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Abstract

We present a depth-first algorithm, PatriciaMine, that
discovers all frequent itemsets in a dataset, for a given sup-
port threshold. The algorithm is main-memory based and
employs a Patricia trie to represent the dataset, which is
space efficient for both dense and sparse datasets, whereas
alternative representations were adopted by previous algo-
rithms for these two cases. A number of optimizations have
been introduced in the implementation of the algorithm. The
paper reports several experimental results on real and ar-
tificial datasets, which assess the effectiveness of the im-
plementation and show the better performance attained by
PatriciaMine with respect to other prominent algorithms.

1. Introduction

In this work, we focus on the problem of findingall fre-
quent itemsetsin a datasetD of transactions over a set of
itemsI, that is, all itemsetsX ⊆ I contained in a num-
ber of transactions greater than or equal to a certain given
threshold [2].

Several algorithms proposed in the literature to discover
all frequent itemsets follow a depth-first approach by con-
sidering one item at a time and generating (recursively) all
frequent itemsets which contain that item, before proceed-
ing to the next item. A prominent member of this class of
algorithms is FP-Growth proposed in [7]. It represents the
datasetD through a standard trie (FP-tree) and, for each
frequent itemsetX, it materializes a projectionDX of the
dataset on the transactions containingX, which is used to
recursively discover all frequent supersetsY ⊃ X. This
approach is very effective for dense datasets, where the trie
achieves high compression, but becomes space inefficient
when the dataset is sparse, and incurs high costs due to the
frequent projections.

∗This research was supported in part by MIUR of Italy under project
“ALINWEB: Algorithmics for Internet and the Web”.

Improved variants of FP-Growth appeared in the litera-
ture, which avoid physical projections of the dataset (Top-
Down FP-Growth [14]), or employ two alternative array-
based and trie-based structures to cope, respectively, with
sparse and dense datasets, switching adaptively from one to
the other (H-mine [12]). The most successful ideas devel-
oped in these works have been gathered and further refined
in OpportuneProject [9] which opportunistically selects the
best strategy based on the characteristics of the dataset.

In this paper, we present an algorithm, PatriciaMine,
which further improves upon the aforementioned algo-
rithms stemmed from FP-Growth. Our main contribution
is twofold:

• We use a compressed (Patricia) trie to store the dataset,
which provides a space-efficient representation for
both sparse and dense datasets, without resorting to
two alternative structures, namely array-based and trie-
based, as was suggested in [12, 9]. Indeed, by featuring
a smaller number of nodes than the standard trie, the
Patricia trie exhibits lower space requirements, espe-
cially in the case of sparse datasets, where it becomes
comparable to the natural array-based representation,
and reduces the amount of bookkeeping operations.
Both theoretical and experimental evidence of these
facts is given in the paper.

• A number of optimizations have been introduced in
the implementation of PatriciaMine. In particular, a
heuristic has been employed to limit the number of
physical projections of the dataset during the course of
execution, with the intent to avoid the time and space
overhead incurred by projection, when not beneficial.
Moreover, novel mechanisms have been developed for
directly generating groups of itemsets supported by
the same subset of transactions, and for visiting the
trie without traversing individual nodes multiple times.
The effectiveness of these optimizations is discussed in
the paper.

We coded PatriciaMine in C, and compared its perfor-
mance with that of a number of prominent algorithms,



whose source/object code was made available to us, on sev-
eral real and artificial datasets. The experiments provide
clear evidence of the higher performance of PatriciaMine
with respect to these other algorithms on both dense and
sparse datasets. It must be remarked that our focus is on
main-memory execution, in the sense PatriciaMine works
under the assumption that the employed representation of
the dataset fits in main memory. If this is not the case,
techniques such as those suggested in [13, 9] could be em-
ployed, but this is beyond the scope of this work.

The rest of the paper is organized as follows. Section 2
introduces some notation and illustrates the datasets used
in the experiments. Section 3 presents the main iterative
strategy adopted by PatriciaMine, which can be regarded
as a reformulation (with some modifications) of the recur-
sive strategies adopted in [7, 12, 14, 9]. Sections 4 and 5
describe the most relevant features of the algorithm imple-
mentation, while the experimental results are reported and
discussed in Section 6.

