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Abstract. On-Line Analytical Processing (OLAP) tools allow querying large
multidimensional (MD) databases called data warehouses (DW). OLAP-style data
analysis over the semantic web (SW) is gaining momentum, and thus SW tech-
nologies will be needed to model, manipulate, and share MD data. To achieve this,
the definition of a vocabulary that adequately represents OLAP data is required.
Unfortunately, so far, the proposals in this direction have followed different roads.
On the one hand, the QB vocabulary (a proposal by the W3C Government Linked
Data Working Group) follows a model initially devised for analyzing statistical
data, but does not adequately support OLAP multidimensional data. Another re-
cent proposal, the Open Cube vocabulary (OC) follows closely the classic MD
models for OLAP and allows implementing OLAP operators as SPARQL queries,
but does not provide a mechanism for reusing data already published using QB. In
this work, we propose a new vocabulary, denoted QB4OLAP, which extends QB
to fully support OLAP models and operators. We show how data already published
in QB can be analyzed a la OLAP using the QB4OLAP vocabulary, and vice versa.
To this end we provide algorithms that build the structures that allow performing
both kinds of analysis, and show that compatibility between QB and QB4OLAP
can be achieved at low cost, only adding dimensional information.

1 Introduction

Business Intelligence (BI) comprises a collection of techniques used for extracting
and analyzing business data to support decision-making. As part of the BI machinery,
On-Line Analytical Processing (OLAP) [9] tools and algorithms allow querying large
multidimensional (MD) databases called data warehouses (DW). Data in a DW come
from heterogeneous and distributed operational sources and go through a process denoted
ETL (standing for Extraction, Transformation, and Loading). In OLAP, data are usually
seen as a cube, where each cell contains measures representing facts and contextual
information (the latter called dimensions). Traditional OLAP tools have proven to be
successful in analyzing large sets of enterprise data, but sometimes these highly curated
data is not enough in today’s business dynamics. External data (particularly web data) can
enhance local analysis by means of, e.g., fusion cubes [1]. Also, OLAP-style analysis
of semantic web (SW) data is likely to become crucial in the near future, as large
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repositories of semantically annotated data are becoming available [11]. So far, this
kind of analysis of SW data is performed extracting MD information from the Semantic
Web into traditional OLAP databases. This approach requires the existence of a local
data warehouse (DW) to store semantic web data, and this restriction clashes with the
autonomous and high volatile nature of web data sources. Changes in the sources may
lead not only to updates on data instances, but also to changes in the structure of the DW
that will also impact on the ETL processes. Since the DW construction process needs
human supervision, this approach not only does not automatically reflect changes on the
sources, but also can be very hard to update and maintain. In [5] we have discussed these
drawbacks, and claimed that performing OLAP operations directly over RDF data can
be useful and plausible in certain scenarios.

BI over the SW requires, as a starting point, the definition of a precise vocabulary
allowing to represent OLAP data. Unfortunately, so far, the proposals in this direction
have followed different roads. The RDF Data Cube vocabulary (QB) [4] follows models
originally devised to analyze statistical data. On the other hand, the recently proposed
Open Cube (OC) vocabulary [5] (also expressed in RDF) closely follows the classic MD
models for OLAP existing in the literature. In this paper we show that the former presents
problems when dealing with hierarchical data, and that OC does not directly support
data cubes defined over QB (Section 3). In light of this, we introduce the QB4OLAP
vocabulary (Section 4), which extends QB to fully support OLAP models, and allows
implementing OLAP operators directly over the RDF representation. We also provide
algorithms that build the QB4OLAP structures needed to analyze observations already
published using QB, and vice versa (Section 5), showing that for this we only need
to modify dimensional information, which is usually small compared with the size of
OLAP fact data (called observations in statistical databases).

2  OLAP Preliminary Concepts

We first define the MD model for OLAP that will be used in our study. Detailed formal
models can be found in [6,7,12], among other ones. We assume the reader is familiar
with basic notions of the SW, RDF, and SPARQL.

