, and
other ones which are instead outside of this scope and hence,
not discussed here—e.g., enriching the task model, definition
of social tasks, extending the type system in oder to support
sub-typing and inheritance, etc.

First, we want to improve the current implementation of the
simpAL runtime platform in order to make it more robust and
mature for the execution and management of distributed multi-
agent systems. The seamless management of faults that can
occur at runtime – e.g., network delays, unexpected shutdown
of network nodes, etc. – is a key issue in the general context
of distributed systems and related infrastructures that support
their execution. So far, in simpAL the only support provided
for dealing with faults at runtime is at the programming
level, where programmers can deal with the different kind
of network problems that can occur by properly reacting to
action failures perceived by the agents (see Section IV-B).
We aim at improving the current basic support for handling
faults at runtime, trying to shield programmers as much as
possible from their management. The final objective of this
enhancements is the realization of a fault-tolerant runtime
infrastructure able to manage in a quite seamless manner:
temporary node unreachability, dynamic addition / shutdown
of simpAL nodes, workspace migration, etc.

Another main improvement we aim at investigating in the
near future concerns the study of a proper extension in order
to provide a better support for openness and dynamism in
simpAL programs. These are two of the key features of multi-
agent systems, giving the opportunity to design applications
that can change, adapt and evolve at runtime. Currently
simpAL provides a quite weak support for realizing appli-
cations able to express this kind of behavior. Indeed, as a
design choice, for enabling strict compile-time error checking
mechanisms, the set of allowed types in an organization is
determined statically (see Section IV). As a consequence,
situations involving the interaction with components exter-
nal to the organization, whose type can be unknown, are
not allowed, hence limiting the openness and dynamism of
simpAL programs. We want to overcome this weakness by
studying a proper extension of the simpAL organizational
model, maintaining however our current application model –
i.e., an application is seen as an organization structured in term
of workspaces – and without renouncing to the possibility of
performing compile-time error checks.

Finally, other efforts will be dedicated in the realization
and improvement of proper tools for debugging, monitoring,
and profiling distributed simpAL programs. Currently simpAL
comes along with a simple debugger which allows to inspect
agent execution on a step-by-step basis. However this tool is
quite simple and, so far, it does not support breakpoint at the
artifact/workspace/node level. Therefore, we intend to enrich
the current debugger and also develop further tools that will
allow to inspect and monitor simpAL programs in a more agile
and comprehensive way.

VIII. CONCLUSION

The availability of proper APLs and related runtime plat-
forms able to support a seamless engineering, deployment and
execution of distributed multi-agent systems is a key factor
for their successful realization. Accordingly, in this paper we
presented simpAL, an agent-oriented programming language
providing both a programming model and a distributed runtime
platform aiming at making the programming and execution
of multi-agent systems quite transparent with respect to their
distribution.

A guiding toy example has been used for introducing the
support provided by simpAL for dealing with distribution
issues at the programming and execution levels, and also for
highlighting the main aspects of the simpAL programming
model.

Finally, a critical analisys has been provided for pointing
out the improvements made in handling distribution issues in
simpAL, in relation with the current support given by APLs in
the state-of-the-art, and current weaknesses and limitations of
both its programming model and distributed runtime platform,
along with the plan for their overcome with future work.

REFERENCES

[1] FIPA Agent Communication Language specification – http://www.fipa.
org/repository/aclspecs.html, last retrieved: July 18th 2012.

[2] F. L. Bellifemine, G. Caire, and D. Greenwood. Developing Multi-Agent
Systems with JADE. Wiley, 2007.

[3] R. Bordini, J. Hübner, and M. Wooldridge. Programming Multi-Agent
Systems in AgentSpeak Using Jason. John Wiley & Sons, Ltd, 2007.

[4] R. H. Bordini, M. Dastani, J. Dix, and A. El Fallah Seghrouchni. Special
issue: Multi-agent programming. Autonomous Agents and Multi-Agent
Systems, 23 (2), 2011.

[5] R. H. Bordini, M. Dastani, and A. El Fallah Seghrouchni, editors. Multi-
Agent Programming Languages, Platforms and Applications - Volume
1, volume 15. Springer, 2005.

[6] R. H. Bordini, M. Dastani, A. El Fallah Seghrouchni, and J. Dix, editors.
Multi-Agent Programming Languages, Platforms and Applications -
Volume 2. Springer, 2009.

[7] L. Braubach, A. Pokahr, D. Bade, K. Krempels, and W. Lamersdorf.
Deployment of distributed multi-agent systems. Engineering Societies
in the Agents World V, pages 898–898, 2005.

[8] M. Dastani. 2APL: a practical agent programming language. Au-
tonomous Agents and Multi-Agent Systems, 16(3):214–248, 2008.

[9] T. Finin, R. Fritzson, D. McKay, and R. McEntire. Kqml as an agent
communication language. In Proceedings of the third international
conference on Information and knowledge management, pages 456–463.
ACM, 1994.

[10] K. V. Hindriks. Programming rational agents in GOAL. In R. H. Bordini,
M. Dastani, J. Dix, and A. El Fallah Seghrouchni, editors, Multi-Agent
Programming: Languages, Platforms and Applications (2nd volume),
pages 3–37. Springer-Verlag, 2009.

[11] N. Howden, R. Rönnquist, A. Hodgson, and A. Lucas. JACK intelligent
agentsTM — summary of an agent infrastructure. In Proc. of 2nd Int.
Workshop on Infrastructure for Agents, MAS, and Scalable MAS, 2001.

[12] N. R. Jennings. An agent-based approach for building complex software
systems. Communication of ACM, 44(4):35–41, 2001.

[13] M. Miller, E. Tribble, and J. Shapiro. Concurrency among strangers. In
R. De Nicola and D. Sangiorgi, editors, Trustworthy Global Computing,
volume 3705 of Lecture Notes in Computer Science, pages 195–229.
Springer Berlin / Heidelberg, 2005.

[14] A. Omicini, A. Ricci, and M. Viroli. Artifacts in the A&A meta-model
for multi-agent systems. Autonomous Agents and Multi-Agent Systems,
17 (3):432–456, Dec. 2008.

[15] A. Omicini, A. Ricci, M. Viroli, C. Castelfranchi, and L. Tummolini.
Coordination artifacts: Environment-based coordination for intelligent
agents. In Proc. of the 3rd Int. Joint Conf. on Autonomous Agents and
Multi-Agent Systems (AAMAS’04), volume 1, pages 286–293, New York,
USA, 19–23July 2004. ACM.

[16] A. S. Rao and M. P. Georgeff. BDI Agents: From Theory to Practice.
In First International Conference on Multi Agent Systems (ICMAS95),
1995.

[17] A. Ricci and A. Santi. Designing a general-purpose programming
language based on agent-oriented abstractions: the simpAL project.
In Proc. of the compilation of the co-located workshops on DSM’11,
TMC’11, AGERE!’11, AOOPES’11, NEAT’11, VMIL’11, SPLASH ’11
Workshops, pages 159–170, New York, NY, USA, 2011. ACM.

[18] A. Ricci and A. Santi. Typing multi-agent programs in simpAL. In
Proceedings of the Int. Workshop on Programming Multi-Agent Systems
(ProMAS’12), Valencia, Spain, 2012.

[19] R. J. Ross, R. W. Collier, and G. M. P. O’Hare. AF-APL - bridging
principles and practice in agent oriented languages. In Programming
Multi-Agent Systems, volume 3346 of Lecture Notes in Computer
Science, pages 66–88. Springer, 2004.

