Semantic Processing of Sensor Event Stream by
Using External Knowledge Bases
Short Paper

Kia Teymourian and Adrian Paschke

Freie Universitaet Berlin, Berlin, Germany
{kia, paschke}@inf.fu-berlin.de

Abstract. Usage of domain background knowledge about sensor data can
improve the expressiveness and flexibility of event processing in sensor
network applications. Huge amount of domain background knowledge
stored in external knowledge bases can be processed in combination with
sensor data stream in order to achieve more knowledgeable event process-
ing. In this paper, we discuss the benefits of background knowledge for
event processing and describe a simple classification of event query rulesE]

Keywords: Knowledge-Based Complex Event Processing

1 Motivation

Detection, prediction and mastery of complex situations are crucial to the com-
petitiveness of networked businesses, the efficiency of Internet of Services and
dynamic distributed infrastructures in manifold domains such as logistics, auto-
motive, telecommunication, e-health and life sciences. Event Processing is an
emerging technology to achieve actionable, situational knowledge from large-
scale event streams in real-time.

Semantic models of events can improve event processing quality by using
event meta-data in combination with ontologies and rules (knowledge bases).
The successes of the knowledge representation research community in building
standards and tools for technologies such as formalized and declarative rules,
are opening novel research and application areas. The combination of event
processing and knowledge representation can lead to novel semantic-rich event
processing engines. The identification of critical events and situations requires
processing vast amounts of data and metadata within and outside the systems.

Using external background knowledge about sensor data stream is one of the
promising approaches for detection of real-world complex events. Knowledge
about event types and their hierarchies, i.e., specialization, generalization, or

! This work has been partially supported by the “InnoProfile-Corporate Semantic Web”
project funded by the German Federal Ministry of Education and Research (BMBF)
and the BMBF Innovation Initiative for the New German Lénder - Entrepreneurial
Regions.



other forms of relations between events can be useful. Huge amount of back-
ground knowledge about sensor event data can be integrated with the main
data stream to improve the expressiveness of event processing by inferencing on
background knowledge. Semantic inference is used to infer relations between
events such as, e.g., transitivity or equality between event types and their prop-
erties. Temporal and spatial reasoning on events can be done based on their data
properties.

In the rest of this paper, we describe in Section 2| the benefits of using external
knowledge bases for event processing and in Section [3| different event query
categories are discussed.

2 Knowledge-Based Complex Event Processing

Previously, we proposed in [7J6] a new approach for semantic enabled complex
event processing (SCEP). We proposed that the usage of the background knowl-
edge about events and other related concepts can improve the quality of event
processing. We described how to formalize complex event patterns based on
a logical knowledge representation (KR) interval-based event/action algebra,
namely the interval-based Event Calculus [2/3/4].

The fusion of background knowledge with data from an event stream can
help the event processing engine to know more about incoming events and
their relationships to other related concepts. We propose to use one or several
Knowledge Bases (KB) which can provide background knowledge (conceptual
and assertional, T-Box and A-Box of an ontology) about the events and other
non-event resources. This means that events can be detected based on reasoning
on their type hierarchy, temporal/spatial relationships, or their relationship
to other objects in the application domain. The connections to other relevant
concepts and objects means for example the relationship of a food item to a
particular drug.

The benefits of using background knowledge in complex event processing
can be seen as two major advantages over the state of the art CEP systems.
The first benefit is its higher expressiveness and the second one its flexibility.
Expressiveness means that an event processing system can precisely express
complex event patterns and reactions to events which can be directly translated
into business operations. Flexibility means that a CEP system is able to integrate
new business changes into the systems in a fraction of time rather than changing
the whole event processing rules. Complex event patterns are independent of
current businesses and are defined in a higher level of abstraction based on
business strategies. When something is changed in the business environment, it
can be considered simply as an update in the background knowledge and the
complex event detection patterns which are defined based on the business plans
should not be changed.

In many event processing use cases, the amount of background knowledge
about events and the relevant objects can be very high, so that they can not be
included as rule sets in the main memory of event processing agents for reason-



ing. Therefore, we propose to use external KBs for the storage and reasoning on
background knowledge. The background knowledge about events and other
non-event concepts/objects is described in description logic. The knowledge in
the KB can be stored in the Resource Description Framework (RDF) data formatE]
in an external triple store (special kind of databases for storage and management
of RDF data). This knowledge can be queried from the event processing agents
based on the demands of the event query rules. The external KB includes a
description logic inference engine to reason on the relations between events
and other relevant non-event objects in the application domain. The KB can be
queried by using SPARQL [5] queries and the results are then included in the
event processing engine.