2. Preliminaries

LetI be a set ofitems, andD a set oftransactions, where
each transactiont ∈ D consists of a distinct identifiertid
and a subset of itemstset ⊆ I. For anitemsetX ⊆ I,
its support in D, denoted by suppD(X), is defined as the
number of transactionst ∈ D such thatX ⊆ tset. Given an
absolute support thresholdmin sup, with 0 < min sup≤
|D|, an itemsetX ⊆ I is frequent w.r.t.D and minsup,
if suppD(X) ≥ min sup. With a slight abuse of notation,
we call an itemi ∈ I frequentif {i} is frequent, and refer
to suppD({i}) as the support ofi1. We study the problem
of determining the set of all frequent itemsets for givenD
and minsup, which we denote byF(D, min sup). For an
itemsetX ⊆ I, we denote byDX the subset ofD projected
on those transactions that containX.

Let I ′ = {i1, i2, . . .} ⊆ I denote the subset of frequent
items ordered by increasing support, and assume that the
items in each frequent itemset are ordered accordingly. As
observed in [1, 9], the setF(D, min sup) can be conve-
niently represented through a standard trie [8], calledFre-
quent ItemSet Tree(FIST), whose nodes are in one-to-one
correspondence with the frequent itemsets. Specifically,
each nodev is labelled with an itemi and a support value
σv, so that the itemset associated withv is given by the se-
quence of items labelling the path from the root tov, and
has supportσv. The root is associated with the empty item-
set and is labelled with(·, |D|). The children of every node
are arranged right-to-left consistently with the ordering of
their labelling items.

1When clear from the context, we will refer to frequent items or item-
sets, omittingD and minsup.

TID Items
1 A B D E F G H I
2 B C E L
3 A B D F H L
4 A B C D F G L
5 B G H L
6 A B D F I

Figure 1. Sample dataset (items in bold are
frequent for min sup = 3)

Figure 2. FIST for the sample dataset with
min sup = 3

A sample dataset and the corresponding FIST for
min sup = 3 are shown in Figures 1 and 2. Notice that
a different initial ordering of the items inI ′ would pro-
duce a different FIST. Most of the algorithms that compute
F(D, min sup) perform either a breadth-first or a depth-first
exploration of some FIST. In particular, our algorithm per-
forms a depth-first exploration of the FIST defined above.

2.1. Datasets used in the experiments

The experiments reported in this paper have been con-
ducted on several real and artificially generated datasets,
frequently used in previous works. We briefly describe them
below and refer the reader to [4, 16] for more details (see
also Table 1).
Pos: From Blue-Martini Software Inc., contains years
worth of point-of-sale data form an electronics retailer.
WebView1, WebView2: From Blue-Martini Software
Inc., contain several months of clickstream data from e-
commerce web sites.
Pumsb, Pumsb*:derived by [4] from census data.
Mushroom: It contains characteristics of various species of
mushrooms.
Connect-4, Chess:are relative to the respective games.



1. DetermineI′ andD′;
2. Create IL and link it toD′;

X ← ∅; h← 0; `← 0;
while (̀ < |IL |) do

3. if (IL [`].count< min sup) theǹ ← ` + 1;
else

4. if ((h > 0) AND (IL [`].item= X[h− 1]))
5. then`← ` + 1; h← h− 1;

else
6. X[h]← IL [`].item;
7. h← h + 1;
8. Generate itemsetX;
9. for i← `− 1 downto 0 do

make IL[i].ptr point to head of t-list(i,D′
X);

IL [i].count← support of IL[i].item inD′
X ;

`← 0;

Figure 3. Main Strategy

IBM-Artificial: a class of artificial datasets obtained using
the generator developed in [3]. A dataset in this class is de-
noted through the parameters used by the generator, namely
as Dx.Ty.Iw.Lu.Nz, wherex is the number of transactions,
y the average transaction size,w the average size of max-
imal potentially large itemsets,u the number of maximal
potentially large itemsets, andz the number of items.

Datasets from Blue-Martini Software Inc. and (usually)
the artificial ones are regarded as sparse, while the other
ones as dense.

