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Abstract. Metamap and Mgrep are natural language processing tools for map-
ping medical free text to formal medical lexicons, but an indepth comparison
of the programs and their application to social media data has never been pur-
sued. This project is interested in comparing the programs, in order to determine
which program is most appropriate for mapping web 2.0 communication data.
The archives of the Pediatric Pain Mailing List (PPML) were mapped with both
programs, and each term returned was checked for correctness. The analysis re-
sulted in Mgrep having a significantly higher precision (76.1% to 58.8%, differ-
ence of 18%, p-value < 0.0001) while Metamap returned more terms: 2381 to
1350. When considering only perfect or multiple matches, Mgrep still had bet-
ter precision (81.2% to 71.3%, difference 10%, p-value < 0.0001). Ultimately
Mgrep’s precision may make it the better choice for many applications, but when
there is more value in number of correct terms returned over accuracy of those
terms, Metamap’s larger set and superior scoring function may make it the tool
of choice.

Keywords: Natural Language Processing; Semantic Mapping; MeSH; UMLS;
Knowledge Management; Knowledge Translation

1 Introduction

Web 2.0 tools provide a valuable service to the healthcare community. Through online
discussion forums, mailing lists, blogs, etc., clinicians can find mediums through which
they can communicate their problems and share their experiences, developing relation-
ships and creating a virtual community of practice (Wenger, 2004). Notwithstanding
the evidence-based nature of modern healthcare, these online tools provide avenues for
sharing experiential and tacit knowledge (Abidi, 2006) with colleagues in a way that
spans the temporal and geographical boundaries that often prevent face-to-face com-
munication.

The archives of these online conversations contain vast amounts of tacit and experi-
ential knowledge. Extracting this knowledge and making it available to the community
can improve the overall knowledge base, but how best to process this unstructured free
text has proven a challenge.



Natural language processing approaches have been pursued in the past, includ-
ing the semantic mapping of the unstructured text from the online tools to keywords
from structured medical lexicons, such as UMLS (UMLS, 2012) and MeSH (MeSH,
2010). Of all the approaches to this mapping, the two most successful have been the
Metamap program (Aronson, 2001) developed at the NLM, and Mgrep, the mapping
tool of choice for the Open Biomedical Annotator (Jonquet et al., 2009).

These two programs take different approaches to the mapping process, and as such
result in different sets of keywords when mapping the same source text. Previous re-
search (Shah et al., 2009) has investigated comparing the two programs with respect to
mapping the metadata associated with free, online databases, but this comparison did
not explore the successes and failures of each program in any great detail, and the nature
of metadata is very different from the archives of social media tools.

This paper is interested in comparing the results of using Metamap and Mgrep to
map the archives of an unstructured medical mailing list to the MeSH medical lexicon.
We first want to investigate general precision, to determine which program is more
accurate with its mapping. We also want to delve deeper into the precision of the two
programs, to determine if there is a relationship between mapping score and correctness,
and we want to look at the overlap between the terms returned from the two programs.

The paper will proceed as follows: the background section will summarize the med-
ical lexicon system, and the MeSH system in particular. It will explore some previ-
ous semantic mapping techniques, along with in depth explanations of how Metamap
and Mgrep work. The methods section will outline the data preparation, the mapping
process, and the analysis plan. The results section will summarize the analysis of the
mappings by the two programs, and finally the discussion and conclusion sections will
attempt to synthesize the analysis into a useful comparison of the two programs.

2 Background

In an evidence-based medical world, it is vital that knowledge be available to clinicians
at the point of care. Unfortunately, the lack of organization, proper indexing, aging
information sources and poor distribution have been shown to negatively affect a clini-
cian’s access to pertinent information (Covell et al., 1985; Timpka et al., 1989; Osheroff
et al., 1991). The use of formal medical lexicons is a key step in improving clinician
access to medical knowledge by providing a unified indexing of the existing medical
knowledge.

