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Abstract. A large number of SPARQL endpoints are available to ac-
cess the Linked Open Data cloud, but query capabilities still remain
very limited. Thus, to support efficient semantic data management of
federations of endpoints, existing SPARQL query engines require to be
equipped with new functionalities. First, queries need to be decomposed
into sub-queries not only answered by the available endpoints, but also
executable in a way that the bandwidth usage is minimized. Second,
query engines have to be able to gather the answers produced by the
endpoints and merge them following a plan that reduces intermediate
results. We address these problems and propose techniques that only rely
on information about the predicates of the datasets accessible through
the endpoints, to identify bushy plans comprise of sub-queries that can be
efficiently executed. These techniques have been implemented on top of
one existing RDF engine, and their performance has been studied on the
FedBench benchmark. Experimental results show that our approach may
support successful evaluation of queries, when other federated query en-
gines fail, either because endpoints are unable to execute the sub-queries
or federated query plans are too expensive.

1 Introduction

Over the past decade, the number of datasets in the Linked Open Data cloud
has exploded as well as the number of SPARQL endpoints1. Although in the-
ory endpoints should be able to execute any SPARQL query, many requests
may be unsuccessful and time out without producing any answer. This undesir-
able behavior is mainly caused by limited query capabilities that characterize
existing endpoints. For example, the majority of them are designed for very
lightweight use, say, to execute queries for just two minutes, or they may be
unable to retrieve data from other endpoints. Accordingly, some endpoints re-
ject the execution of queries whose estimated execution time is greater than a
certain number, while others simply time out without producing any answer.
However, real-world queries may be complex and require gathering data from
different and distant endpoints. Therefore, there is a need to develop techniques

1 http://labs.mondeca.com/sparqlEndpointsStatus/



to decompose complex queries into sub-queries that can be efficiently executed
by the existing endpoints in a way that the bandwidth usage is minimized, as
well as, strategies to efficiently merge the retrieved data.

So far several approaches have addressed the problem of decomposing a
SPARQL query into sub-queries that can be executed by existing endpoints [1,
2, 5, 9, 11]. Some approaches rely the decision on statistics collected from the
sources [5] or simply consider all possible sub-queries and choose the most
promising ones [2]. Other methods implement heuristic-based solutions to iden-
tify the sub-queries that can be executed by the available sources or endpoints [1,
11]. FedX, for example, is a rule-based system able to generate left-linear plans
comprised of sub-queries that can be exclusively answered by existing endpoints.
FedX does not derive the query decomposition decision on knowledge about
schema alignments or data distributions. Although these approaches may suc-
ceed when existing endpoints fail, they may still exhibit problems. Particularly,
performance may be deteriorated, if queries with a large number of triples pat-
terns are executed or large intermediate results are retrieved from the endpoints.

In this work we address the problem of executing SPARQL 1.0 2 queries
with a large number of triple patterns, and devise a two-fold solution. First, sets
of triple patterns that compose Basic Graph Patterns (BGPs) in the SPARQL
1.0 query, are decomposed into sub-queries that can be executed by available
endpoints. Endpoints are then described in terms of the list of predicates of the
RDF triples accessible through the endpoint. In a second step, sub-queries are
combined in an execution plan that induces a bushy tree fashion execution. The
SPARQL 1.1 federation extension 3 is used to specify the URL of the endpoint
where a sub-query will be executed. Throughout the rest of the paper we refer to
SPARQL 1.0 queries, but our approach can also handle queries in SPARQL 1.1;
this would just simplify the problem and being only required the second step of
our solution. We empirically analyze the performance of our approach, and show
that our plans are competitive with the plans generated by state-of-the-art RDF
engines. In addition, our techniques are able to execute queries with large BGPs
and produce results when other engines may time out.

This paper is comprised of five additional sections. Section 2 gives a moti-
vating example. Section 3 summarizes the related work. Section 4 presents our
two-fold approach. Experimental results are reported in Section 5. Finally, we
conclude in Section 6 with an outlook to future work.

2 Motivating Example

Example 1. Consider the following SPARQL 1.0 query: “Drugs and their com-
ponents’ url and image”, see Listing 1.1.