3. The main strategy

The main strategy adopted by PatriciaMine is described
by the pseudocode in Figure 3 and is based on a depth-first
exploration of the FIST, similar to the one employed by the
algorithms in [7, 12, 14, 9]. However, it must be remarked
that while previous algorithms were expressed in a recur-
sive fashion, PatriciaMine follows an iterative exploration
strategy, which avoids the burden of managing recursion.

A first scan of the datasetD is performed to determine
the setI ′ of frequent items, and a pruned instanceD′ of
the original dataset where non-frequent items and empty
transactions are removed (Step 1). Then, anItem List(IL)
vector is created (Step 2), where each entry IL[`] consists
of three fields: IL[`].item, IL[`].count, and IL[`].ptr, which
store, respectively, a distinct item ofI ′, its support and a
pointer. The entries are sorted by decreasing value of the
support field, hence the most frequent items are positioned
to the top of the IL. The IL is linked toD′ as follows. For
each entry IL[`], the pointer IL[`].ptr points to a list that
threads together all occurrences of IL[`].item inD′. We call
such a list thethreaded listfor IL [`].item with respect toD′,
and denote it by t-list(`,D′). The initial IL for the sample

Figure 4. Initial IL and t-lists for the sample
dataset

dataset and the t-lists built on a natural representation of the
dataset, are shown in Figure 4. (The actual data structure
used to representD′ will be discussed in the next section.)

Then, a depth-first exploration of the FIST is started vis-
iting the children of each node by decreasing support order
(i.e., left-to-right with respect to Figure 2). This exploration
is performed by the while-loop in the pseudocode. A vector
X and an integerh are used to store, respectively, the item-
set associated with the last visited node of the FIST and its
length (initially, X is empty andh = 0, meaning that the
root has just been visited).

Let us consider the beginning of a generic iteration of
the while-loop and letv be the last visited node of the FIST,
associated with itemsetX = (a1, a2, . . . , ah), whereah is
the item labellingv, and, forj < h, aj is the item labelling
the ancestorwj of v at distanceh−j from it. For1 ≤ j ≤ h,
let `j be the IL index such that IL[`j ].item = aj , and note
that `h < `h−1 < · · · < `1; also denote byXj the prefix
(a1, a2, . . . , aj) of X, which is the itemset associated with
wj (clearly,X = Xh).

The following invariant holds at the beginning of the it-
eration. Let`′ be an arbitrary index of the IL, and sup-
pose that̀ j+1 < `′ ≤ `j , for some0 ≤ j ≤ h, setting
for conveniencè 0 = |IL | − 1 and `h+1 = −1. Then,
IL [`′].count stores the support of item IL[`′].item inD′

Xj
,

and IL[`′].ptr points to t-list(`′,D′
Xj

), that threads together
all occurrences of IL[`′].item inD′

Xj
(we let X0 = ∅ and

D′
X0

= D′).
During the current iteration and, possibly, a number of

subsequent iterations, the nodeu which is either the first
child of v, if any, or the first unvisited child of one ofv’s
ancestors is identified (Steps 3÷5). If no such node is found
the algorithm terminates. It is easily seen that the item la-
belling u is the first item IL[`].item found scanning the IL
from the top, such that IL[`].count≥ min sup and̀ 6= `j

for every1 ≤ j ≤ h. If nodeu is found, its correspond-
ing itemset is generated (Steps 6÷8). (Note that ifu is the



Figure 5. IL and t-lists after visiting (L,4)

child of an ancestorw of v, we have that before Step 6 is
executedX[0 . . . h − 1] correctly stores the itemset associ-
ated withw.) Then, the first̀ entries of the IL are updated
so to enforce the invariant for the next iteration (for-loop
of Step 9). Figure 5 shows the IL and t-lists for the sam-
ple dataset at the end of the while-loop iteration where node
u=(L,4) is visited and itemsetX = (L) is generated. Ob-
serve that while the entries for itemsG andH (respectively,
IL [5] and IL[6]) are relative to the entire dataset, all other
entries are relative toD′

X .
The correctness of the whole strategy is easily estab-

lished by noting that the invariant stated before holds with
h = 0 at the beginning of the while-loop, i.e., at the end of
the visit of the root of the FIST.