The Unified Medical Language System (UMLS) is developed by the National Li-
brary of Medicine (NLM) to facilitate the computerization of medical knowledge, with
the ultimate goal of allowing computer-systems to “understand” the meaning of biomed-
ical and health text (UMLS, 2012). To this end they have created a number of tools, one
of which is the “Metathesaurus”, a formal lexicon that is the aggregate of over 150
different medical lexicons. The Metathesaurus includes a semantic network, assigning
each term in the UMLS to one of the 135 generalized semantic types, which in turn have
54 relations between them. For a full listing of the UMLS Semantic Types, visit http:
//www.nlm.nih.gov/research/umls/META3_current_semantic_types.html.



The Medical Subject Headings (MeSH) lexicon is one of the subsets of the UMLS
(MeSH, 2010). MeSH is the NLM’s own controlled vocabulary, and is used to index the
MEDLINE database. There are 26,142 terms in the 2011 edition of MeSH, arranged in
a hierarchical fashion descending from 16 independent root nodes.

The UMLS and MeSH provide a valuable indexing resource to the medical pro-
fession, but clinicians need to be able to leverage these semantic languages in order
to make full use of the formal indexing. Leroy and Chen (Leroy and Chen, 2001) de-
veloped a system that processes general medical queries and returns a set of medical
keywords from the UMLS. Cimino et al (Cimino et al., 1993) designed a system that
maps clinician queries to a set of generic queries based on UMLS keywords. Both of
these systems take questions and map them to formal terms from a medical lexicon,
which, though a first step, is different from mapping unstructured free text to a medical
lexicon.

2.1 Semantic Mapping Techniques

The process of mapping free text to formal medical lexicons (and specifically to the
UMLS) has long been an objective of the medical research community. The value of
having formal representation of ideas combined with the challenge of performing the
task manually has made research into automated approaches very valuable. This prob-
lem is often linked to MEDLINE, which is manually indexed by MeSH terms (MeSH,
2010), and thus provides an objective reason to connect text to UMLS terms. Mi-
croMeSH (Lowe, 1987) was one of the first attempts to do this, by providing a simple
system to expand search queries to MEDLINE and provide a tool where users could
browse the MeSH tree around the terms they searched.

CHARTLINE (Miller et al., 1992) processed free text of medical records and con-
nected them to relevant terms in the MeSH lexicon via a direct mapping. This process
was improved by SAPHIRE (Hersh and Greenes, 1990), which explored the idea of
processing free text and cleaning it by mapping terms to their synonyms. This was a
valuable addition to the literature, as it normalized the process of mapping women to
woman. This process was taken up by Nadkarni et al (Nadkarni et al., 2001) who used
this synonym mapping along with a part of speech tagger to better identify the struc-
ture of the conversations and attempt to identify specific words and phrases in the text.
PhraseX (Srinivasan et al., 2002) also used this kind of synonym parser to analyze the
mapping of MEDLINE abstracts to the UMLS metathesaurus, in order to evaluate the
contents of UMLS itself. Other, similar approaches include KnowledgeMap (Denny
et al., 2003) and IndexFinder (Zou et al., 2003).

The current, gold standard is Metamap, though another product, called Mgrep (Shah
et al., 2009) provides a very similar service. The creators of the Open Biomedical An-
notator (OBA) (Jonquet et al., 2009) designed a system that leverages the results of any
semantic mapping service (Metamap or Mgrep) and the ontology relations within the
lexicon to produce a more complete semantic mapping. The OBA authors decided to
make Mgrep their default mapping service, due largely to its vastly quicker processing
times, but their approach would work with Metamap as well.