2 http://www.w3.org/TR/rdf-sparql-query/
3 http://www.w3.org/TR/2010/WD-sparql11-federated-query-20100601/



Listing 1.1. Query LS5 from FedBench [10]
1 PREFIX r d f : <ht tp : //www.w3 . org /1999/02/22− rd f−syntax−ns#>
2 PREFIX drugbank : <ht tp : //www4 . w iw i s s . fu−b e r l i n . de/ drugbank / r e s o u r c e / drugbank/>
3 PREFIX p u r l :<ht tp : // p u r l . o rg /dc/ e l ement s /1.1/>
4 PREFIX b i o 2 r d f :<ht tp : // b i o 2 r d f . o rg / ns / b i o 2 r d f#>
5 SELECT $drug $keggUr l $cheb i Image WHERE {
6 $drug r d f : t ype drugbank : d rugs .
7 $drug drugbank : keggCompoundId $keggDrug .
8 $drug drugbank : gener icName $drugBankName .
9 $keggDrug b i o 2 r d f : u r l $keggUr l .

10 $cheb iDrug p u r l : t i t l e $drugBankName .
11 $cheb iDrug b i o 2 r d f : image $cheb i Image
12 }

The result set of this query is comprised of 393 tuples when data from Drugbank,
KEGG and Chebi are retrieved. However, if this query is run against any of the
existing endpoints, Drugbank4 or KEGG5 or Chebi6, the answer is empty. This
problem is caused by the need to traverse links between these datasets to answer
the query. Still, the majority of endpoints have been created for lightweight use
and they are not able to dereference data from other datasets. Another solution
is the decomposition of the original query into portions that are executable by
the endpoints and the combination of the up-to-date retrieved data. State-of-
the-art approaches [4, 11] are able to decompose this query into sub-queries that
can be exclusively executed by a single endpoint, and then, gather the results
produced by these sub-queries to bind variables of other sub-queries. This query
produces small intermediate results and contains only six triple patterns; thus,
these techniques are quite effective and efficient, i.e., there is a good trade-off
between completeness of the answer and time required to produce it.

Example 2. Consider a more complex query, i.e., with larger number of triple
patterns that may generate a large set of intermediate results. SPARQL 1.0
query: “Drugs that interact with antibiotics, antiviral and antihypertensive agents”,
see Listing 1.2. Approaches that rely on exclusive groups [4, 11] time out after 30
minutes without producing any answer. We present an alternative decomposition
and planning technique that overcomes this limitation. Queries are decomposed
into simpler sub-queries which are executed in a bushy tree fashion to minimize
intermediate results and to simplify the requests submitted to the endpoints.
Thus, our query engine is able to scale up to queries with a large number of
triple patterns connected by any SPARQL operator, and also to queries that
may produce a large number of intermediate results.

4 http://www4.wiwiss.fu-berlin.de/drugbank/sparql, July 2012.
5 http://www4.wiwiss.fu-berlin.de/drugbank/sparql, July 2012.
6 http://chebi.bio2rdf.org/sparql, July 2012.



Listing 1.2. Query C1
1 PREFIX drugbank : <ht tp : //www4 . w iw i s s . fu−b e r l i n . de/ drugbank / r e s o u r c e / drugbank/>
2 PREFIX dbca t ego ry : <ht tp : //www4 . w iw i s s . fu−b e r l i n . de/ drugbank / r e s o u r c e / d rugca t ego r y/>
3 PREFIX owl : <ht tp : //www.w3 . org /2002/07/ owl#>
4 PREFIX r d f : <ht tp : //www.w3 . org /1999/02/22− rd f−syntax−ns#>
5 PREFIX dbowl : <ht tp : // dbped ia . org / on to l ogy/>
6 PREFIX kegg : <ht tp : // b i o 2 r d f . o rg / ns /kegg#>
7 SELECT DISTINCT ? drug ?enzyme ? r e a c t i o n Where {
8 ? drug1 drugbank : d rugCategory dbca t ego ry : a n t i b i o t i c s .
9 ? drug2 drugbank : d rugCategory dbca t ego ry : a n t i v i r a l A g e n t s .