4. Representing the dataset as a Patricia trie

Crucial to the efficiency of the main strategy presented
in the previous section is the choice of the data structure
employed to represent the datasetD′. Some previous works
represented the datasetD′ through a standard trie, called
FP-tree, built on the set of transactions, with items sorted
by decreasingsupport [7, 14]. The advantage of using the
trie is substantial for dense datasets because of the compres-
sion achieved by merging common prefixes, but in the worst
case, when the dataset is highly sparse, the number of nodes
may be close to the sizeN of the original dataset (i.e., the
sum of all transaction lengths). Since each node of the trie
stores an item, a count value, which indicates the number
of transactions sharing the prefix found along the path from
the node to the root, plus other information needed for nav-
igating the trie (e.g., pointers to the children and/or to the
father), the overall space taken by the trie may turn out to
beαN , whereα is a constant greater than 1.

For these reasons, it has been suggested in [12, 9] that
sparse datasets, for which the trie becomes space inefficient,
be stored in a straightforward fashion as arrays of transac-
tions. However, these works also encourage to switch to the
trie representation during the course of execution, for por-

Figure 6. Standard trie for the sample dataset

Figure 7. Patricia trie for the sample dataset

tions of the dataset which are estimated to be sufficiently
dense. However, an effective heuristic to decide when to
switch from one structure to another is hard to find and may
be costly to implement. Moreover, even if a good heuristic
was found, the overhead incurred in the data movement may
reduce the advantages brought by the compression gained.

To avoid the need for two alternative data structures to at-
tain space efficiency, our algorithm resorts to a compressed
trie, better known asPatricia trie [8]. The Patricia trie for
a datasetD′ is a modification of the standard trie: namely,
each maximal chain of nodesv1 → v2 → · · · → vk, where
all vi’s have the same count valuec and (except forvk) ex-
actly one child, is coalesced into a single node that inher-
its count valuec, vk ’s children, and stores the sequence of
items previously stored in thevi’s. (A Patricia trie repre-
sentation of a transaction dataset has been recently adopted
by [6] in an dynamic setting where the dataset evolves with
time, and on-line queries on frequencies of individual item-
sets are supported.)

The standard and Patricia tries for the sample dataset
are compared in Figure 6 and 7, respectively. As the fig-
ure shows, a Patricia trie may still retain some single-child
nodes, however these nodes identify boundaries of transac-
tions that are prefixes of other transactions. The following
theorem provides an upper bound on the overall size of the



Patricia trie.

Theorem 1 A datasetD′ consisting ofM transactions with
aggregate sizeN can be represented through a Patricia trie
of size at mostN + O (M).

Proof. Consider the Patricia trie described before. The trie
has less than2M nodes since each node which has either
zero or one child accounts for (one or more) distinct trans-
actions, and, by standard properties of trees, all other nodes
are at most one less than the number of leaves. The theorem
follows by noting that the total number of items stored at
the nodes is at mostN . �

It is important to remark that even for sparse datasets,
which exhibit a moderate sharing of prefixes among trans-
actions, the total number of items stored in the trie may turn
out much less thanN , and if the number of transactions
is M � N , as is often the case, the Patricia trie becomes
very space efficient. To provide empirical evidence of this
fact, Table 1 compares the space requirements of the repre-
sentations based on arrays, standard trie, and Patricia trie,
for the datasets introduced before, on some fixed support
thresholds. For each dataset the table reports: the number of
transactions, the average transaction size (AvTS), the cho-
sen support threshold (in percentage), and the sizes in bytes
of the various representations (data are relative to datasets
pruned of non-frequent items). An item is assumed to fit
in one word (4 bytes). For the array-based representation
we considered an overhead of 1 word for each transaction,
while for the standard and Patricia tries, we considered an
overhead per node of 4 and 5 words, respectively, which are
needed to store the count, the pointer to the father and other
information used by our algorithm (the extra word in each
Patricia trie node is used to store the number of items at the
node).

The data reported in the table show the substantial com-
pression achieved by the Patricia trie with respect to the
standard trie, especially in the case of sparse datasets. Also,
the space required by the Patricia trie is comparable to, and
often much less than that of the simple array-based repre-
sentation. In the few cases where the former is larger, in-
dicated in bold in the table, the difference between the two
is rather small (and can be further reduced through a more
compact representation of the Patricia trie nodes). Further-
more, it must be observed that in the execution of the algo-
rithm additional space is required to store the threaded lists
connected to the IL. Initially, this space is proportional to
the overall number of items appearing in the dataset repre-
sentation, which is smaller for the Patricia trie due to the
sharing of prefixes among transactions.