In OLAP, data are organized as hypercubes whose axes are called dimensions. Each
point in this MD space is mapped into one or more spaces of measures, representing facts
that are analyzed along the cube’s dimensions. Dimensions are structured in hierarchies
that allow analysis at different aggregation levels. The actual values in a dimension level
are called members. A Dimension Schema is composed of a non-empty finite set of
levels, with a distinguished level denoted A/l. We denote ‘—’ a partial order on these
levels; the reflexive and transitive closure of ‘=’ (‘—*’) has a unique bottom level and
a unique top level (the latter denoted All). Levels can have attributes describing them.
A Dimension Instance assigns to each dimension level in the dimension schema a set
of dimension members. For each pair of levels ({;, ;) in the dimension schema, such
that I; — [, a relation (denoted rollup) is defined, associating members from level /;
with members of level [;,. A Cube Schema contains a set of dimension schemas and
a set of measures, where for each measure an aggregate function is specified. A Cube
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All / All \
country England Wales
GOR SouthEast SouthWest Wales
UA MiltonKeynes Reading Bournemouth Cardif f Newport
(a) Schema (b) An instance

Fig. 1: Dimension schema and instance: geoDim

Instance, corresponding to a cube schema, is a partial function mapping coordinates
from dimension instances into measure values.

Example 1. (Cube schema and instance) We want to analyze the household projection
in the UK (a measure) along the dimensions geographic location and date. Let us call
these dimensions geoDim and dateDim, respectively. Dimension geoDim is organized
in a hierarchy of levels: unitary authority (UA), Government Office Region (GOR)
and country; dimension dateDim has only one level: year. The household measure is
associated with the SUM aggregate function. Based on these dimensions and measures,
we define a cube, denoted householdCS. Figure 1 shows dimension geoDim (its
schema and a sample instance), while Figure 2a presents an instance of householdCS
cube retrieved from StatsWales® and Open Data Communities*. The symbol | means
that the value of a measure, corresponding to a set of coordinates, is unknown or
undefined. O

A well-known set of operations is defined over cubes. We present some of these
operations next. They are based on the recently proposed Cube Algebra [2].

Roll-Up summarizes data in a cube, along a dimension hierarchy. Given a cube
C, a dimension D € C, and a dimension level [, € D such that [; —* [,, with [; the
level in dimension D used to represent cube instances in C, Roll-Up(C, D, [,,) returns a
new cube C’ where measure values are aggregated along D up to the level [,,, using the
aggregate function defined for each measure. Analogously, Drill-Down disaggregates
previously summarized data, and can be considered the inverse of Roll-Up. Note that this
requires to store the aggregation path. Slice receives a cube C and a dimension D € C,
and returns a new cube C’, with the same schema as C except for dimension D. Measure
values in the cube are aggregated along dimension D up to level All before removing the
dimension. Dice receives a a cube C, and a first order formula o over levels and measures
in C, and returns a new cube C’ which has the same schema as cube C. Instances in C’
are the instances in C that satisfy o.

Example 2 (OLAP Operators). Consider the cube schema of Example 1 and the cube
instance in Figure 2a. The result of Slice(householdC'S, geoDim) is shown in Figure 2b.
Figure 2c shows the result of Dice(householdC'S, household >= 60 A GOR <>
South West). Figure 2d shows Roll-Up(householdC'S, geoDim, GOR). O

3 Report number 028727 in http://statswales.wales.gov.uk/index.htm
* Household projections by district, England, 1991-2033 http: //opendatacommunities.
org/id/dataset/housing/household-projections
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country| GOR UA 2006 | 2007 | 2008
Milton Keynes| 92 94 96
Reading 58 | 58 | 60
South West| Bournemouth | 71 72 73
] B Cardiff 132.1{134.2|136.7
Wales | Wales | —p o e T5871 L [59.6

(a) An instance of householdCS

England | South East

year year
year country| GOR UA 2006 | 2007 | 2008 | [country| GOR |2006 | 2007 | 2008
2006 | 2007 | 2008 Milton Keynes| 92 | 94 | 96 South East| 150 | 152 | 156
4118%358.2%425.3 England | South East =g e T T L 160 ] | [South West| 71 | 72 | 73
i Wales Wales Cardiff 132.1{134.2{136.7| | Wales Wales 190.8|134.2/196.3
(b) Slice
(¢) Dice (d) Roll — Up

Fig. 2: Applying OLAP operations to a cube

3 Representing Multidimensional Data in RDF

3.1 The RDF Data Cube Vocabulary (QB)

The RDF Data Cube vocabulary [4] (also denoted QB) is a proposal by the W3C
Government Linked Data (GLD) Working Group, focused on the publication of statistical
data and metadata using RDF and adhering to Linked Data principles. It represents a
simplified version of the SDMX Information Model [10]. Although it has not yet become
an standard, several datasets are currently being published using this vocabulary.