10 ? drug3 drugbank : d rugCategory dbca t ego ry : a n t i h y p e r t e n s i v eAg e n t s .
11 ? I 1 drugbank : i n t e r a c t i o nD r u g 2 ? drug1 .
12 ? I 1 drugbank : i n t e r a c t i o nD r u g 1 ? drug .
13 ? I 2 drugbank : i n t e r a c t i o nD r u g 2 ? drug2 .
14 ? I 2 drugbank : i n t e r a c t i o nD r u g 1 ? drug .
15 ? I 3 drugbank : i n t e r a c t i o nD r u g 2 ? drug3 .
16 ? I 3 drugbank : i n t e r a c t i o nD r u g 1 ? drug .
17 ? drug drugbank : keggCompoundId ? cpd .
18 ?enzyme kegg : xSub s t r a t e ? cpd .
19 ?enzyme r d f : t ype kegg : Enzyme .
20 ? r e a c t i o n kegg : xEnzyme ?enzyme .
21 ? r e a c t i o n kegg : equa t i on ? equa t i on .
22 ? drug5 r d f : t ype dbowl : Drug .
23 ? drug owl : sameAs ? drug5 .}

3 Related Work

Several approaches have considered the problem of selecting query data providers.
Harth et al. [5] present a hybrid solution that combines histograms and R-trees;
histograms are used for source ranking, while regions determine the best sources
to answer a basic graph pattern. Li and Heflin [9] propose a bottom-up tree
based technique to integrate data from multiple heterogeneous sources, where
the predicates in the basic graph pattern are used to determine the data source
that will execute the graph pattern. Kaoudi et al. [7] propose a P2P system run-
ning on top of Atlas for processing RDF documents distributed and implements
a cost-based approach to identify an optimal plan; statistics are kept by peers.
These approaches can effectively identify data providers for evaluating a triple
pattern but they may fail identifying high selective sub-queries particularly when
general predicates, such as rdf:type, owl:sameAs, are used in the query.

The Semantic Web community has been also very active proposing solu-
tions to the problem of query processing on the Web of Data [1, 2, 5, 7–9]. Some
of these approaches combine source selection techniques with query execution
strategies [5, 8], while others have developed frameworks to retrieve and manage
Linked Data [2, 6, 7, 9]. Additionally, adaptive query processing solutions have
been proposed to overcome limitations of the traditional optimize-then-execute
paradigm in presence of unpredictable data transfer delays and data bursty ar-
rivals [1, 2, 8]. Recently, Schwarte et al. [11] have proposed FedX, a rule-based
system able to decompose SPARQL 1.0 queries into SPARQL 1.1 queries com-
prised of sub-queries that can be completely executed by an endpoint or exclusive
groups; then, it relies on the number of bounded variables to decide the query
join order; joins are evaluated in a block-nested loop fashion to reduce the num-
ber of source requests. FedX uses no knowledge about mappings and statistics



associated with the sources; it may contact every source to determine where
the predicates presented in a query are offered, and may save this information
in cache for future queries of the same predicate. Similarly, SPLENDID [4] ex-
ploits information encoded in endpoint descriptions to select endpoints and to
identify a set of triple patterns that comprise an exclusive group. Statistics are
used to find the relevant sources for triple patterns in a query. Endpoints may
be contacted to decide where non-exclusive groups can be executed; cost-based
optimization techniques are used to identify bushy tree plans. SPARQL-DQP [3]
and ARQ 7 exploit information on SPARQL 1.1 queries to decide where the sub-
queries of triple patterns will be executed; additionally, they rely on statistics
or heuristics to identify query plans. WoDQA 8 is a tool built on top of ARQ to
provide access to federations of endpoints. Finally, Avalanche [2] implements
an inter-operator solution where heuristically a group of best plans is chosen.
Statistics about cardinalities and data distribution are considered to identify pos-
sibly good plans. Avalanche follows a competition strategy where top-k plans
are executed in parallel, the output of a query corresponds to the answers pro-
duced by the most promising plan(s) in a given period of time. These approaches
may efficiently identify endpoints to execute a query; however, when queries are
comprised of large number of triple patterns, sub-queries may be non-selective.
Thus, performance can be affected even in presence of perfect networks with no
or negligible connection latency.

4 Our Approach

4.1 Selecting SPARQL Endpoints

Our approach heuristically selects among the endpoints that can evaluate a triple
pattern, those ones that likely provide relevant data for the joins in which the
triple pattern participates in the query. Endpoints are modeled as the result of
executing the SPARQL query: SELECT DISTINCT ?p where {?s ?p ?o}. Ta-
ble 1 illustrates predicates of datasets Drugbank, KEGG, Chebi and DBpedia;
each endpoint is able to answer triple patterns with the corresponding predicate.
Based on these endpoint descriptions, triple patterns of query from Example 1
can be answered by the endpoints indicated in Table 2. As can be observed,