2.2 Metamap

Metamap uses a special natural language parser called SPECIALIST (Aronson, 2001)
to find all the nouns and noun-phrases in a discussion thread, and maps them to one or
more UMLS terms. Each mapped UMLS term is assigned a score that is a measure of
how strongly the actual term mapped to the UMLS vocabulary. The score is a weighted
average of four metrics measuring the strength of the matching, with an overall range
in [0,1000], with higher scores indicating a better match. The formal equation for cal-
culating the scores is:

1000× (Centrality+Variation+2×Coverage+2×Cohesiveness)
6

(1)

– Centrality: An indicator of whether the matched (source) term is the head of the
phrase

– Variation: A measure of the distance between the matched term and the root word.
For example, if the source word is eye and the match is to the term ocular, the
distance is 2, as ocular is a synonym for eye

– Coverage and Cohesiveness: Measures of how well the source term and the UMLS
term match each other: if the source and UMLS terms are both “pain” then the
match is perfect, but if the source term ocular matches to the UMLS term Ocular
Vision then the coverage and cohesiveness are less than perfect.

Metamap’s precision and recall in previous projects have varied depending on the
format of the text being processed, from values as high as 0.897 and 0.930 respectively
(Kahn and Rubin, 2009) to values as low as 0.56 and 0.72 (Chapman et al., 2004). The
difference between the precision and recall values show that Metamap does a good job
at returning pertinent MeSH terms, but also returns impertinent terms as well, i.e., its re-
sults are somewhat noisy. Projects that reported low recall and precision with Metamap
acknowledged that many of the problems come from the inherently ambiguous nature
of the text being processed: in processing medical residents’ voice recordings, it was
noted that Metamap failed to recognize abbreviations, acronyms or complex phrases
that omitted key terms (Chase et al., 2009).

For our purposes, the Metamap scoring system provides a baseline measure of how
well the mapped UMLS term represents the original term in the PPML discussion
thread. Table 1 contains some sample mappings to the MeSH lexicon and their scores.

Despite the inconsistencies in the terms returned by Metamap, it provides a valuable
tool for mapping unstructured messages and conversations to a structured medical lex-
icon. The Knowledge Linkage project (Stewart and Abidi, 2012) uses these mappings
to try and provide explicit knowledge links to the experiential knowledge being shared
within the community.

2.3 Open Biomedical Annotator and MGrep

The Open Biomedical Annotator (Jonquet et al., 2009) was developed to automate the
process of providing keywords to datasets that are available on the web. Their process
was to take the metadata from the datasets, pass them through a semantic mapping



engine (either Metamap or Mgrep) and then post-process their output using ontological
relationships.

The authors of the Open Biomedical Annotator performed an experiment to com-
pare MetaMap to Mgrep (Shah et al., 2009) in terms of accuracy and speed. They found
that Mgrep performed slightly better in terms of precision and was much faster (1/5th of
a second compared to 8 minutes). The authors concluded that, because they were look-
ing for real-time implementation, Mgrep was was a better option for them, and thus The
Open Biomedical Annotator was implemented using Mgrep.

The details of how Mgrep works are not completely clear, and publications on it
have been limited to conference posters (Dai et al., 2008). The authors of the Open
Biomedical Annotator claim that it “implements a novel radix-tree-based data structure
that enables fast and efficient matching of text against a set of dictionary terms” (Jon-
quet et al., 2009). The scoring algorithm as well is not completely explained, though it
performs a similar expansion scoring to Metamap, where partial matches and derived
matches receive lower scores that perfect matches. Mgrep is not distributed itself, but
is accessed via the OBA: performing a mapping with the OBA without using the on-
tological expansions results in a strictly Mgrep-based mapping. Table 1 contains some
sample mappings from Mgrep.

The report stated that when music therapy is used, the babies required less pain medica-
tion. Does anyone know of any published reports of empirical research demonstrating
the effect?