3 Event Query Rules and Their Categories

Event query rules are declarative rules which are used to detect complex events
from streams of raw events. The aggregated knowledge from event streams and
background KB can be queried by different types of event queries. These event
queries have a hybrid semantic, because they use event operation algebra to
detect events and they use SPARQL queries to include background knowledge
about these events and their relationships.

Lets consider an Event type E; which can be instantiated with n (attribute,
value) tuples like: el ((a1,01), ..., (an,vn)). The ﬁgureshows the event stream
and the relationships of events to resources in the background knowledge. An
event instance e; can be connected to one or more resources in the background
knowledge by using a connecting predicate ¢; using one or more attribute value
pairs of the event instance.

We use attribute-value tuples of an incoming event instance to query an
external KB about the relevant background knowledge of that event instance.
These tuples are used to build basic graph patterns (BGPs) which are used
in SPARQL queries as sets of triple patterns defined in SPARQL queries. The
usage of SPARQL queries allows the event processing agent to include external
knowledge and combine it with the event stream to know more about the
incoming events.

Our event query rules allow simple event algebra operations, similar to
Snoop [1] (i.e. event operations like AND, SEQ, OR, NOT), to query the event
stream as well as higher interval-based event operations like (BEFORE, MEETS,
OVERLAP, ...). Our event query rules can include SPARQL query predicate to
query external KBs. The results of SPARQL queries are used in combination with
event stream to detect complex events. This means that a complex event pattern
is defined based on the event operation algebra in combination with SPARQL
queries (basic graph patterns plus inferencing on knowledge graph).

One event detection pattern of the relationship shown in the figure|l{can be
represented by the given pseudocode. The event el is connected to the resource

2 http:/ /www.w3.org/RDF/



\/

Events Time { { (?el, Cl, 751) .

e3 e2 el

al al al (?s1, p* ?s). }
“ “ * % SEQ event algebra operation
o3 e o1 [2e1 SEQ ?e2][Within 5 min.]
¢ Knowledge Base L ¢
), 7283 2S2 ?s1 { (?e2, c2, ?82) .

/\p3 / \ﬁ pl/ \ (?s2,p* ?s). } }
"‘ . ST ?s4

\\ e X "N [2e2 SEQ €3] [Within 5 min.]
{ (?e3, 3, ?s3) .
S

(?s3,p* ?s) .} }

Fig. 1. Relation of Events to Resources in the Background Knowledge and Pseudocode of
Event Detection Pattern

sl in the background knowledge by the predicate cl. In the same way the event
e2 is connected to the resource s2 by predicate c2. The predicate p4 connect the
two resources s4 and s5, so that it connects the two sub-graphs.

The above query can written in declarative rules for event detection. The
precise semantics of event query rules is based on interval-point semantics [6]
which allows us to include event algebra operators based on time-point seman-
tics. This kind of event query rules can also include SPARQL query predicate to
query external KBs. The semantics of the whole event query is a hybrid semantic
of description logic and event operation algebra which defines the semantics of
event detection.

Event query rules can be categorized into several categories based on the
usage of knowledge queries (SPARQL queries) inside the event query rule. Our
criteria for these categorization are based on the following different factors: 1.
Number of SPARQL queries in each event processing step are sent to the KB
(Single SPARQL or Several SPARQLSs) 2. Whether the SPARQL query depends on
incoming event data and is generated based on their attributes or is independent
and describes only some attributes or the type of events. (Generated or Not
Generated) 3. By Generated SPARQL queries from event attributes, the number
of event attributes used for generating SPARQL query (Single attribute or Several
attributes) 4. By generated SPARQL queries whether they are generated from
several events in a sliding window or they are generated from a single event
instance. (Sliding Window or Single Event)

In this paper, we describe the most important and interesting categories
of event query rules. This categorization is not a complete classification of all
possible rule combinations, our aim is more to emphasize interesting rule com-



binations which can be processed using different event processing approaches.
Our implementation of these event query rules and our initial experiments with
these rules are described in [8]].

Category A - Single SPARQL Query: In this category, the event query rule
includes only one single knowledge query and uses its results in one or more
variables within the event detection rule. A SPARQL query is used to import
knowledge about event instances or types. One or more attributes of events are
used to build the basic triple pattern inside the SPARQL query. Category A event
query rules can be categorized into three subcategories:

Category A1l - Raw SPARQL: This category of event query rule is the sim-
plest form of these event query rule. The included SPARQL query is only about
the resources in the background knowledge. The background knowledge query
is independent from the event stream, however the complex event detection
is defined on the results of this query in combination with the event stream.
In some cases, on each event the SPARQL query should be resent to the KB to
update the latest results from the KB.