Table 1. Endpoint Descriptions- Datasets Drugbank, KEGG, Chebi and DBpedia

Endpoint Predicates
Drugbank rdf:type, drugbank:keggCompoundId, drugbank:genericName, drugbank:drugCategory,

drugbank:interactionDrug1, drugbank:interactionDrug2, owl:sameAs
KEGG rdf:type, bio2rdf:url, purl:title, kegg:xSubstrate, kegg:xEnzyme, kegg:equation,

owl:sameAs, bio2rdf:urlImage
Chebi rdf:type, bio2rdf:url, purl:title, bio2rdf:image
DBpedia rdf:type, owl:sameAs

7 http://jena.sourceforge.net/ARQ
8 http://23.23.193.63/seagent/wodqa/wodqa.seam



there is not doubt where triple patterns in lines 7, 8 and 11 can be evaluated.
Nevertheless, the other triple patterns are answered by several endpoints, and
the query decomposer needs to identify which ones provide relevant answers.
Our heuristics are defined as follows:
Heuristic 1 Star-Shaped Group Multiple endpoint selection (SSGM):
given a triple pattern t of the form {s p o} from a query Q. a) If p is not a
general bound predicate, i.e., it is not from the general domains9, e.g., RDF(S)
or OWL, t must be evaluated by the endpoint that can answer more predicates
in the same namespace of p. b) If s or o are URIs, t must be evaluated by the
endpoint that can answer more predicates in the same namespace of s or o. c) If
s is a variable, then t must be evaluated in the endpoint that can answer more
triple patterns in Q which share the same variable as subject. Note that rules b
and c can be applied even if p is a variable.

We can apply rule b of Heuristic 1 to triple pattern in line 6 of query from
Example 1. This is because the object is a URI whose namespace (drugbank)
is shared by predicates in the Drugbank endpoint. Thus, triple pattern in line
6 will be also evaluated by the Drugbank endpoint. Furthermore, we can apply
rule a of Heuristic 1, to decide where to evaluate triple pattern in line 9. In
this case, the predicate is bounded and is not general; however, both KEGG and
Chebi offer the same number of predicates in the namespace of the triple pattern
predicate10; thus, the query decomposer assigns both endpoints as possible data
providers. Finally, data provider of triple pattern in line 10 can be selected by
applying rule c of Heuristic 1. This triple pattern shares the subject variable
with triple pattern in line 11 suggesting that the predicate should be evaluated
by the Drugbank endpoint. Regarding to Example 2, endpoints for evaluating
triple patterns in lines 8-18 and 20-21 can be unambiguously selected. However,
triple patterns in lines 19 and 22 should be evaluated in KEGG and DBpedia,
respectively, as suggested by rule b of Heuristic 1. Additionally, based on rule
c of Heuristic 1, triple pattern in line 23 should be evaluated in Drugbank.
Table 2 illustrates the endpoints selected for the triple patterns of queries from
Examples 1 and 2. Heuristic 1 will be needed if data is partitioned into different
endpoints. Finally, we propose a second heuristic that selects only one endpoint
to evaluate a triple pattern. It may lead to an incomplete answer. However, If
data is replicated or can be completely accessible from all relevant endpoints,
this heuristic will lead to an efficient and complete solution.

Heuristic 2 Star Shaped Group Single endpoint selection (SSGS): given
a triple pattern t of the form {s p o} from a query Q. Let SE be the set of
endpoints where t can be evaluated, i.e., SE is obtained from Heuristic 1. Then,
for each endpoint e in SE, an ASK query is used to check if e can evaluate t
and all the triple patterns assigned to e by Heuristic 2. The decomposer selects
the endpoint that first answers TRUE and assigns this endpoint to t. Thus, it is
relevant the order in which endpoints are considered during the application of

9 http://labs.mondeca.com/dataset/lov/, July 2012.
10 Both KEGG and Chebi offer 7 predicates in this namespace.



Table 2. Endpoints that can evaluate triples from Queries from Examples 1 and 2;
endpoints selected by Heuristic 1 are highlighted in bold.

