
The SWO Project: A Case Study of Applying Agile Ontology
Engineering Methods in Community Driven Ontologies

Maria Copeland 1, Andy Brown 1, Helen Parkinson 2, Robert Stevens 1 and James
Malone 2∗

1Department of Computer Science, University of Manchester, Manchester, UK
2European Bioinformatics Institute, Cambridge, UK

ABSTRACT
The Software Ontology Project (SWO) is a community effort to build

an ontology that models software used in the generation and analy-
sis of data for curation and preservation purposes in areas such as
biomedicine. In community driven efforts, requirements are elicited
from the members of these communities to help ensure the ontology
is fit for purpose. This requires methods which are able to engage
with users with a wide range of expertise, allow close collaboration
between developers and users and that are able to respond rapidly
to changing knowledge. We describe an Agile Ontology Engineering
method for developing ontologies, adapted from modern Agile softw-
are engineering methods. The approach was applied within the SWO
project and demonstrated promising results in engaging a diverse set
of community representatives and an objective measure of ontology
success, of much relevance to the active community of bio-ontology
developers and users.

1 INTRODUCTION
Community driven development of ontologies have become the
norm in biomedicine (Garcia et al., 2010; The Gene Ontology
Consortium, 2010). Engaging with a diverse set of users from
a community presents challenges; some of these challenges are
technical, such as when multiple ontology authors need to synch-
ronously or asynchronously edit from multiple sites, and to allow
users to view ontologies and directly comment on the artefacts
(Alexander et al., 2011). For such challenges, tools such as Col-
laborativeProtégé (Tudorache et al., 2008) (CP) and resources such
as BioPortal (Noy et al., 2009) have been developed, and versioning
tools can be used to support the use of code bases in a similar way
as for software projects. Tools such as CP offer technical solutions
for the technically savvy, but methods for collaboration need to be
much broader than addition of axioms (a necessary, but not suffici-
ent task for ontology building). Some of these challenges are more
about the process used and are sociological in nature, as much as
technical (Randall et al., 2011). They include, but are not limited
to: working with people that are not ontology engineers; the ability
to appropriately capture requirements from a diverse set of users;
prioritising those requirements by seeking group consent and resolu-
tions; judging when an ontology meets a community’s requirements;
responding to issues, requests and shifts in domain knowledge; and
take into account and predicting the various types of the ontologyś
users.

We used the Software Ontology (SWO) Project to explore ways
of including a broad range of user backgrounds into a community

∗To whom correspondence should be addressed: malone@ebi.ac.uk

building process. The SWO is a community driven, collaborative
project with the aim of producing an ontology that captures formal
descriptions of software used in the production and analysis of data
for curation and preservation purproses, in order to promote stan-
dardisation and reusability of knowledge (Brown, 2011). This need
is particularly pertinent in the computational biology field, where
an understanding of how data were analysed is an important part of
the scientific record that allows proper re-interpretation and re-use
of the discipline’s data.

There is a need in many Ontology Engineering efforts to engage
with a community of domain experts that may not be ontology or
knowledge representation experts. This presents a challenge of how
to engage an audience without having to learn their domain know-
ledge or for them to become ontology engineers. In addition to this
challenge, there are difficulties of keeping the community engaged,
the ontology up-to-date and responsive to the customers. Some of
these challenges in community ontology development are similar to
those seen in Software Engineering.

One popular method in software engineering for tackling these
issues is Agile Software Development (Martin, 2002) which is a set
of software engineering methods that drives the development effort
around the requirements, use cases, and continuous participation
with users. Agile methods require that iterations are frequent and
that software is released often with an emphasis on collaboration
between developers, especially with regards customer requirements.
Typically through these short iterations, the whole life cycle is
reproduced, including some requirements analysis, testing and pro-
duct delivery. Some of the advantages of this approach are that
changing requirements are considered part of the normal life cycle
and that the users are more ‘involved’ with the development process,
making this approach more able to respond to change as determi-
ned by the customer. There is also an emphasis on working code
and test-driven development, so the software works for each of the
features added at each iteration.