Observations (in OLAP terminology, facts) are described in QB as instances of
gb:Observation, representing points in a MD data space indexed by dimensions.
They are grouped in datasets (gb : DataSet) by means of the gb : dataSet property.
The schema of a dataset is specified by the data structure definition (DSD) (instance
of gb:DataStructureDefinition). Although QB can define the structure of a
fact (via the DSD), it does not provide a mechanism to represent an OLAP dimension
structure (i.e., the dimension levels and the relationships between levels). However, QB
allows representing hierarchical relationships between level members in the dimension
instances, using the SKOS vocabulary. The gb : S11ice construct does not represent an
operator over an existent dataset, but the result of the application of a constraint over
the dimension values on an existent data cube. Observations that populate the slice are
not automatically computed from the observations in the original data cube and must
be explicitly added to the RDF graph.We further explain the vocabulary through an
example, and refer the reader to the reference for details.

Figure 3 (a) shows a representation using QB of the dimension geoDim. Dimension
members are represented using URIs defined in Data.gov.uk® according to the Ordnance
Survey Administrative Geography Ontology®. For the sake of space we only include
the data corresponding to the Reading UA and omit prefix declarations. A dimension
property is used to define the dimension (line 1). Then, a concept scheme defines the

Shttp://statistics.data.gov.uk/def/administrative—-geography
®http://www.ordnancesurvey.co.uk/oswebsite/ontology/vl/
AdministrativeGeography.rdf
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1 eg:geoDim a gb:DimensionProperty, eg:dateDim a gb:DimensionProperty,

1
2 gb:CodedProperty; gb:codeList eg:geo. 2 gb:CodedProperty.
3 eg:geo a skos:ConceptScheme; 3 eg:household a gb:MeasureProperty.
4 skos:hasTopConcept ns2:921; 4 eg:householdCS a gb:DataStructureDefinition;
5 5 gb:component [gb:dimension eg:geoDim];
6 Nns2:921 a adgeo:Country; 6 gb:component [gb:dimension eg:dateDim];
7 rdfs:label "England@en"; 7 gb:component [gb:measure eg:household];
8 skos:inScheme eg:geo; 8 gb:component [gb:attribute
9 skos:narrower ns1:J. 9 sdmx—attribute:unitMeasure] .
10 ns1:J a adgeo:GovernmentOfficeRegion; 10 eg:.dataset—hh a gb:DataSet;
11 rdfs:label "South East@en" ; 11 rdfs:label "Household in UK"@en;
12 skos:inScheme eg:geo; 12 gb:structure eg:householdCS.
13 skos:narrower ns0:00mc. 13 eg:01 a gb:Observation;
14 ns0:00mc a adgeo:UnitaryAuthority; 14 gb:dataSet eg:dataset—hh ;
15 rdfs:label "The Borough of Reading@en"; 15 eg:geoDim ns0:00mc ;
16 skos:inScheme eg:geo. 16 eg:dateDim db:2007;

17 eg:household 58 ;
18 sdmx—attribute:unitMeasure db:Thousand.

(a) The geoDim dimension structure. (b) Cube structure and instances.

Fig. 3: Expressing schemas and instances in QB

hierarchical relationship between dimension members, which is linked to the dimension
property using the gb: codelist property (line 2). The most general concepts within
the hierarchy are defined using the skos : topConcept property. In this example there
is only one top concept (line 4) and it corresponds to an instance of the Country class
(England). Hierarchical relationships among members (from the more general concepts
down to more specific ones) are stated using the skos :narrower property (lines 9
and 13). Figure 3 (b) shows a representation, using QB, of the data cube of Figure 2a.
The observation depicted represents the household corresponding to Reading in 2007.