Query Example 1
Line Triple Pattern Endpoint

6 $drug rdf:type drugbank:drugs Drugbank, KEGG
Chebi, DBpedia

7 $drug drugbank:keggCompoundId $keggDrug Drugbank
8 $drug drugbank:genericName $drugBankName Drugbank
9 $keggDrug bio2rdf:url $keggUrl KEGG, Chebi

10 $chebiDrug purl:title $drugBankName KEGG, Chebi
11 $chebiDrug bio2rdf:image $chebiImage Chebi

Query Example 2
Line Triple Pattern Endpoint

8 ?drug1 drugbank:drugCategory dbcategory:antibiotics Drugbank
9 ?drug2 drugbank:drugCategory dbcategory:antiviralAgents Drugbank

10 ?drug3 drugbank:drugCategory dbcategory:antihypertensiveAgents Drugbank
11 ?I1 drugbank:interactionDrug2 ?drug1 Drugbank
12 ?I1 drugbank:interactionDrug1 ?drug Drugbank
13 ?I2 drugbank:interactionDrug2 ?drug2 Drugbank
14 ?I2 drugbank:interactionDrug1 ?drug Drugbank
15 ?I3 drugbank:interactionDrug2 ?drug3 Drugbank
16 ?I3 drugbank:interactionDrug1 ?drug Drugbank
17 ?drug drugbank:keggCompoundId ?cpd Drugbank
18 ?enzyme kegg:xSubstrate ?cpd KEGG
19 ?enzyme rdf:type kegg:Enzyme Drugbank, KEGG,

Chebi, DBpedia
20 ?reaction kegg:xEnzyme ?enzyme KEGG
21 ?reaction kegg:equation ?equation KEGG
22 ?drug5 rdf:type dbowl:Drug Drugbank, KEGG,

Chebi, DBpedia
23 ?drug owl:sameAs ?drug5 Drugbank, KEGG,

DBpedia

Heuristic 2 as well as the order of the triple patterns in the query. For instance,
triple pattern $keggDrug bio2rdf:url $keggUrl, from Example 1 could produce an
empty answer whenever the Chebi endpoint is considered first. Nevertheless, the
whole answer will be retrieved if KEGG is selected.

4.2 Decomposing SPARQL query

Once endpoints are selected for each triple pattern, the query is decomposed
into sub-queries. Each subquery corresponds to a star-shaped group that can be
an exact star, or a star with satellites. An exact star is a set of triples that share
exactly one variable. A satellite is a triple pattern that shares a variable with
one of the triple patterns in an exact star.

Definition 1 (Exact Star on ?X). Let S be a BGP in a SPARQL 1.0 query
Q, i.e., S is a set of triple patterns delimited by {}. An exact star of triple
patterns in S on a variable ?X, ES(S, ?X), is as follows: a) ES(S,?X) is a triple
pattern in S of the form {s p ?X } or {?X p o} such that, s 6= ?X, p 6= ?X and o
6= ?X. b) ES(S,?X) is the union of two exact starts, ES1(S,?X) and ES2(S,?X),
that they only share ?X, i.e., var(ES1(S,?X))∩var(ES2(S,?X)) ={?X}.

Definition 2 (Star on ?X with Satellites). Let S be a BGP in a SPARQL
1.0 query Q. A star of triple patterns in S on ?X with satellites, ESS(S,?X),



is as follows: a) ESS(S,?X) is the union of an exact star ES(S,?X) and a
triple pattern t={s’ p’ ?Y} or t={?Y p’ o’} in S where, ?X 6= ?Y and ?Y
∈ var(ES(S,?X))∩var(t). b) ESS(S,?X) is the union of two stars with satellites,
i.e., ESS1(S,?X) ∪ ESS2(S,?X) .

Table 3 presents stars with satellites for triple patterns from Examples 1 and
2. Note that triple pattern in line 9 from the Example 1 must be evaluated in
both endpoints (KEGG and Chebi) individually. In the corresponding SPARQL
1.1 query, stars will be represented as service blocks.

Table 3. Exact Star with Satellites for Queries from Examples 1 and 2

Query Example 1
Line Exact Star with Satellite Endpoint Star Variable

6 $drug rdf:type drugbank:drugs Drugbank $drug
7 $drug drugbank:keggCompoundId $keggDrug
8 $drug drugbank:genericName $drugBankName

10 $chebiDrug purl:title $drugBankName Chebi $chebiDrug
11 $chebiDrug bio2rdf:image $chebiImage
9 $keggDrug bio2rdf:url $keggUrl KEGG, Chebi $keggDrug

Query Example 2
Line Exact Star with Satellite Endpoint Star Variable

8 ?drug1 drugbank:drugCategory dbcategory:antibiotics Drugbank ?I1
11 ?I1 drugbank:interactionDrug2 ?drug1
12 ?I1 drugbank:interactionDrug1 ?drug
9 ?drug2 drugbank:drugCategory dbcategory:antiviralAgents Drugbank ?I2

