
Extending the WebID Protocol with Access
Delegation

Sebastian Tramp1, Henry Story2, Andrei Sambra3, Philipp Frischmuth1,
Michael Martin1, and Sören Auer1

1 Universität Leipzig, Institut für Informatik, AKSW,
Postfach 100920, D-04009 Leipzig, Germany,
{lastname}@informatik.uni-leipzig.de

http://aksw.org/FirstnameLastname (WebID)
2 Apache Foundation

henry.story@bblfish.net
http://bblfish.net/people/henry/card#me (WebID)

3 CNRS Samovar UMR 5157, Institut Mines-Telecom / Telecom SudParis
andrei.sambra@it-sudparis.eu

https://my-profile.eu/people/deiu/card#me (WebID)

Abstract. The WebID protocol enables the global identification and
authentication of agents in a distributed manner by combining asym-
metric cryptography and Linked Data. In order to decide whether access
should be granted or denied to a particular WebID, the authenticating
web server may need to retrieve other profiles and linked resources to
work out if the requesting agent is member of an authorized group (e.g.
friends of the resource owner’s friends). If it were required for such re-
sources to be publicly available, this would be a major privacy limitation
on a linked Social Network. In this paper we explore different ways in
which an agent can act on behalf of a user and we propose an extension to
the WebID protocol which allows for delegation of access authorization.
This extends the range of application scenarios where WebID authenti-
cation can be efficiently deployed while increasing privacy.

1 Introduction

The World Wide Web is a peer to peer communication system designed from
the outset to work in a global space, between agents distributed around the
world and acting independently, with no center of control, in a space where
new agents can at any point join and there is no complete overview of the
whole system. These agents need know nothing of each other up to the point of
their interaction. These architectural requirements are the reason for the web’s
declarative functional architecture, with its emphasis on naming and a logic of
unalterability of the meaning of names (URIs).

Agents on the web communicate with each other through a limited number
of actions: by making requests for resources (GET), by creating resources (POST

http://aksw.org/FirstnameLastname
http://bblfish.net/people/henry/card#me
https://my-profile.eu/people/deiu/card#me

or PUT), or even by deleting resources. Creation or deletion of resources usually
require authentication of the agent making the request, and so in many cases do
requests for information.

AWebID is a URI that refers to an agent - person, robot, group or other thing
that can act intentionally. The WebID should be a URI which when dereferenced
returns a representation whose description uniquely identifies the agent as the
controller of a public key [1,12].

The WebID protocol enables the global identification of agents using asym-
metric cryptography in a way that fits cleanly with web architecture: namely
in such a way that agents can verify each others identity without having had
any previous interactions and in such a way as to allow trust to build up in a
decentralized manner through a linked web of trust.

It is worth noting that the host serving the WebID profiles controls the
identity of every agent whose URI is within that server’s namespaces. This service
is known as the origin server [3].

The WebID protocol is designed for client authentication4. But the origin
server does not just respond to requests, the server is also able to make requests.
Indeed WebID authentication requires the server to make WebID profile requests
to other servers in order to verify the identity of agents5.

Things get more interesting in the authorization space. Consider a very nat-
ural application of WebID: allowing friends of one’s friends access to some re-
sources. This authorization rule will require the web server to fetch each of the
resource owner’s friends profiles, in order to build up the list of authorized users.
But there is a privacy issue involved here: not everyone wants to make all of
their social network publicly visible, and some may not want to make any of it
publicly visible. Those people may then protect their FOAF profile with access
control rules such as one only allowing friends of their friends access to it. How
can a server that needs access to these FOAF profiles in order to apply its own
access control rules get access to the information? Would the server itself need
to be listed as a friend of a friend by each of the users friends? Should the server
take on the identity of the user it is fetching resources for? How would it be able
to do so? What other solutions are there? These are the questions we will try to
answer in this paper.

The rest of the paper is organized in the following way: Section 2 describes
preliminary requirements which we had in mind for our solution and clarifies
some important terms, Section 3 goes into detail with the WebID specification
and adds support for authorization delegation, in Section 4 we describe our
4 Server authentication using IETF DANE follows much the same logic, except that
the lookup for the identity is not done using the HTTP protocol but DNSSEC [7].