The implementation of OLAP operations is not considered in the specification of the
QB vocabulary. In spite of this, some OLAP operations can be defined over a structure
based on QB, although in a limited way. For example, since dimension levels and
aggregate functions for each measure are not modeled, is not possible to implement
Roll-Up over QB. The same issues apply to Drill-down and Slice. Finally, a particular
case of Dice could be implemented over QB, given that the FO formula o can only
involve cube measures (again, because of the lack of support of dimension levels).

Kiampgen et al. [8] attempt to override the lack of structure in QB defining an
OLAP data model on top of QB, but still do not provide a mechanism to represent
aggregate functions. In addition, the work proposes a mechanism for implementing some
OLAP operators over these extended cubes, using SPARQL queries, but only provide an
implementation of Roll-Up in the case of one-level dimensions.

3.2 The Open Cube Vocabulary

Open Cube (OC) [5] is an RDF vocabulary focused on publishing MD data and per-
forming analysis a la OLAP directly over such data. It is based on the MD data model
presented in Section 2. In OC each level in a dimension is explicitly declared (op-
posite to QB). For each level, its parent in the dimension hierarchy is declared us-
ing the oc:parentLevel property. Dimension instances are represented separately,
and each level member is related to the level it belongs to using the oc:inLevel
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MD concept Data Cube (QB) [4] |[Kdmpgen et al. [8]|Open Cube [5]
1 |Dimensions Yes Yes Yes
2 |Levels No Yes Yes
3 |Level members Yes Yes Yes
4 |Rel. between Level Members and Levels No Yes Yes
5 |Roll-up relations between Levels No Yes Yes
6 |Roll-up relations between Level Members Yes Yes Yes
7 |Multiple hierarchies in a dimension Yes No Yes
8 |Measures Yes Yes Yes
9 |Multiple measures in a cube Yes Yes Yes
10| Aggregation functions No No Yes

Table 1: Multidimensional modeling support.

property. Rollup relations between level members are indicated using the property
oc:parentLevelMember.

The Open Cube vocabulary overcomes the problems of QB to support OLAP op-
erations. In [5] we showed that, based on OC, OLAP operators could be implemented
through SPARQL queries over the RDF representation of data cubes. Since in Open
Cube, data cubes are represented as RDF graphs, and the result of any of the OLAP
operators must be an RDF graph, OLAP operators have to be implemented as SPARQL
CONSTRUCT queries.

Comparing approaches. Table 1 summarizes the modeling features supported by each
proposal. Note that OC allows representing all the MD concepts in Table 1, however at
the expense of the need of adopting a new vocabulary, which prevents reusing data cubes
already published using QB. Conversely, [8] allows reusing QB cubes, at the expense of
modeling limitations.

4 QB4OLAP: a Proposal for a Unified Data Cube Vocabulary

4.1 Vocabulary Specification

In Section 2 we have shown that QB presents some shortcomings to support BI analysis
on the semantic web. On the other hand, OC does not support existing cubes based on
QB, that means, data already published using QB (and applications built over this model)
cannot be reused. This represents a problem since, as we already mentioned, although
QB is not yet a W3C candidate standard, many datasets have already been published
using QB. Therefore, to allow BI analysis and, at the same time, supporting existing
applications over data published using QB, we propose the QB4OLAP vocabulary’.
QB4OLAP allows either publishing and analyzing MD from scratch (similarly to what
can be done using OC), or performing OLAP analysis on observations already published
using QB. To achieve this, QB4OLAP adds to QB the capability of representing di-
mension levels, level members, rollup relations between levels and level members, and
associating aggregate functions to measures.