13 ?I2 drugbank:interactionDrug2 ?drug2
14 ?I2 drugbank:interactionDrug1 ?drug
10 ?drug3 drugbank:drugCategory dbcategory:antihypertensiveAgents Drugbank ?I3
15 ?I3 drugbank:interactionDrug2 ?drug3
16 ?I3 drugbank:interactionDrug1 ?drug
17 ?drug drugbank:keggCompoundId ?cpd Drugbank ?drug
23 ?drug owl:sameAs ?drug5
18 ?enzyme kegg:xSubstrate ?cpd KEGG ?enzyme
19 ?enzyme rdf:type kegg:Enzyme
20 ?reaction kegg:xEnzyme ?enzyme
21 ?reaction kegg:equation ?equation
22 ?drug5 rdf:type dbowl:Drug DBPedia ?drug5

4.3 Planning Queries Against SPARQL Endpoints

The optimizer generates a bushy tree plan that reduces intermediate results. The
input is a SPARQL 1.1 query where service blocks correspond to sub-queries
in the endpoints, and heuristic-based optimization techniques are followed to
generate the tree plan. Leaves of the tree plan correspond to service blocks
while internal nodes represent physical operators that will be used to merge
intermediate results. Endpoints are contacted to retrieve the number of triples
produced by each sub-query, and the optimizer uses this information to decide
when to connect two sub-queries with a physical operator. The optimizer relies
on a greedy-based algorithm to traverse the space of bushy plans, and outputs
a bushy tree plan where the number of Cartesian products and the height of
the tree are minimized. To reduce the tree height, sub-queries with the smallest



number of service blocks are connected with JOINs; then, those that are related
with OPTIONAL or UNION operators are considered. Cartesian products are
avoided and they are only placed at the end, if no other operator can be used.

5 Experimental Study

Datasets and Query Benchmarks: we ran the 25 FedBench queries against
the collections [10]: cross-domain, linked data and life science. Further, since
FedBench queries are composed of a relatively small number of triple patterns
limiting the generation of different plans, we studied ten additional queries11

(henceforth called Complex Queries, C1-C10). Extended setup evaluates the ef-
fects of selectivity of BGPs and number of SPARQL operators; they are com-
prised of between 6 and 48 triple patterns and can be decomposed into up to
8 sub-queries. FedBench collections12: DBpedia, NY Times, Geonames, KEGG,
ChEBI, Drugbank, Jamendo, LinkedMDB, and SW Dog Food, were stored in 9
Virtuoso13 endpoints; timeout was set up to 240 secs. or 71,000 tuples.
Evaluation Metrics: i) Time First Tuple (TFT) or elapsed time between query
submission and the first answer14; ii) Time Whole Answer (TWA) or elapsed
time between query submission and the last tuple of the answer; iii) Endpoints’
Answer Size (EAS) or total number of tuples retrieved from the endpoints se-
lected to evaluate a query; iv) Percentage of the Answer (PA) or percentage of
the completeness of the query answer; and v) Number of Endpoints’ Calls (NEC)
or total number of requests submitted to the available endpoints during the exe-
cution of a plan. NEC sums up endpoints calls for: 1) deciding if a triple can be
answered by an endpoint, 2) computing the size of a sub-query, and 3) evaluating
a sub-query. TFT and TWA correspond to the absolute wall-clock system time
as reported by the Python time.time() function. Ground truths were computed
by running each query against an endpoint that maintains all datasets in one
unified Virtuoso endpoint. Experiments were executed on a Linux Mint machine
with an Intel Pentium Core 2 Duo E7500 2.93GHz 8GB RAM 1333MHz DDR3.
Implementations: the decomposer was built on top of ANAPSID[1] using
Python 2.6.5. It was equipped with capabilities to generate exclusive groups
(EG), and stars with satellites (SSGM) and (SSGS). Python proxies were used
to contact endpoints, compute statistics, and send tuples in messages of different
sizes. Message size and execution timeout were 16KB and 1,800 secs, respectively.