Metamap Terms Mgrep Terms
Source MeSH Term Score Source MeSH Term Score
music therapy Music Therapy 1000 Music Music 10

therapy therapy 10
the babies Infant 966
less pain medi-
cation

Pain 660 Pain Pain 10

less pain medi-
cation

Pharmaceutical
Preparations

827

of any pub-
lished reports

Publishing 694 Report Report 16

Research Research 10
of empirical
research

Empirical Re-
search

1000 Empirical Re-
search

Empirical Re-
search

10

Table 1: Sample message and its associated MeSH mappings from both Metamap and
Mgrep

2.4 Conclusion

It is clear that Metamap and Mgrep are the two most popular options for mapping
medical free text to structured medical lexicons. Minimal research has been done in



terms of comparisons, but more is needed, particularly within the mapping of social
media data. Using MeSH as a target lexicon has the benefit of having many comparable
projects, and the follow-up connection to MEDLINE and other sources that are indexed
by MeSH is an additional reason to use it as a target lexicon.

3 Methods

The data for this project is the archives of the Pediatric Pain Mailing List (PPML)
from January 2006 - December 2008. The data were originally extracted and processed
for the Knowledge Linkages project (Stewart and Abidi, 2012) and the parsing and
cleaning details are contained therein. For our purposes the content of the messages
were extracted and cleaned to try and remove non-medical information (user signatures
and reply-text being the major targets). An attempt was made to remove non-pertinent
messages (such as conference announcements and job advertisements) as those types
of messages do not contain the embedded medical knowledge that we are interested
in. Once the data was cleaned and prepared it was mapped with both Metamap and
the Open Biomedical Annotator (OBA), producing a set of terms and scores for each
message from each program.

3.1 Mapping

In a paper by Abidi (Abidi et al., 2005) they outlined semantic filters they applied when
using Metamap in mapping the content of clinical practice guidelines to formal medical
terms. Of the 135 semantic types in the UMLS certain types, such as Amphibian or Pro-
fessional Society, were not deemed pertinent to the subject, and were filtered out. 108
of the semantic types were used, while 27 were filtered out. The semantic types filtered
out were: Amphibian, Animal, Bird, Class, Family Group, Fish, Functional Concept,
Geographic Area, Group, Idea or Concept, Intellectual Product, Language, Mammal,
Occupation or Disciple, Organization, Physical Object, Plant, Population Group, Pro-
fessional Society, Professional or Organizational Group, Qualitative Concept, Quanti-
tative Concept, Regulation or Law, Reptile, Research Device, Self-help or Relief Orga-
nization, Spatial Concept, Temporal Concept and Vertebrate.

The mapping was done usingMetamap09. Though newer versions of Metamap have
been made available the decision was made to use the same mappings that were done in
the original project (Stewart and Abidi, 2012). Changes between versions of Metamap
are minimal, so a change to the new version of the program is not expected to drastically
affect the results.

ForMgrep, the mapping was done using the OBAREST services, available at http:
//bioportal.bioontology.org/annotator. The OBA has the same semantic type
filters as Metamap, and the same filtering set was used. None of the OBA expansion
options were used, resulting in the OBA returning a strictly Mgrep-mapped set.

In order to make the scores comparable between the programs, the Metamap scores
were divided by 100, putting them on the same [0, 10] range as the Mgrep scores. For
each program, the terms within a specific message were aggregated. This means that,
though the range for an individual mapping score is [0,10], the scores can in reality go



from [0,∞], as there could be multiple mappings of the same term in a message. For the
mappings reviewed, the maximum score returned was 128.26 for Metamap and 190 for
Mgrep.

Once the mappings were created they needed to be checked. The messages and
their mappings were reviewed by a medical expert. For each message the content of the
message was first evaluated to determine if it was medically oriented, completing the
filtering process that was somewhat handled in the data cleaning process. After that each
MeSH term mapped to the message was reviewed and determined to be relevant to the
conversation or not. The process was continued until 200 medically relevant messages
had been found, with 127 messages being deemed not medically relevant.