In community ontology projects like the SWO, the community
should act as the customers from which requirements are elicited
and used to help make the ontology fit for purpose. Unsurprisingly
then, ontology engineering methods have been developed that aim
to tackle similar aspects of the development process as in Software
Engineering. In a review of ontology engineering methods, Tem-
pich and colleagues (Tempich et al., 2006) were critical of many
methods for their lack of consideration for evolution of ontologies,
thus indicating a failure in continuing a collaborative relationship
with the community of users as part of the ontology’s evolution. A
wider study surveyed 148 ontology engineering projects in acade-
mia and industry, concluding that ontology engineering has become

1



Copeland et al

an important discipline, though there is still work to be done in the
area, such as the need for better documentation of decisions taken
during the ontology engineering process (Simperl et al., 2010).

In response to such needs, some aspects of Agile methods are
beginning to be adopted by the Ontology Engineering community.
One such method is the RapidOWL method (Auer and Herre, 2007),
where they claim that the adoption of agile methods for Ontology
Engineering is greatly benefited when these methods are carried
out in a unified process and with the continuous involvement of
the user community. This is a positive step in community ontology
development, however more analysis, case studies, and empiri-
cal evaluations are needed in order to recommend and refine the
application of Agile Ontology Development.

In this paper we present a case study in which an Agile Ontology
Development method was applied to the SWO project. We use the
SWO as a case study of how an agile software approach can be
adapted to the development of an ontology. We also reflect on what
we did in our agile method and what we think could and should be
changed to make it better.

2 SWO ’S AGILE METHOD
Eliciting requirements from and engaging with the life science com-
munity is important to ensure ontologies meet the needs of the
stakeholders. Given a broad similarity of activities within both
software and ontology development (requirements gathering, eva-
luation, design, implementation, testing, publishing, maintaining,
etc.), moving methods from one to the other has an a priori appeal.
The organisers of the SWO project approached the ontology buil-
ding task by adapting agile methods from software development
into the engineering process for ontologies. SWO focused on the
following agile principles (Martin, 2002):
• The introduction of requirements gathering and ontology

modelling sessions as iterative and incremental activities;

• That requirements evolve throughout the engineering cycle;

• The encouragement of self-organised and cross-functional
teams;

• The provision of rapid and responsive ontology development;

• That domain experts, users, and ontology engineers are all
active contributors throughout the process;

• The use of a test driven approach to development;

• The provision of regular and frequent builds to the participants
for discussion, testing, refinement, and agreement.

These methods have several events whose activities are planned
to deliver information to other events in a cyclic manner. Events
can, however, sometimes run in parallel. The Agile Ontology
Engineering Method is summarised as (see also Figure 1):

• Requirements Gathering Event: This event focuses on the
capture of requirements by identifying competency questions
and desirable features for the ontology. These activities are use
case or scenario driven.

• Requirements Prioritisation Event : This event has two parts,
both adapted from Agile Software Engineering techniques. The
first requires participants to estimate the complexity required to
implement a requirement based on ‘planning poker’ (Grenning,
2002). The second part has participants rank features collected
in the requirements gathering phase by importance by ‘bidding’

for individual features based on the ‘Buy a Feature’ method
(Kirk, 2011).

• Implementation of Top Requirements Event: The modelling
and coding of the ontology takes place, focusing on the features
‘bought’ from the previous step. Modular development is used
to allow concurrent development from co-located or distributed
developers. Content is also gathered by participants completing
templates taken from the implemented ontology.

• Evaluation Event: Evaluation of the ontology is done by all
participants of the development process, thus helping compete-
ncy questions to be satisfied. Testing is conducted with defined
classes acting as queries based on the competency questions
against the ontology. This is disseminated to the stakeholders
who evaluate the ontology against the requirements.

Requirements 

Planning Poker 

Implementation
 of top

 requirements 

Evaluation 

Competency Questions 

Feature Request 

Features Ranking 

Modular Development 

Testing with
 Defined Classes 

Compositional Approach 
Assemble using Reasoning 

Fig. 1. SWO ’s Ontology Development Flow of Events.