Construction of the Patricia trie Although the Patricia
trie provides a space efficient data structure for representing

D′, its actual construction may be rather costly, thus influ-
encing the overall performance of the algorithm especially
if, as it will be discussed later, the dataset is projected a
number of times during the course of the algorithm.

A natural construction strategy starts from an initial
empty trie and inserts one transaction at a time into it. To in-
sert a transactiont, the current trie is traversed downwards
along the path that corresponds to the prefix shared byt with
previously inserted transactions, suitably updating the count
at each node, until eithert is entirely covered, or a point in
t is reached where the shared prefix ends. In the latter case,
the remaining suffix is stored into a new node added as a
child of the last node visited. In order to efficiently search
the correct child of a nodev during the downward traver-
sal of the trie, we employ a hash table whose buckets store
pointers to the children ofv based on the first items they
contain. (A similar idea was employed by the Apriori algo-
rithm [3] in the hash tree.) The number of buckets in the
hash table is chosen as a function of the number of chil-
dren of the node, in order to strike a good trade-off between
the space taken by the table and the search time. Moreover,
since during the mining of the itemsets the trie is only tra-
versed upwards, the space occupied by the hash table can
be freed after the trie is build.

5. Optimizations

A number of optimizations have been introduced and
tested in the implementation of the main strategy described
in Section 3. In the following subsections, we will always
make reference to a generic iteration of the while-loop of
Figure 3 where a new frequent itemsetX is generated in
Step 8 after adding, in Step 6, item IL[`].item. Also, we
define aslocally frequent itemsthose items IL[j].item, with
j < `, such that their support inD′

X is at least minsup.

5.1. Projection of the dataset

After frequent itemsetX has been generated, the discov-
ery of all frequent supersetsY ⊃ X could proceed either on
a physical projection of the dataset (i.e., a materialization of
D′

X ) and on a new IL, both restricted to the locally frequent
items, or on the original datasetD′, with D′

X is identified
by means of the updated t-lists in the IL (in this case, a new
IL or the original one can be used).

The first approach, which was followed in FP-Growth
[7], is effective if the new IL andD′

X shrink considerably.
On the other hand, in the second approach, employed in
Top-Down FP-Growth [14], no time and space overheads
are incurred for building the projected datasets and main-
taining in memory all of the projected datasets along a path
of the FIST.



Dataset Transactions AvgTS min sup % Array Trie Patricia
Chess 3,196 35.53 20 467,060 678,560 250,992
Connect-4 67,557 31.79 60 8,861,312 69,060 55,212
Mushroom 8,124 22.90 1 776,864 532,720 380,004
Pumsb 49,046 33.48 60 6,765,568 711,800 349,180
Pumsb* 49,046 37.26 20 7,506,220 5,399,120 2,177,044
T10.I4.D100k.N1k.L2k 100,000 10.10 0.002 4,440,908 14,294,760 5,129,212
T40.I10.D100k.N1k.L2k 100,000 39.54 0.25 16,217,064 71,134,380 16,935,176
T30.I16.D400k.N1k.L2k 397,487 29.30 0.5 48,175,824 163,079,980 41,023,616
POS 515,597 6.51 0.01 15,497,908 32,395,740 13,993,508
WebView1 59,601 2.48 0.054 831,156 1,110,960 618,292
WebView2 77,512 4.62 0.004 1,742,516 4,547,380 1,998,316

Table 1. Space requirements of array-based, standard trie, and Patricia trie representations

Ideally, one should implement a hybrid strategy allow-
ing for physical projections only when they are beneficial.
This was attempted in OpportuneProject [9] where physical
projections are always performed when the dataset is rep-
resented as an array of transactions (and if sufficient mem-
ory is available), while they are inhibited when the dataset
is represented through a trie, unless sufficient compression
can be attained. However, in this latter case, no precise
heuristic is provided to decide when physical projection
must take place. In fact, the compression rate is rather hard
to estimate without doing the actual projection, hence incur-
ring high costs.