5.1 Effectiveness and Efficiency of the Query Decomposition
Techniques

This experiment aims to study the effects of EG, SSGS and SSGM on query per-
formance; in all plans, data is merged in a bushy tree fashion. Table 4 reports

11 http://www.ldc.usb.ve/~mvidal/FedBench/ComplexQueries
12 http://iwb.fluidops.com:7879/resource/Datasets, November 2011.
13 http://virtuoso.openlinksw.com/, November 2011.
14 TFT reflects time required to produce the first answer; it is impacted by number of

messages transferred from the endpoints and the selectivity of the sub-queries.



on NEC, TWA, EAS, and PA. We can observe that plans comprised of sub-
queries produced by SSGS or SSGM are able to completely answer the queries
in less time than the ones comprised of EGs. This is because stars with satel-
lites produced by either SSGS or SSGM, commonly correspond to very selective
sub-queries that can be efficiently executed by the endpoints. Contrary, the EG
technique just focuses on identifying groups of triple patterns that can be ex-
clusively executed by an endpoint, independently if the sub-query is selective
or not. Thus, if the sub-queries are non-selective, these plans may contact end-
points multiple times and receive endpoints’ responses that will lead to large
intermediate results. All these factors negatively impact on the performance of
the query engine as reported in Table 4. For example, this happens in LS6, and
performance values of EG are up to four orders of magnitude worse than perfor-
mance values of the SSGS plan. Regarding to completeness of the answer, plans
produced by SSGM and EG generate more answers, i.e., almost 100% of com-
pleteness is achieved in the majority of the queries. Particularly, EG was able
to answer query LD6 while the other techniques fail. This may happen when
general predicates, such as rdf:type, owl:sameAs, are used in a query, and the
proposed heuristics fail selecting the relevant endpoint(s).

Table 4. Performance and Quality of Different Query Decomposition: Number of
Endpoints’ Calls (NEC); Time Whole Answer (TWA) in secs; Endpoints’ Answer
Size (EAS); Percentage of the Answer (PA). Exclusive Groups (EG), Star Shaped
Group Single endpoint selection (SSGS), Star Shaped Group Multiple endpoint selec-
tion (SSGM). (*) EG finishes with an error the execution of CD7. Relevant results are
highlighted in bold.

Query NEC TWA (secs) EAS PA
EG SSGS SSGM EG SSGS SSGM EG SSGS SSGM EG SSGS SSGM

CD1 32 2 21 1.45 0.07 0.20 62 48 61 100 78.69 100
CD2 17 3 6 1.05 0.16 0.07 3 0 2 100 0 100
CD3 139 15 18 58.34 0.50 0.52 92,000 15 15 100 100 100
CD4 212 16 45 736.52 0.63 42.69 2,913,606 11 233,587 100 0 100
CD5 10 3 4 46.7161 2.96 2.98 270,498 13,465 13,465 100 100 100
CD6 216 6 17 375.49 0.81 11.02 1,971,154 4,388 81,297 100 0 100
CD7 ≥250 3 7 * 4.77 4.86 ≥171,216 21,491 21,491 0 0 0
LD1 8 2 2 77.94 0.08 0.08 254,364 309 309 100 100 100
LD2 1 1 1 0.19 0.04 0.04 185 185 185 100 100 100
LD3 15 2 3 107.53 0.06 0.05 511,804 109 109 100 100 100
LD4 1 3 3 0.22 0.30 0.27 50 1,119 1,119 100 100 100
LD5 21 1 3 24.42 0.03 0.04 128,986 28 28 78.57 100 100
LD6 36 13 15 62.55 11.87 16.63 281,007 54,566 74,397 100 0 0
LD7 6 3 5 16.96 0.23 0.25 73,994 1,216 1,216 4.61 100 100
LD8 29 9 13 78.92 3.10 22.11 392,831 12,222 135,457 100 100 100
LD9 12 1 6 1.43 0.02 0.10 0 0 0 100 100 100
LD10 12 6 10 45.96 0.16 0.19 264,662 6 6 100 100 100
LD11 2 2 3 3.17 0.13 0.14 376 376 376 100 100 100
LS1 1 1 1 0.38 0.21 0.167 1,159 1,159 1,159 100 100 100
LS2 104 22 89 4.35 0.25 3.06 337 328 337 100 97.26 100
LS3 24 5 15 55.80 19.29 18.38 271,916 75,346 85,432 100 100 100
LS4 20 4 6 10.06 8.83 8.42 38,776 34,532 34,532 100 100 100
LS5 2,896 10 4 221.40 11.97 15.82 1,437,488 69,436 1,331 0 0 100
LS6 24,393 5 22 697.87 8.04 19.35 543,105 32,562 108,304 100 100 100
LS7 8 4 3 21.05 16.47 24.96 120,890 68,191 2,240 100 100 100