Figure 4 presents the QB4OLAP vocabulary, where classes and properties that
are added to QB (with prefix gb40) are depicted in light gray background. The class

7 http://publishing-multidimensional-data.googlecode.com/git/
index.html
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gbdo:AggregateFunction |

rdfitype

gb4o:hasAggregateF unction

‘ gb4o:sum H gbdoiavg H gb4o:min H gb4o:max H qb4o:count |

gb:componentRequired:boolean
gb:componentAttachment:rdfs:Class

gb:order: xsd:int

qb:component
qb:DataStructureDefinition » gb:ComponentSpecification
A qbislicekey gbidimension
gb:componentProperty

qbistructure gbicomponentProperty <— qb:attribute

qb:measure
[ ob:Sticekey |————————{ gb:ComponentProperty

gb:sliceStructure  gb:concept

[ gbDataset qbdorlevel

A

qbrslice

qb4o:LevelProperty

gb:dataSet

qb:Slice

gb:subSlice

cbrobservation | skos:Concept || gboiLevelMember | —

qgpdotinLevel qbdo:parentLevel

gb4o:inDimension

qb:Observation & A ? Y
gb:DimensionProperty
skamrosder
—‘ qb:AttributeProperty  €———
gbdo:] i
b MeasurcProparty

gb:codeList gb:CodedProperty
sdmx:CodeList }—[}I skos:ConceptScheme }<

Fig. 4: The QB4OLAP Vocabulary

gb4o:LevelProperty models dimension levels; the gb4o:parentLevel prop-
erty represents relations between dimension levels. Level members are represented as
instances of the class gb4o:LevelMember, and rollup relations between them can
be expressed using the property skos:broader. Level attributes are defined via the
gb4o:hasAttribute property. In the DSD, level properties are stated. These levels,
like in OC, correspond to the lowest levels in the hierarchy of each dimension in the
cube. Also, like in OC, although dimensions are not directly linked to the data structure,
they can be reached navigating from any level using the gb4o:inDimension prop-
erty. The class gb40: AggregateFunction represents aggregate functions, and the
association between measures and aggregate functions in a data cube is represented
using the property gb4o:hasAggregateFunction. This property, together with
the idea of component sets, allows a given measure to be related to different aggregate
functions in different cubes, which is an improvement with respect to OC where each
measure could only be related to one aggregate function.

We now show how QB4OLAP can be used to publish MD data from scratch. Later,
in Section 5, we present how this vocabulary can also be used to analyze data al-
ready published using QB. Figure 5 (a) shows the definition of the geoDim dimension
schema and instances using the QB4OLAP vocabulary. Figure 5 (b) shows how the
data cube of Figure 2a can be represented using QB4OLAP. Although resembling the
definition of the cube in QB presented in Figure 3 (b), there are some relevant differ-
ences. The data cube schema is declared in lines 8 through 12, using an instance of
gb:DataStructureDefinition. Level properties (gb4o:level) are used to
specify the cube schema, instead of dimension properties (gb:dimension). Also,
the aggregate function corresponding to measure eg:household is stated using the
gb4o:hasAggregateFunction property (line 12). Data cube instances are mod-
eled using the gb : Observation class, and grouped using the gb:DataSet class,
which is linked to the corresponding fact schema using the property gb : st ructure.
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1 eg:geoDim a gb:DimensionProperty. eg:dateDim a gb:DimensionProperty.

1
2 2
3 eg:unitaryAuthority a gb4o:LevelProperty; 3 eg:year a gb4o:LevelProperty;
4 gbdoinDimension eg:geoDim; 4+  skos:closeMatch db:Year;
s gbdo:parentLevel eg:governmentOfficeRegion. s gb4o:inDimension eg:dateDim.
6 eg:governmentOfficeRegion a gb4o:LevelProperty; 6
7 gb4o:inDimension eg:geoDim; 7 eg:household a gb:MeasureProperty.
8 gbdo:parentLevel eg:country. 8 eg:householdCS a gb:DataStructureDefinition;
9 eg:country a gb4o:LevelProperty; 9 gb:component [gb4o:level eg:unitaryAuthority];
10 gbdo:inDimension eg:geoDim; 10 gb:component [gb4o:level eg:year];
11 skos:closeMatch adgeo:Country. 1 gb:component [gb:measure eg:household;
12 12 gb4o:hasAggregateFunction gb4o:sum].
13 ns0:00mc gb4o:inLevel eg:unitaryAuthority; 13 eg:dataset—hh a gb:DataSet;
14 rdfs:label "The Borough of Reading@en"; 14 rdfs:label "Household in UK"@en;
15 skos:broader ns1:J. 15 gb:structure eg:householdCS.
16 ns1:J gb4o:inLevel eg:governmentOfficeRegion; 16 eg:o1 a gb:Observation;
17 rdfs:label "South East@en" ; 17 gb:dataSet eg:dataset—hh ;
18 skos:broader ns2:921. 18 eg:unitaryAuthority ns0:00mc ;
19 ns2:921 gb4o:inLevel eg:country; 19 eg:year db:2007;
20  rdfs:label "England@en”. 20 eg:household 58.
(a) The geoDim dimension structure (b) Data cube structure and instances