3.2 Analysis

The analysis will begin with a simple investigation of the precision of both programs.
Since both programs report scores for each mapping, an investigation of the relationship
between score and correctness will also be investigated, to determine both the value of
the scores being returned, and whether the scores could be used to improve the mapping
process. We also want to compare the mappings between Mgrep and Metamap to study
the overlap. The natural partner when studying precision is recall, but while precision,
the proportion of returned terms that are correct, is relatively simple to calculate, recall,
the number of correct terms that were found, is not nearly as simple to find, as this
requires the correct terms for each of the messages to be pre-specified, which was not
a feasible task for this project. Relative recall (Clarke and Willett, 1997) is often used
to compare search strategies in which there is no annotated database to calculate recall
from, but relative recall tends to favour system that return more results, and Metamap
returned many more terms, and thus must have a higher relative recall. We will instead
look at the overlap between the two programs and its relationship to precision.

4 Analysis

Table 2 presents some summary statistics for both Mgrep and Metamap. As we can see
in the table, Mgrep had significantly higher precision, with a p-value < 0.0001.

Program # terms # correct Precision difference p-value
Metamap 2381 1384 58.12%

Mgrep 1350 1027 76.07% 17.95% [14.9%,21.0%] < 0.0001
Table 2: Summary of the mapping process for both programs. The p-value is calculated
using a 2-sample z-test with a continuity correction.

4.1 Scores and Correctness

Though Mgrep has a higher general precision than Metamap, the relationship between
score and correctness reveals that Metamap’s precision may be better than it appears.



Figure 1 presents boxplots for both programs, comparing the scores for both programs
between incorrect and correct mappings.
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Fig. 1: Boxplots for comparing scores to correctness for both programs. Note that the
plots are truncated to the [0,25] range for clarity.

For both programs it appears that there is a significant relationship between score
and correctness, though the difference is more pronounced for the Metamap scores, as
that program returns a wider range of scores. Infact, for individual terms Mgrep does
not seem to return scores other than 8 or 10, with higher scores resulting from multiple
mappings within the same message. Table 3 presents the comparison of correctness
to score, and finds that, for both programs the correct terms have significantly higher
scores.

n mean Quantiles [5%,25%,50%,75%,95%] Mean diff. p-value
Metamap Correct 1384 12.40 [6.38, 8.27, 10.00, 11.63, 28.27]

Incorrect 997 9.82 [5.94, 7.89, 9.16, 10.00, 19.01] 2.57 < 0.0001
Mgrep Correct 1027 13.68 [8, 8, 10, 10, 30]

Incorrect 323 10.13 [8, 8, 8, 10, 17.8] 3.55 < 0.0001
Table 3: Comparing scores to correctness for both programs. The p-values are calculated
using a Wilcoxon Rank-Sum test to account for the extreme skewness of the data.

The relationship between scores and correctness can be investigated further by look-
ing at 10% quantiles of the data. Tables 4 and 5 report the correctness stratified by 10%
quantiles of the scores. The quantiles of the Metamap scores are much more spread
out, which is to be expected as their scoring algorithm is more complex, resulting in a



wider range of values. What is interesting, looking at the table, is that there seems to
be a significant jump in precision for both programs for terms that score 10 points or
higher. Table 6 looks at the relationship between correctness and score dichotomized to
above/below 10 points.

Quantile [5.22,6.6) [6.6,7.55) [7.55,8.61) [8.61,8.75) [8.75,9.28) [9.28,10) [10,18.6) [18.6,128)
Correct 129 77 135 94 109 149 247 57

Incorrect 94 175 104 143 56 56 554 201
n 223 252 239 237 165 205 801 258

Precision 0.42 0.69 0.44 0.60 0.34 0.27 0.69 0.78
Table 4: Correctness by 10% quantiles of scores for Metamap. Note that quantiles that
were the same were collapsed together, thus the quantile [10, 18.6) has 801 observations
in it, which represents 3 quantiles of data.

Quantiles [8,10) [10,16) [16,20) [20,190)
Correct 162 126 19 16

Incorrect 328 445 69 184
n 490 571 88 200

Precision 0.67 0.78 0.78 0.92
Table 5: Correctness by 10% quantiles of scores for Mgrep. Because of the lack of
range of Mgrep scores many of the quantiles were similar, and were thus collapsed into
4 groups from 10.