In our implementation, we experimented several heuris-
tics for limiting the number of projections. Although no
heuristic was found superior to all others in every experi-
ment, a rather simple heuristic exhibited very good perfor-
mance in most cases: namely, to allow for physical projec-
tion only at the tops levels of the FIST and when the locally
frequent items are at leastk (in the experiments,s = 3 and
k = 10 seemed to work fairly well). The rationale behind
this heuristic is that the cost of projection is justified if the
mining of the projected dataset goes on for long enough to
take full advantage of the compression it achieves. More-
over, the heuristic limits the memory blowup by requiring
at mosts projected datasets to coexist in memory. Exper-
imental results regarding the effectiveness of the heuristic,
will be presented and discussed in Section 6.1

5.2. Immediate generation of subtrees of the FIST

Suppose that at the end of the for-loop every locally fre-
quent item IL[j].item, withj < `, has support IL[j].count=
IL [`].count= c in D′

X . Let Z denote the set of the locally
frequent items. Then, for everyZ ′ ⊆ Z we have thatX∪Z ′

is frequent with supportc. Therefore, we can immediately
generate all of these itemsets and set` = ` + 1 rather than

resetting` = 0 after the for-loop.2 Viewed on the FIST,
this is equivalent to generate all nodes in the subtree rooted
at the node associated withX, without actually exploring
such a subtree.

A similar optimization was incorporated in previ-
ous implementations, but limited to the case when the
t-list(`,D′

X), pointed by IL[`].ptr, consists of a single node.
Our condition is more general and encompasses also cases
when t-list(`,D′

X) has more than one node.

5.3. Implementation of the for loop

Another important issue concerns the implementation of
the for-loop (Step 9), which contributes a large fraction of
the overall running time. By the invariant previously stated,
we have that, before entering the for-loop, IL[`].ptr points
to head of t-list(`,D′

X), that is, it threads together all of the
occurrences of IL[`].item in nodes of the trie corresponding
to transactions inD′

X . Moreover, the algorithm must ensure
that the count of each such node is relative toD′

X and not
to the entire dataset. LetTX denote the portion of the trie
whose leaves are threaded together by t-list(`,D′

X).
The for-loop determines t-list(j,D′

X) for every0 ≤ j <
` − 1, and updates IL[j].count to reflect the actual sup-
port of IL[j].item inD′

X . To do so, one could simply take
each occurrence of IL[`].item threaded by t-list(`,D′

X) and
walk up the trie suitably updating the count of each node
encountered, and the count and t-list of each item stored
at the node. This is essentially, the strategy implemented
by Top Down FP-growth [14] and OpportuneProject (under
trie representation) [9]. However, it has the drawback of
traversing every nodev ∈ TX multiple times, once for each
leaf in v’s subtree. It is not difficult to show an example

2This optimization is inspired by the concept ofclosed frequent itemset
[11] in the sense that onlyX ∪ Z is closed and would be generated when
mining this type of itemsets.



where, with this approach, the number of node traversals is
quadratic in the size ofTX .

In our implementation, we adopted an alternative strat-
egy that, rather than traversing each individual leaf-root
path inTX , performs a global traversal from the leaves to
the root guided by the entries of the IL which are being up-
dated. In this fashion, each node inTX is traversed only
once. We refer to this strategy as theitem-guided traver-
sal. Specifically, the item-guided traversal starts by walk-
ing through the nodes threaded together in t-list(`,D′

X).
For each such nodev, the count and t-list of each item
IL [j].item stored inv, with j < `, are updated, andv
is inserted in t-list(j,D′

X) marked asvisited. Also, the
count and t-list of the last item, say IL[j′].item, stored in
v’s fatheru are updated andu is inserted in t-list(j′,D′

X)
marked asunvisited. After all nodes in t-list(`,D′

X) have
been dealt with, the largest indexj < ` is found such that
t-list(j,D′

X) contains some unvisited nodes (which can be
conveniently positioned at the front of the list). Then, the
item-guided traversal is iterated walking through the unvis-
ited nodes in t-list(j,D′

X). It terminates when no threaded
list is found that contains unvisited nodes (i.e., the top of the
IL is reached). The following theorem is easily proved.