Fig. 5: Expressing schemas and instances in QB4OLAP
4.2 OLAP Operators over QB4OLAP

One of the key aspects of OC is that it supports performing OLAP operators presented
in Section 2, directly over the RDF representation of cubes. In [5] we discussed why
being able to operate directly over this representation is relevant in BI scenarios, and
showed how the operators can be implemented as SPARQL queries. The implementation
of OLAP operators as SPARQL queries, when QB4OLAP is used, is also possible.
Moreover, it is straightforward to transform the algorithms presented in [5] to be
used over this new vocabulary. As an example, Figure 6 shows the specification in
QB4OLAP of the HouseholdByGOR schema and the SPARQL 1.1 query that imple-
ments Roll-Up(householdC'S, geoDim, GOR). The outer CONSTRUCT query (line 1)
builds triples based on the results of an inner SELECT query (line 3), which implements
the GROUP BY according to members of the levels in the target schema (in this case
GOR and year). The dimension hierarchy is traversed via the skos :broader prop-
erty to find corresponding members in level GOR (line 9). New IRIs must be generated
to identify each of the new observations resulting from the application of the operator
(lines 4 to 6).

5 Compatibility between QB and QB4OLAP

The QB4OLAP vocabulary is compatible with QB, in the sense that QB4OLAP cube
schemas can be built on top of data cube instances (observations) already published using
QB. Existing applications, or applications that do not require OLAP style-analysis, can
still use the QB schema and instances. Therefore, the cost of adding OLAP capabilities
to existing datasets is the cost of building the new schema, in other words, the cost of
building the analysis dimensions. Conversely, cubes built over QB4OLAP from scratch
can be transformed into QB cubes in order to be exploited by existing applications
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eg:householdByGOR a gb:DataStructureDefinition;
gb:component [gb4o:level eg:governmentOfficeRegion];
gb:component [gb4o:level eg:year];
gb:component [gb:measure eg:household;
gb4o:hasAggregateFunction gb4o:sum].
eg:dataset—hh1 a gb:DataSet;
rdfs:label "Household in UK by GOR"@en;
gb:structure eg:householdByGOR.

HouseholdByGOR schema

1 [CONSTRUCT { ?id a gb:Observation . ?id gb:dataSet eg:dataset—hh1 . ?id eg:year ?year .
2 ?id eg:governmentOfficeRegion ?gor . ?id eg:household ?sumHhold }

3 |WHERE{ { SELECT ?gor ?year (SUM(?hhold) AS ?sumHhold)
4

5

© N U AW —

(iri(fn:concat("http://example.org/hhold#", "hholdGOR","_",

fn:substring—after(?gor,"http://example.org/hhold#"),

6 fn:substring —after(?year,"http://example.org/hhold#"))) AS ?id)

7 WHERE { ?0 gb:dataSet eg:dataset—hh . ?0 eg:year ?year .

8 ?0 eg:household ?hhold . ?0 eg:unitaryAuthority ?ua .

9 ?ua skos:broader ?gor . ?gor gb4o:inLevel eg:governmentOfficeRegion;

10 }GROUP BY ?gor ?year}}

HouseholdByGOR instances

Fig. 6: RollUp implementation over QB4OLAP

supporting the latter. As in the case above, the cube instances remain untouched. Figure 7
depicts this scenario.

QB
cube schema

e —

Fig.7: Analyzing observations using QB and QB4OLAP simultaneously.