Requirements Gathering Event The following ground-rules
were used in the SWO workshops:

• Presenting the community of users and contributors by intro-
ducing stakeholders and typical users of the ontology;

• ‘No death by PowerPoint’; the workshops are hands on events
where results and instant feedback will be the focus of activity;

• No up-front ‘Ontologising’ in the workshops; the resolution
of the pattern of axioms for representing the user ’s needs is
vital, but does not need to be done interactively in this setting,
especially with those that are not familiar with ontologies;

• Everyone participates. Activities were designed such that ever-
yone could join in and contribute and that ‘powerful’ voices
could not dominate.

These rules of engagement were overseen by a moderator to help
keep the level of details and discussion appropriate for the activi-
ties. The universe of discourse was created by asking participants
to organise into groups and write on ‘sticky-notes’ the information
they wanted to record about software. The notes were then clu-
stered according to similarity by the participants, invoking more
discussion. A similar exercise was used for gathering competency
questions. Both sets of clusters were reviewed for correspondence
between features and questions and any gaps highlighted by one
cluster in the other set of clusters were discussed and addressed.

2



Agile Ontology Engineering

The validation of the clusters and understanding of competency
questions were conducted by the next activity which instructed users
to create personas. A persona represents an individual user of the
ontology with specific characteristics that provide context to the
interactions and needs of that particular user. In contrast to use cases,
personas define a specific individual of a user group with a detai-
led ‘story’ of the user and an example of usage of the ontology.
The moderator asked for each persona to give: their age, back-
ground, dress code, favourite food, work, detailed task that include
the competency question in the form of a story. Persona are meant
to motivate participants to have some basis for the decisions they
make, rather than making decision based on personal preference.
The use of personas is a requirements gathering method that aims to
reduce the effect of sample bias in participant events.

Requirements Prioritization Event - Planning Poker: The set
of clusters, questions, and usage examples were prioritised by ado-
pting the Agile technique of Planning Poker (Grenning, 2002). The
SWO project ’s version of this technique was divided into two voting
activities. In the first voting activity participants were asked to rate
the difficulty of describing the clusters by casting a vote using
‘voting’ cards with ‘?’, ‘0’, ‘1’, ‘2’, ‘3’, ‘5’, ‘8’, ‘13’, ‘20’, ‘40’,
and ‘100’; where zero is the easiest and 100 is the hardest. Discus-
sion was encouraged by asking participants to contribute their views
when their vote was not close to the average vote for that cluster.
The consensus or mean was used to derive a cost for the feature in
question.

In the second voting activity users were given 100 points to spend
on the clusters they wanted to be represented using the ‘Buy a
Feature’ game. In this activity voting and polling drives the prio-
ritisation; if a discussion about a cluster was prolonged a re-vote
was taken to allow participants the opportunity to change their inve-
stment after the discussion. The buying phase results in a set of
features that the participants most wish to have in the ontology. Such
prioritisation events should be iterative over the entire life of the
ontology.

Implementation of Top Requirements Event: Implementation
of the requirements was conducted in a modular development appro-
ach using normalisation Rector (2003). The requirements indicated
the main modules to be made (for example data in a data OWL
module). Classes of Software are then described in terms of these
feature modules via restrictions, and defined classes of softw-
are establish the hierarchy of software. In addition to versioning
standards, other standards such as coding standards, URI naming
conventions, and labelling standards were chosen or devised, and
implemented by the ontology engineers. The Implementation Event
ran concurrently with the Evaluation Event in order to adhere to the
Agile principle of continuous and gradual testing and validation.

In the Implementation Event, user contribution continued by allo-
wing users to populate templates of software descriptions as part
of the development process. These templates, based on the axiom
patterns in SWO, were used to both gather input for software descri-
ptions and to test the ability of the SWO to enable descriptions. The
spreadsheet had a software entity in the first column and subsequent
columns represented the prioritised features for software descripti-
ons. Participants either filled in from the existing SWO ’s software
descriptions or provided their own new terms.

Evaluation Event: Evaluation of the ontology was conducted by
combining the information from the Requirement Gathering Event,
namely software clusters and their descriptions, with test cases. The

Table 1. Features that were initially identified, then given complexity
estimate (cost) and then later prioritized through a ’bidding’ process.