Theorem 2 The item-guided traversal correctly visits all
nodes inTX . Moreover, each such node withk direct chil-
dren is touchedk times and fully traversed exactly once.

6. Experimental results

This section presents the results of several experiments
we performed on the datasets described in Section 2.1.
Specifically, in Subsection 6.1 we assess the effectiveness
of our implementation, while in Subsections 6.2 and 6.3 we
compare the performance of PatriciaMine with that of other
prominent algorithms. The experiments reported in the first
two subsections have been conducted on an IBM RS/6000
SP multiprocessor, using a single 375Mhz POWER3-II pro-
cessor, with 4GB main memory, and two 9.1 GB SCSI
disks under the AIX 4.3.3 operating system. On this plat-
form, running times as well as other relevant quantities
(e.g., cache and TLB hits/misses) have been measured with
hardware counters, accessed through the HPM performance
monitor by [5]. Instead, since for OpportuneProject only the
object code for a Windows platform was made available to
us by the authors, the experiments in Subsection 6.3 have
been performed on a 1.7Ghz Pentium IV PC, with 256MB
RAM, and 100GB hard disk, under Windows 2000 Pro.

6.1. Effectiveness of the heuristic for conditional
projection

A first set of experiments was run to verify whether
allowing for physical projections of the dataset improves

performance and if the heuristic we implemented to de-
cide when to physically project the dataset is effec-
tive. The results of the experiments are reported in Fig-
ures 8 and 9 (running times do not include the output
of the frequent itemsets). For each dataset, we com-
pared the performance of PatriciaMine using the heuris-
tic (line “WithProjection”) with the performance of a ver-
sion of PatriciaMine where physical projection is inhib-
ited (line “WithoutProjection”), on four different values
of support, indicated in percentage. It is seen that the
heuristic yields performance improvements, often very
substantial, at low support values (e.g., see Connect-
4, Pumsb*, WebView1/2, T30.I16.D400k.N1k.L2k, and
T40.I10.D100k.N1k.L2k) while it has often no effect or in-
curs a slight slowdown at higher supports. This can be ex-
plained by the fact that at high supports the FIST is shal-
low and the projection overhead cannot be easily hidden by
the subsequent computation. Note that the case of Pos is
anomalous. For this dataset the heuristic, and in fact all of
the heuristics we tested, slowed down the execution, hence
suggesting that physical projection is never beneficial. This
case, however, will be further investigated.

We also tested the speed-up achieved by immediately
generating all supersets of a certain frequent itemsetX
when the locally frequent items have the same support as
X. In particular, we observed that the novelty introduced
in our implementation, that is considering also those cases
when the threading list t-list(`,D′

X) consists of more than
one node, yielded a noticeable performance improvement
(e.g., a factor 1.4 speed-up was achieved on WebView1 with
support0.054%, and a factor 1.6 speed-up was achieved on
WebView2 with support0.004%).

We finally compared the effectiveness of the implemen-
tation of the for-loop of Figure 3 based on the novel item-
guided traversal, with respect to the straightforward one.
Although the item-guided traversal is provably superior in
an asymptotic worst-case sense (e.g., see Theorem 2 and the
discussion in Section 5.3) , the experiments provided mixed
results. For all dense datasets and for Pos, the item-guided
traversal turned out faster than the straightforward one up to
a factor 1.5 (e.g., for Mushroom with support 5%), while for
sparse datasets it resulted actually slower by a factor at most
1.2. This can be partly explained by noting that if the tree to
be traversed is skinny (as is probably the case for the sparse
datasets, except for Pos) the item-guided traversal cannot
provide a substantial improvement while it suffers a slight
overhead for the scan of the IL. Moreover, for some sparse
datasets, we observed that while the item-guided traversal
performs a smaller number of instructions, it exhibits less
locality (e.g., it incurs higher TLB misses) which causes
the higher running time. We conjecture that a refined imple-
mentation could make the item-guided traversal competitive
even for sparse datasets.
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Figure 8. Comparison between PatriciaMine
with and without projection on Chess, Mush-
room, Pumsb, Pumsb*, Connect-4, Pos

6.2. Comparison with other algorithms

In this subsection, we compare PatriciaMine with other
prominent algorithms whose source code was made avail-
able to us: namely FP-Growth [7], which has been men-
tioned before, DCI [10], and Eclat [15].