QB40OLAP
cube schema

5.1 From QB to QB4OLAP

One of the main differences between QB4OLAP and QB is the possibility of the former
of specifying a dimension hierarchy. On the contrary, QB allows dimension mem-
bers to be hierarchically organized into a skos:ConceptScheme structure using
skos:narrower and skos:broader properties. This skos:ConceptScheme
represents a hierarchy of level members instead of a hierarchy of levels. Therefore,
generating a QB4OLAP cube from a QB cube requires knowing the hierarchy of levels.
Thus, we assume that this hierarchy can be obtained from the hierarchy of level members,
either automatically or manually (e.g., by a curator). Implicitly, this also assumes that
the association between members and dimension levels can also be obtained. If the
dimension does not have hierarchical information, we assume a hierarchy of only one
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level. Also, generating a QB4OLAP cube from a QB cube requires knowing the asso-
ciation between measures and aggregate functions, which we assume can be obtained
automatically or through the intervention of an expert user.

Recall that observations in QB are expressed in terms of dimensions, while QB4OLAP
requires observations to be expressed in terms of dimension levels. Therefore, to avoid
rewriting observations, we propose to reuse the URISs that represent dimensions in QB,
to represent the bottom level of each dimension in the generated QB4OLAP schema (we
show this in lines 8 and 9 in Figure 8 (a)).

Algorithm 1 receives a QB cube schema, and produces a QB4OLAP cube schema.
The new schema must be linked to the dataset containing the (existing) observations®.The
algorithm creates and populates the dimension structure, and creates a new DSD.

Algorithm 1 Creating a cube in QB4OLAP from a cube in QB

Input: dsd; is the data structure definition of a data cube c¢; in QB, D is the set of dimensions in ¢y, M is
the set of pairs (m;, ag; ) where m; is a measure and ag; is its corresponding aggregate function.
Output: dsds is the data structure definition of a data cube co in QB4OLAP that allows to analyze the
observations that populated dsd;
i: foralld; € D1 (d; agb:DimensionProperty) do
2 Create a new dimension d; € D2 (dj a gbo:DimensionProperty)
3 Obtain a hierarchy of levels hl; and a hierarchy of level members hm; for d;
4 foralll; € hl; do
5 Add triples (I; a gb4o:LevelProperty)and (; gb4o:inDimension d;)
6;
7
8

for all Im; € hm,; such that Im; belongs to level I; do
Add a triple (Im; gb4o:inLevel [;).
end for
9 end for
10: for all (I;,1) € hl; such that I; — Ij, do
1: Add a triple (I; gb:parentLevel lg)
12: end for .
13: if [; is the bottom level in hl; then
14: Add a triple (dsd2 gb: component [gb4o:levell;])
1s: end if
16: end for
17: for all m; such that (dsdy gb: component [gb:measure m;]) do
18: Add a triple (dsd2 gb: component [gb:measure m;;qgb:hasAggregateFunction ag;])
19:_end for

Example 3. Figure 8 (a) presents the result of applying Algorithm 1 to the data cube of
Figure 3. A new prefix egl is used to define new dimensions and the new cube schema.
In lines 1 to 10 we show the triples that represent geoDim dimension, lines 12 to 15
show the representation of the dateDim dimension, while lines 19 to 23 present the
DSD of the new cube. This DSD has to be added as another structure of the dataset that
contains the observations to be analyzed, which is done in line 25. O

5.2 From QB4OLAP to QB

Algorithm 2 receives a QB4OLAP cube schema and creates a QB cube schema. To
avoid rewriting observations we propose a similar strategy than in Algorithm 1. In this
case we reuse the URISs that represent the lowest levels in each dimension in QB4OLAP,

8 We are not interested here in discussing the most efficient way of generating cubes. We are just
proving that this generation is feasible.
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I egl:newGeoDim a ab:DimensionProperty. 1 egiunitaryAuthority a gb:DimensionProperty;

2 egl:country a gb4o:LevelProperty; 2

3
4
5
6
7
8
9
10

2

gb:codelList eg2:cl1.
eg2:cl1 a skos:ConceptScheme;

gb4o:inDimension eg1:newGeoDim.
skos:hasTopConcept ns0:00mc.