5.2 Effectiveness and Efficiency of Stars with Satellites in Complex
Queries

Performance of bushy plans comprised of SSGS and SSGM sub-queries is com-
pared to FedX [11] performance. FedX queries were run on cold cache, i.e., FedX
did not record any information about the endpoints, and also in warm cache,
i.e., each query was run five times and the best time was reported. We evaluated
25 queries of FedBench and ten additional complex queries that we have defined
for the FedBench collections. FedX, SSGS and SSGM perform similarly in the
25 query of the FedBench benchmark in both cold and warm caches. Thus, we
just focus on the comparison of these engines in complex queries. Table 5 reports
on Time for First Tuple (TFT), Time Whole Answer (TWA), and Percentage
of the Answer (PA). First, we can observe that FedX could only complete the
execution of C4 and C5, and timed out during the execution of the rest of the
complex queries after 1,800 secs (NA) or ended due to an evaluation error. This
is because exclusive groups for these complex queries were costly to be evaluated
by the endpoints. These sub-queries were comprised of a large number of triple
patterns; in cases where they could be evaluated by the endpoints, they produced
large results which led to larger intermediate results during the left-linear fashion
execution of the plan. Contrary, SSGS and SSGM produced several very simple
stars with satellites, which generated a small number of results that remain small
during bushy fashion executions. Thus, less calls of endpoints were required and
a small number of messages were transferred sooner; this has a positive impact
on the values of TFT and TWA of SSGM, and on TFT of SSGS. Finally, C9
and C10 could not be executed by any of the studied engines before 1,800 secs.
C9 is composed of 2 BGPs connected by an OPTIONAL; the first BGP has 40
triple patterns while the second has 8 triple patterns. C10 contains 3 BGPs and
2 nested OPTIONAL operators. SSGM and SSGS strategies produced complex
bushy tree plans of up to 8 sub-queries, 4 of these sub-queries contain more than
9 triple patterns; these plans were so complex to evaluate that the execution en-
gine was unable to produce the first tuple before 1,800 secs. The observed results
suggest that SSGM, SSGS and FedX decomposition and execution techniques
are competitive for FedBench-like queries. The first two are more appropriate
if the queries are complex and comprised of a large number of triple patterns,
while the latter is very efficient for queries with a small number of triple patterns
that can be exclusively executed by single endpoints. Nevertheless, further study
is required to extend current approaches for scaling up to very complex queries.

6 Conclusions and Future Work

We have devised a two-fold solution for the problem of finding plans against a
federation of endpoints. SPARQL 1.0 queries are transformed into SPARQL 1.1
composed of simple sub-queries that are executed in bushy tree fashion. Results
transferred from selected endpoints as well as produced during the execution of
a plan, may be reduced. Experimental results suggest that the proposed tech-
niques may overcome existing engines. Nevertheless, these techniques may also



Table 5. Performance and Quality of SSGS and SSGM Bushy Tree with FedX- Addi-
tional Complex Queries; Time First Tuple (TFT); Time Whole Answer (TWA); Per-
centage of the Answer (PA). NA represents No Answer. (*) FedX finishes with an error
the execution of C3, C6, C9 y C10. Relevant results are highlighted in bold.

Query TFT(secs) TWA (secs) PA
SSGM SSGS FedX SSGM SSGS FedX SSGM SSGS FedX

C1 14.11 4.30 NA 20.94 9.11 1,808.25 100 100 0
C2 18.87 1.99 NA 19.05 2.11 1,800.33 100 100 0
C3 47.50 6.43 NA 1,614.13 11.43 * 100 100 0
C4 12.58 10.36 NA 19.33 17.08 921.59 100 100 0
C5 3.78 3.76 22.92 11.21 11.09 22.92 100 100 0.38
C6 27.41 30.30 NA 27.41 30.30 * 100 100 0
C7 13.31 13.26 NA 13.37 13.32 1,800.38 100 100 0
C8 10.22 9.21 NA 10.23 9.22 1,815.60 100 100 0
C9 NA NA NA 1,800.19 1,800.09 * 0 0 0
C10 NA NA NA 1,800.11 1,800.47 * 0 0 0

fail executing very complex queries. In the future we plan to enhance our phys-
ical operators with new SPARQL 1.1. features, e.g., binding clauses, and merge
in a more efficient fashion relevant data retrieved from the endpoints.
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