Metamap’s precision has jumped from 58% to 71%, while Mgrep’s has jumped
from 76% to 81%. Though Mgrep’s precision amongst only those terms that score≥ 10
is still significantly higher (10% difference, 95% CI: [6.1%, 13.9%], p-value< 0.0001),
Metamap improved it’s precision by 13%, whereas Mgrep only improved by 5%. It is
clear that there is a significant relationship between score and correctness.



Metamap Score
< 10 ≥ 10 Total

Correct 628 756 1384
Incorrect 693 304 997

Total 1321 1060 2381
Precision 47.5% 71.3%

m

Mgrep Score
< 10 ≥ 10 Total

Correct 328 699 1027
Incorrect 162 161 323

Total 490 860 1350
Precision 66.9% 81.2%

Table 6: Looking at the relationship between score ≥ 10 and correctness for both pro-
grams.

4.2 Overlapping Terms

The overlap between the terms returned byMetamap andMgrep presents an opportunity
to try and evaluate the recall of the two programs. Though formal recall cannot be
calculated, and relative recall is not valuable when one program returns so many more
terms, studying what terms one program returned that another did not, and investigating
what terms are missing, presents a valuable comparison of the two programs. Table
7 presents the overlap of the two programs with respect to correctness, and Figure 2
provides a visual representation of the difference.

Program Incorrect Correct Precision Total
Metamap Only 800 621 0.437 1421

Mgrep Only 126 264 0.677 390
Both Programs 207 782 0.791 989

Table 7: Comparing the overlap of the two programs. The precision reported is the
number of terms for that row that are correct, i.e., it is the Correct column divided by
the Total column.

The overlap of the two programs presents some interesting results. Of the 1350
terms returned by Mgrep, 989 were also returned by Metamap, resulting in an overlap
of 73%. With 2381 terms returned, 41% of the terms returned by Metamap were also
covered by Mgrep. Put in another way, if one were to only use Metamap, there would
have been 264 correct mappings that were missed, while if one were to only use Mgrep
there would be 621 correct mappings missed.

As demonstrated in Figure 2, the terms where the programs overlapped were more
likely to be correct, with an overlap precision of 79.1%. This also leads to both programs
having lower precision on the terms that only they returned than their overall average
precision.
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Fig. 2: Comparing the overlap of the two programs to their precision.

5 Discussion

Based strictly on precision, Mgrep outperforms Metamap. A difference of nearly 18%
confirms the findings of (Shah et al., 2009) in their original investigation of the two
programs. There is much more depth to the comparison, however, which reveals the
potential utility of Metamap in certain situations.

Though both programs provide mapping scores, Metamap’s seem more useful, pro-
viding both a wider range of scores and a larger difference in precision between the low
and high scoring terms. One of the challenges of this comparison is a lack of details
on how the Mgrep scoring algorithm works, but, though the authors claim a range of
[0,10], in reality only 8’s and 10’s were returned (with higher scores all being aggregates
of those two numbers).

Of particular interest is the poor performance of terms returned by Metamap that
have scores just below perfect: Looking back at Table 4, the fifth decile, [8.75, 9.28), has
a precision of only 34%. Looking into the mappings in this quantile, we see mappings
that are based on variations in the root word, along with words that are based on a
less than perfect coverage. The mappings in this group are inaccurate because they are
taking a source term like “replacing” and mapping it to the MeSH term “Replantation”,



which is rarely going to be the correct mapping. In an attempt to dig deeper into the
potential variations on source terms, Metamap seems to be hurting its overall precision.

When mappings are restricted to only perfect matches (or less than perfect matches
that occur multiple times), the precision of both programs increases, but the increase
is more dramatic for Metamap (see Table 6). Previous studies that have investigated
Metamap could improve their results by putting more effort into leveraging theMetamap
scores.