*indicate features that were bought (i.e. their cost was met)

Feature Cost Total Bid
Algorithms* 75 75
Architecture 87 0
Capability 254 247
Configure/run parameters 542 174
Cost of ownership 295 70
Data* 300 300
Dependencies 276 91
Function* 44 44
Interface* 74 74
Licenses* 38 38
Life cycle* 188 188
Platform 169 50
Source code location* 25 25
Supplier* 14 14
Version* 110 110

SWO ontology engineers produced a series of software description
test cases based on the competency questions and samples supplied
by the participants during the two workshops, the email lists and
blog posts. All commonly used test cases were covered without
spending too much time on rarely used software descriptions not
covered in the test cases. The ontology was tested with the use of
personas and competency questions through the participation of all
SWO project members throughout all the events in the development
cycle.

3 RESULTS
The SWO project had a six-month duration. The Requirements
Gathering Events took place during the first face-to-face workshop
(WS1) and then again in an iteration four months later in a second
workshop (WS2); there were 18 participants in WS1 and 13 partici-
pants in WS2. Seven of these people participated in both workshops.
The first set of requirements were produced following the activities
described in section 2. This resulted in 17 clusters of features (for-
med by clustering possible features of interest) and 91 competency
questions aligned to these features. The matching of competency
questions to feature clusters provided interesting validation regar-
ding what ’can be said’ as opposed to what is ’desirable to ask’
about a feature. For instance, one of the main clusters identified was
software ‘platform’. Platform had 10 sticky notes about informa-
tion that can be recorded about a platform’s software requirements
(e.g. will it run on Linux, Android etc.); however, when questions
were solicited from participants, only 4 questions were asked. The
moderator highlighted this discrepancy and explained the usage of a
cluster is as important as the detailed recorded in the cluster.

Following the initial gathering activities, the Requirements Priori-
tization Event took place. Table 1 presents a summary of the features
bought by the method described in section 2. It should be noted that
the ‘cost’ of each feature does not translate directly to a real effort
or cost (e.g. days or money). The metric is meant as a comparable
measure within features only.

3



Copeland et al

Table 2. Examples of competency questions for some of the features and
how they were met in the ontology, evaluated using an OWL defined class,
which equated to the competency question. The example answers are actual

answers given from the ontology (not exhaustive).

Feature Competency
Question

Manchester OWL
Test Question

Example
Answer

Data Which sof-
tware has
MAGE tab
input?

has specified input
some (data and
has format specification
some ‘MAGE tab
format’)

ArrayExpress
Biocondu-
ctor

Function What softw-
are peforms
molecular
sequencing
analysis?

achieves objective
some ‘molecular
sequencing analysis’

EMBOSS

Algorithm Which
software
implements
a Bayesian
Model

implements some
‘Bayesian Model’

GeneSelector

Interface What
software
has com-
mand line
interface?

has interface some
‘Command Line
Interface’

DROID

Version Which
version
Microsoft
Excel came
after 2007?

‘Microsoft Excel’ and
(has version some
(‘version name or
number’ and (pre-
ceeded by value
‘Microsoft 2007
version’)))

Microsoft
Excel 2010

Participants continued to contribute to the population of descri-
ptions and clusters by providing examples of usage, software
descriptions, and new entities via the emailing list and blog post.

After four months WS2 was held at which progress was evaluated.
An initial exercise of asking the participants to each describe softw-
are, following the requirements set out previously, was conducted.
Then, a re-prioritisation occurred, with the intention of finding out
if, given the current ontology and experience of describing software,
the current set of priorities were still relevant. Some new features
that emerged from this included the need to capture software suites
or packages, and software documentation. the platform upon which
the software runs was seen to be a more important feature in WS2,
although it was not bought in WS1. Axiom patterns changed accor-
ding to feedback and the descriptions captured in the spreadsheets
used to evaluate SWOS’s ability to describe software were added
to SWO. These spreadsheets captured extensions to various parts of
the SWO, so all parts of the SWO’s descriptions of software fea-
tures changed. Three iterations occurred, resulting in three releases
during the six-months. The final ontology after iteration 3 had 903
classes, 101 individuals, and 34 properties.