3

ns2:921 gb4o:inLevel eg1:country. 4

eg1:governmentOfficeRegion a gb4o:LevelProperty; 5 )
gb4o:inDimension eg1:newGeoDim. 6 ns0:00mc skos:inScheme eg2:cl1.

ns1:J gbdo:inLevel eg1:governmentOfficeRegion. 7 ns1:J skos:inScheme eg2:cl1.

eg:geoDim a gb4o:LevelProperty; 8 ns2:921 skos:inScheme eg2:cl1.
gb4o:inDimension eg1:newGeoDim. 9

ns0:00mc gb4o:inLevel eg:geoDim. 10
11
eg1:newDateDim a ab:DimensionProperty. 12 eg:year a gb:DimensionProperty;
eg:dateDim a gb4o:LevelProperty; 13 gb:codeList eg2:cl2.
gb4o:inDimension eg1:newDateDim. 14 eg2:cl2 a skos:ConceptScheme.
db:2007 gb4o:inLevel eg:dateDim. 15 db:2007 skos:inScheme eg2:cl2.
16
eg1:household a gb:MeasureProperty. 17 eg2:household a gb:MeasureProperty.
18
eg1:householdCS a gb:DataStructureDefinition; 19 eg2:householdCS a gb:DataStructureDefinition;
gb:component [gb4o:level eg:geoDim]; 20 gb:component [qb:d!mens!on eg:unitaryAuthority];
gb:component [gb4o:level eg:dateDim]; 21 gb:component [gb:dimensionl eg:year];
gb:component [gb:measure eg1:household; 22 gb:component [gb:measure eg2:household].
gb:hasAggregateFunction gb4o:sum] . 23
24
eg:dataset—hh gb:structure eg1:householdCS. 25 eg:dataset—hh gb:structure eg2:householdCS.
(a) Creating a cube in QB4OLAP from a (b) Creating a cube in QB from a cube in
cube in QB QB40OLAP

Fig. 8: Creating cube schemas

to represent dimensions in the QB schema. Algorithm 2 creates and populates the
dimension structure, and produces the DSD. For each dimension d; a new dimension
is created, identified by the URI corresponding to the lowest level in its hierarchy (l;).
The skos:ConceptScheme cs; is created to represent the hierarchy of dimension
members, and it is associated with the dimension d; through a gb : CodeList property
(line 5). Then, for each level I; in the dimension, all its level members [lm,; are added
to cs; (line 8). We also need to state which level members [m; are top concepts in the
concept scheme, to allow traversing the hierarchy via skos :broader relationships
(lines 9 to 11). Measures are added to the new DSD in lines 15 to 17.

6 Conclusion

We have shown that the RDF Data Cube Vocabulary (QB) does not suffice for modeling
and querying OLAP data cubes. On the other hand, the OC vocabulary, a former proposal
by the authors of the present paper, overrides those problems, at the expense of not being
compatible with already existing applications based on QB. Thus, we proposed a new
vocabulary, which we denoted QB4OLAP, that fills the gap between QB and OC. We
also provide algorithms to transform cubes based on QB into equivalent cubes supporting
QB4OLAP cubes (and vice versa), showing that compatibility is obtained only at the
cost of building the analysis dimensions.

We are currently implementing the OLAP operators using QB4OLAP as http REST-
ful services, and working in a query language based (at the conceptual level) on the Cube
Algebra [2], within a general framework of enabling OLAP analysis over the semantic
web.
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Algorithm 2 Creating a cube in QB from a cube in QB4OLAP

Input dsd; is the data structure definition of a data cube ¢1 in QB4OLAP, D is the set of dimensions in

Output dsdy is the data structure definition of a data cube cg in QB that allows to analyze the observations

that populated dsdy

i: for all d; € D; such that (d; agb:DimensionProperty) do

17:

Let [; be a level that satisfies (dsdy gb:component[gbdo:level [;]) .(;
gb4o:inDimension d;)
Add a triple (I; agb:DimensionProperty)
Add a triple (dsd2 gb: component [gb:dimension [;])
Add triples (I; gb:CodeList cs;). (cs; a skos:Concept Scheme)
for all [; such that (I; gb4o:inDimension d;) do
for all lm; such that (Im; gb4o:inLevel [;) do
Add a triple (Im; skos:inScheme cs;)
if Im; is the top level in the hierarchy then
Add a triple (cs; skos:hasTopConcept im;)

end if
end for
end for

. end for
. for all m; such that (dsd; gb: component [gb:measure m;]) do

Add a triple (dsd2 gb: component [gb:measure m;])
end for
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