Category A2 - Generated SPARQL: In this category of event query rules
with each incoming event a different SPARQL query is generated and sent to
the target knowledge base. The attribute/values of an event instance are used
to generate basic triple patterns of a SPARQL query. Based on user definitions
some of the tuples (attribute, value) of an event instance are selected and used
to generate a single SPARQL Query.

Category A3 - Generated SPARQL from Multiple Events: The query is
similar to A2, but the SPARQL query is generated from multiple events. Within
a data window (e.g., a sliding time window) from two or more events a single
SPARQL query is generated. Multiple events are used to generate the single
SPARQL query, the event processing waits for receiving some new events and
then generate a SPARQL query based on the emitted events, and query for the
background knowledge about them.

Category B - Several SPARQL Queries: Queries of this category include
several SPARQL queries and combine them with event detection rules. This
means that several A category rules are combined together which can build a
category B. The category B of rules are able to combine results from KBs with
events using event operation algebra.

Category B1 - Several SPARQL Queries in AND, OR and SEQ Operations:
The category B1 is based on the category B, but the results from the SPARQL
query predicates are combined with AND, OR, SEQ or similar event algebra op-
erations. The whole query is evaluated on sliding windows of event streams. The
SPARQL query predicates are not depending on each other, i.e., the results from
one is not used in another SPARQL predicate, so that they are not depending on
the results of the other SPARQL query.

Category B2 - Chaining SPARQL Queries: In category B2 several SPARQL
queries are generated and executed in sequence. They can be generated based on
the results of the previous SPARQL query. Each SPARQL query can be generated
from a set of events (e.g., included in a slide of event stream by means of a sliding



window, a counting or timing window). This means that different data windows
can be defined to wait until some events happened and then a SPARQL query is
executed. SPARQL queries might be defined in a sequence chain. The results are
directly used for event processing or used in another following SPARQL query.

Category B3 - Chained and Combined SPARQL Queries: In this category
SPARQL queries are used in combination with all possible event algebra op-
erations like, AND A, OR V/ , SEQ @, Negation —, etc. The event operations
are used for combining the results from several SPARQL queries or several
SPARQL queries are used in combination with event algebra operations like:
((sparqly @ sparqly) A\ sparqls \/ —~sparqly). This category of event query rules is
the general form of queries and has the highest possible complexity, because
the results from external KBs are used in combination with event operations or
the attribute/values from incoming events are used for generation of complex
SPARQL queries.

4 Conclusion and Future Work

In this paper, we have the different categories of event query rules which use
special rule predicates for importing data from external KBs and its combina-
tion with event algebra operations. Our future steps are to work on details of
different event processing algorithms for each of the different rule categories,
e.g. by rewriting complex event query to several simple queries which can be
distributed over an event processing network.

References

1. Chakravarthy, S., Mishra, D.: Snoop: an expressive event specification language for
active databases. Data Knowl. Eng., 14:1-26, November 1994.

2. Paschke, A.: Eca-lp/eca-ruleml: A homogeneous event-condition-action logic pro-
gramming language. In RuleML-2006, Athens, Georgia, USA, 2006.

3. Paschke, A.: Eca-ruleml: An approach combining eca rules with temporal interval-
based kr event/action logics and transactional update logics. CoRR, abs/cs/0610167,
2006.

4. Paschke, A., Bichler, M.: Knowledge representation concepts for automated
sla management. Decis. Support Syst., 46(1):187-205, 2008.

5. Prud’hommeaux, E., Seaborne, A.: SPARQL Query Language for RDF. W3C
Recommendation, 2008.

6. Teymourian, K., Paschke, A.: Semantic rule-based complex event processing.

In RuleML 2009: Proceedings of the International RuleML Symposium on Rule Interchange
and Applications, 2009.

7. Teymourian, K., Paschke, A.: Towards semantic event processing. In DEBS
'09: Proceedings of the Third ACM International Conference on Distributed Event-Based
Systems, pages 1-2, New York, NY, USA, 2009. ACM.

8. Teymourian, K., Rohde, M., Paschke, A.: Fusion of background knowledge
and streams of events. In Proceedings of the 6th ACM International Conference on
Distributed Event-Based Systems.

ACM.



	Semantic Processing of Sensor Event Stream by Using External Knowledge Bases