DCI (Direct Count & Intersect) performs a breadth-first
exploration of the FIST, generating a set of candidate item-
sets for each level, computing their support, and then de-
termining the frequent ones. It employs two alternative
representations for the dataset, a horizontal and a vertical
one, and, respectively, a count-based and intersection-based
method to compute the supports, switching adaptively from
one to the other based on the characteristics of the dataset.

Eclat, instead is based on a depth-first exploration strat-
egy (like FP-Growth and PatriciaMine). It employs a verti-
cal representation of the dataset which stores with each item
the list of transaction IDs (TID-list) where it occurs, and
determines an itemset’s support through TID-lists intersec-
tions. The counting mechanism was successively improved
in dEclat [16] by using diffsets, that is, differences between
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Figure 9. Comparison between PatriciaMine
with and without projection on WebView1,
WebView2, and some artificial datasets

TID-lists, in order to avoid managing very long TID-lists.
For FP-Growth and Eclat, we used the source code de-

veloped by Goethals3, while for DCI we obtained the source
code directly from the authors. The implementation of Eclat
we employed includes the use of diffsets.

The experimental results are reported in Figures 10 and
11. For each dataset, a graph shows the running times
achieved by the algorithms on four support values, indicated
in percentages. (Here we included the output time since for
DCI the writing on file of frequent itemsets is functional
to the algorithm’s operation.) It is easily seen that the per-
formance of PatriciaMine is significantly superior to that of
Eclat and FP-Growth on all datasets and supports. We also
observed that Eclat features higher locality than FP-Growth,
exhibiting in some cases a better running time, though per-
forming a larger number of instructions.

Compared to DCI, PatriciaMine is consistently and often
substantially faster at low values of support, while at higher
supports, where execution time is in the order of a few sec-

3Available athttp://www.cs.helsinki.fi/u/goethals



onds, the two algorithms exhibit similar performance and
sometimes PatriciaMine is slightly slower, probably due to
the trie construction overhead. However, it must be re-
marked that small differences between DCI and Patricia at
low execution times could also be due to the different for-
mat required of the initial dataset, and different input/output
functions employed by the two algorithms.
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Figure 10. Comparison of PatriciaMine, DCI,
Eclat and FP-Growth on Chess, Mushroom,
Pumsb, Pumsb*, Connect-4, Pos

6.3. Comparison with OpportuneProject

Particularly relevant for our work is the comparison be-
tween PatriciaMine and OpportuneProject [9], which, to the
best of our knowledge, represents the latest and most ad-
vanced algorithm in the family stemmed from FP-Growth.
For lack of space, we postpone a detailed and critical discus-
sion of the strengths and weaknesses of the two algorithms
to the full version of the paper.

Figures 12 and 13, report the performances exhib-
ited by PatriciaMine and OpportuneProject on the Pen-
tium/Windows platform for a number of datasets and sup-
ports. It can be seen that, the performance of Patrici-
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Figure 11. Comparison of PatriciaMine, DCI,
Eclat and FP-Growth on WebView1, Web-
View2, and some artificial datasets

aMine is consistently superior, up to one order of magnitude
(e.g., in Pumsb*). The only exception are Pos (see graph
labelled “Pos with projection”) and the artificial dataset
T30.I16.D400k.N1k.L2k. For Pos, we have already ob-
served that our heuristic for limiting the number of phys-
ical projections does not improve the running time. In fact,
it is interesting to note that by inhibiting projections, Patri-
ciaMine becomes faster than OpportuneProject (see graph
labelled “Pos without projection”). This suggests that a bet-
ter heuristic could eliminate this anomalous case.

As for T30.I16.D400k.N1k.L2k, some measurements we
performed revealed that the time taken by the initialization
of the Patricia trie accounts for a significant fraction of the
running time at high support thresholds, and such an ini-
tial overhead cannot be hidden by the subsequent mining
activity. However, at lower support thresholds, where the
computation of the frequent itemsets dominates over the trie
construction, PatriciaMine becomes faster than Opportune-
Project.

Finally we report that on WebView1 for absolute support
32 (about 0.054%), OpportuneProject ran out of memory
while PatriciaMine successfully completed the execution.
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