4 DISCUSSION
In our experience of building SWO, the use of Agile methods
in ontology development appeared to have several strengths that
should be of relevance to the biomedical community. There is, of
course, no formal evaluation of the process; what we report here is
reflection on what we did with the SWO and in our involvement
in other ontology development efforts. During the SWO project
the link between participation of its members and its corresponding
effects on actions in the development cycle were self-evident. The
focus of development was the community of users rather than on
a particular ontology technology, formal ontology or philosophical
paradigm. The ‘ontologising’ is, of course, important, but we trea-
ted it only as a means to an end. Also, the process we describe is
neutral to ontological paradigm.

This emphasis on community and commitment to Agile principles
appears to us to have produced the following benefits:

• An open and transparent process, present throughout the deve-
lopment cycle of the ontology. This seemed to have encouraged
participation and a sense of membership to the SWO project
as a whole rather than unconnected contributions to prescribed
phases.

• Users’ competency questions, personas, and test cases were
important drivers and validators of the development process.

• The resulting ontology covered the knowledge needed by
the community as communicated through concrete examples,
users’ descriptions, and competency questions.

The approach enabled the SWO developers to engage with users
with a varied background and experience in ontology building.
Around 80% of those who contributed to the workshops and require-
ments had no experience of ontologies or OWL, yet all participants
actively contributed to the ontology. The SWO ’s approach relied
on the leadership of the moderators and organisers of the project
during meetings with users. The organisers were familiar with, but
not experts in, Agile techniques; this suggests that the techniques
may be easily adopted.

An element of the workshops that appeared to be particularly
successful was that of conflict resolution with regards to estima-
ting the effort required to add features. One of the benefits of the
planning poker game was that it appeared to allow for both an inde-
pendent estimate of effort and then, if estimates were individually
far apart, discussion as a group to resolve those discrepancies. Seve-
ral such discrepancies occurred during the initial SWO workshop,
often as a result of disagreement in exactly what adding such a
feature would require. Discussion then helped to come to a com-
mon understanding and a re-estimate was taken, often with closer
agreement.

Deciding what was to be included in the SWO was a collabo-
rative effort using the buy a feature game. The vast majority of
features were not able to be bought by any one individual and thus
co-operation in bidding was required. There were some features on
which much of the ‘money’ spent on that feature was done so by
one individual in an attempt to have it ‘accepted’, despite no one
else bidding for that feature. Some features may be important for
one domain but less so for another; such features may be ‘show-
stoppers’ for that community and this could be taken into account in
the process. An example of this was the ‘algorithm’ feature which
was bid for by one person with a large amount of money, but not

4



Agile Ontology Engineering

bought outright as it was deemed less important to almost all other
users.

This feature buying process helped to reduce development time
on areas that were collectively deemed unimportant. This is of par-
ticular importance in the life science domain, in which the scope is
vast. Prioritising areas of importance should provide a cost benefit.

Although one of the Agile principles was to encourage self orga-
nised and cross-functional teams, this would not have been possible
without the input from the project ’s organizers. Skills in group orga-
nisation, team building, and responsive feedback were as important
as the method implemented. Experience of community ontology
building was also a factor that allowed the organizers to prevent
and resolve conflict during the requirements gathering. The cycli-
cal nature of the method allowed for a continuous feedback process
to all participants and presented working versions of the ontology as
requirements and competency questions were refined.

One area of the method that was under employed was the ‘per-
sona’. Personas are used in Software Engineering with the purpose
of validating specific user interacting features such as user interfa-
ces. Requirements not only cover features but also cover the needs of
stakeholders that may or may not be explicitly known to the users.
SWO could have increased the scope of the ontology by combi-
ning use cases and personas, and by utilising both as assets to the
different phases of the project such as during Planning Poker.

Consistency of modelling was achieved in SWO by the esta-
blishment and enforcement of standards, the ontology engineers’
communication and participation in requirements gathering and pri-
oritising sessions, and effectively using communication tools such
as the SWO blog to resolve modelling conflicts and questions.
These observations suggest that participants, users, and engine-
ers valued open communication and collaboration throughout the
project and benefited from a mutual understanding of each other’s
background and motivation. The commitment to shared values and
trust in a methodology are social questions that are hard to quantify
and reproduce in all projects, but they appeared to help make this
instance of the agile method work.