This does not mean that terms that score less than perfect should necessarily be
dropped, however, as there is a more to the evaluation of the two programs than pre-
cision. Looking back at table 6, removing all mappings with scores < 10 would drop
693 correct Metamap mappings and 162 correct Mgrep mappings. If the objective of
the mapping process is strictly about precision then this may be a logical step, but if the
objective is to try and find suggested terms to provide to the users, then there is little
harm in providing incorrect suggestions, especially if it leads to more pertinent terms
being provided as well. Looking at the overlap of the two programs, though Mgrep had
a higher precision, it missed 621 terms that Metamap provided, terms which may have
been beneficial to the user. Likewise, there are 264 terms missed by Metamap that were
returned by Mgrep, which could also have been helpful.

If the objective of the mapping process is strictly to be as precise as possible, then
using Mgrep and restricting the mapping solely to terms that score 10 points will result
in the most accurate mapping. If you are developing a suggestion engine, however, or if
your system can leverage the mappings scores, as our Knowledge Linkage program did
(Stewart and Abidi, 2012), then perhaps the larger set returned by Metamap, combined
with the superior scoring function, may be more useful to your project.

Though it was not studied formally in this project, we did find that Mgrep was vastly
faster than Metamap, even when used over the internet through their REST services.
This confirms the findings of (Shah et al., 2009), and if you are trying to develop a
real-time system then Metamap may be too slow for your application.

6 Conclusion

There is an obvious need for indexing engines that can process free text and match them
to formal medical lexicons. Though this project focused on MeSH, there are obvious
expansions to any component of the UMLS, and mappings to ICD and SNOMED can
provide valuable resources to those working in health information technology.

The mapping of social media archives to MeSH is a challenging objective. A preci-
sion of 58% by Metamap is at the low end of the range of precisions reported by other
papers that studied program (Chapman et al., 2004; Chase et al., 2009), and the chal-
lenges of mapping abbreviations, acronyms and complex phrases from medical charts
continue to be a problem for the mapping of social media data. This does not mean that
the mapping process cannot be used, but when leveraging the terms provided by these
programs the potential for incorrect mappings must be taken into account.

This project had some shortcomings. A double review of the mappings rather than
a single review would have provided more confidence in the “correctness” of the map-
pings. The Metamap program used was the 2009 edition, as those were the mappings



that were produced for the Knowledge Linkage project (Stewart and Abidi, 2012), and
there have been multiple releases since then. Re-running the analysis with the new pro-
gram would probably not change the precision of Metamap significantly, but it would
certainly change some of the mappings. We believe that the general structure of the
analysis would remain the same, however a comparison of the old and new versions
should be investigated. More details of how Mgrep works need to be made available,
especially with respect to the scoring algorithm. As well, the aggregation of multiple
mappings needs to be broken down, which could be used to expand the results in section
4.1. Correct/Incorrect may not be the best way to classify mappings: providing the term
“Pain” in a discussion of needle stick injuries is not incorrect, but it is not as useful as
the MeSH term “Needle Stick”. Re-evaluating each mapping on a 5-point Likert Scale
may provide more valuable insights.

Developing a way to measure some form of recall would improve the analysis:
studying the crossover between the two programs is helpful, but being able to identify
and study what was missed is a valuable component of the comparison of the two pro-
grams. Each message could be reviewed, and the potential MeSH terms that are not
present could be recorded, providing some insight into terms that were not mapped.
This analysis will be done in future work.

Moving forward, the programs are best measured not by evaluating their correctness
in terms returned, but by their utility embedded in other programs. Re-implementing the
Knowledge Linkage project with Mgrep and re-running the analysis from that project
(Stewart and Abidi, 2012) would be a stronger way to measure whether Mgrep is more
or less useful in mapping free text to medical lexicons. A larger review set would also
allow a more indepth analysis of the correctness as a function of position in the MeSH
tree, both in terms of source root and depth from the top.
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