5 CONCLUSION
This paper presented a reflection on one projects experience of
applying an agile method to ontology development in the Software
Ontology (SWO). The success or failure of the adoption of Agile
methods in Ontology Engineering have much to do with the deli-
very of such methods under an organised, flexible, responsive and
collaborative social and technical environment. The technical tools
employed to deliver collaborative ontologies must be complemented
with organisation, responsive feedback, and transparency of pro-
cess. The SWO project should be judged not only on the coverage
and consistency of its knowledge representation, but on the active
participation of its members in making it a maintainable ontology
grounded in its communitys needs. Such methods should be impor-
tant to the bio-ontology community, where user participation is key
in building community driven ontologies that are relevant, adapta-
ble to change and therefore more likely to be used. In addition, the

agile method provides objective, documented evidence that an onto-
logy meets a users needs. Requirements are more than capturing the
entities and their relationships that exist in a given domain, since for
most domains, this is not feasible and can introduce ontologies that
are unnecessarily complex. The features of interest should be pri-
oritised with the users needs in mind, but also with the developing
team in mind, since person power and money are limited; setting
out to represent all of reality is infeasible in most cases and often
unnecessary. Our experience from SWO is that an agile approach
to ontology authoring could deliver what a biomedical community
needs by making ontology authoring agiley responsive to users.

6 ACKNOWLEDGEMENTS
This work was funded by JISC. We would like to thank all the
participants who gave their time to the SWO project.

REFERENCES
Alexander, P., Nyulas, C., Tudorache, T., Whetzel, P., Noy, N., and Musen, M. (2011).

Semantic infrastructure to enable collaboration in ontology development. In 2011
International Conference on Collaboration Technologies and Systems (CTS), pages
423–430.

Auer, S. and Herre, H. (2007). Rapidowl an agile knowledge engineering methodology.
In I. Virbitskaite and A. Voronkov, editors, Perspectives of Systems Informatics,
volume 4378 of Lecture Notes in Computer Science, pages 424–430. Springer Berlin
/ Heidelberg.

Brown, A. (2011). An overview of swo.
http://softwareontology.wordpress.com/2011/02/23/an-overview-of-sword/.

Garcia, A., ONeill, K., Garcia, L. J., Lord, P., Stevens, R., Corcho, O., and Gibson, F.
(2010). Developing ontologies within decentralised settings. In H. Chen, Y. Wang,
and K.-H. Cheung, editors, Semantic e-Science, volume 11 of Annals of Information
Systems, pages 99–139. Springer US.

Grenning, J. (2002). Planning poker or how to avoid analysis paralysis while release
planning.

Kirk, G. (2011). Democracy unleashed: Bringing agility to citizen engagement. In
AGILE Conference 2011, pages 209–215.

Martin, R. (2002). Agile Software Development, Principles, Patterns and Practices.
Prentice Hall.

Noy, N. F., Shah, N. H., Whetzel, P. L., Dai, B., Dorf, M., Griffith, N., Jonquet, C.,
Rubin, D. L., Storey, M.-A., Chute, C. G., and Musen, M. A. (2009). BioPortal:
ontologies and integrated data resources at the click of a mouse. Nucleic Acids
Research, 37(suppl 2), W170–W173.

Randall, D., Procter, R., Lin, Y., Poschen, M., Sharrock, W., and Stevens, R. (2011).
Distributed ontology building as practical work. Int. J. Hum.-Comput. Stud., 69,
220–233.

Rector, A. L. (2003). Modularisation of domain ontologies implemented in description
logics and related formalisms including owl. In Proceedings of the 2nd International
Conference on Knowledge Capture.

Simperl, E., Machol, M., and Burger, T. (2010). Achieving maturity: the state of
practices in ontology engineering in 2009. Int Journal of Computer Science and
Applications, 7, 4565.

Tempich, C., Pinto, H. S., and Staab, S. (2006). Ontology engineering revisited: an
iterative case study with diligent. In In Proc. of the 3rd European Semantic Web
Conference (ESWC 2006, pages 110–124.

The Gene Ontology Consortium (2010). The Gene Ontology in 2010: extensions and
refinements. Nucleic Acids Research, 38, D331–D335.

Tudorache, T., Vendetti, J., and Noy, N. (2008). Web-Prot́egé: A Lightweight OWL
Ontology Editor for the Web. Fifth OWLED Workshop on OWL: Experiences and
Directions.

5