5 Note that fetching a WebID profile for WebID authentication should be done anony-
mously, for fear of authentication deadlocks. For example one can imagine an agent
S with profile Ps requesting a resource on server R which requires authentication. S
would send R its certificate, thereby requiring R to dereference S’s profile Ps in order
to verify the WebID. If Ps itself requires authentication of R and if R sends a certifi-
cate containing a WebID with its profile Pr, and if Pr itself requires authentication
then it looks like we have a deadlock.

reference scenarios based on two web applications which is followed by Section 5
where we compare our proposal with other protocols, namely CORS, OAuth
and Usage Restrictions. Finally, we conclude our work in Section 6 and give
directions for future work.

2 Preliminary Requirements

In order to make discussion of the problems easier, we distinguish the following
roles in the access delegation process:

1. The secretary acts in the name of another agent, the principal.
2. The principal is the agent who has a secretary that acts on its behalf.

The solution we propose will be based on the following general principles:

Distinguish secretary from principal - Identity should as far as possible be trans-
parent. A secretary should have it’s own WebID. The motivation for this is: (1)
It allows resource guards to permit or deny requests based on this information.
(2) Secretary that have many principals do not need to switch their certificate
between requests. (3) It makes it possible to describe the relationship between
a principal and its secretary using Linked Data.

Easy to use - The one and only place to describe which secretary are allowed
to operate for a principal should be the principal’s WebID profile. To grant
delegated access to a secretary agent, no other actions than adding 1 triple to
the WebID profile should be needed. Retracting this grant should involve simply
removing it from the WebID profile.

Minimal protocol footprint - By using HTTP and working declaratively by plac-
ing statements in documents, we make adoption of the delegation easier and
avoid complex protocol developments. We believe that this is a crucial feature
of Linked Data in general.

Efficiency - Finally, the proposed solution should scale with growing number of
users and connections. In our context this means that an Social Web application
should be able to act in the name of thousands of users.

3 Extending WebID for Access Delegation

This section is organized in subsections which build up step by step to the
proposed protocol, adding and validating the need at each step for the next one,
the final proposed protocol satisfying the previous principles.

3.1 Solution 1: Acting as the user

The simplest solution for any user agent A wishing to act as the user U , is for
it to create a public/private key pair, and with the public key thus generated
create a certificate Cu with U ’s WebID in the Subject Alternative Name position
and add the public key to the user U ’s profile Pu (see Listing 1). Having done
this, the agent A can then connect using the certificate Cu and its associated
private key to any service it wishes to, when it wants to work for/as the user U .
This has the advantage of requiring no change to the WebID protocol. It does
give the agent A all powers of the user U and so this type of privilege should be
limited to agents which are either extensions of U such as smartphones are, or
ones U can or must fully trust anyway.

1 <http ://montague . net/romeo#m> a foaf:Person;
2 foaf:name "Romeo";
3 cert:key [a cert:RSAPublicKey;
4 rdfs:label "August 2 2012 at 10am CET , in Firefox laptop browser";
5 cert:modulus "cb24 ... ed85"^^xsd:hexBinary; cert:exponent 65537;
6],
7 [a cert:RSAPublicKey;
8 rdfs:label "August 2, 2012 at 14:30 CET by Montague Family FB Laurence";
9 cert:modulus "2e34 ... aa24"^^xsd:hexBinary; cert:exponent 65537;

10],
11 [a cert:RSAPublicKey;
12 rdfs:label "August 10, 2012 at 14:30 Rome time with Nokia Cell Phone";
13 cert:modulus "77e5... c342"^^xsd:hexBinary; cert:exponent 65537;
14] .

Listing 1. Profile allowing three different agents to act as Romeo

Any server requiring authentication of an agent using WebID must implicitly
trust the origin server [3] hosting the WebID profile, since the profile hosting
server can change any information in the profile.

When the user owns the origin server and there is a one-to-one relation
between the two, as it is the case in a personal FreedomBox6 (FBx henceforth),
then the origin server is just an extension of the user, and in that case trusting
the server is the same as trusting the user.

It should be noted that each device can still be distinguished by servers in
case of a problem by logging the exact public key that was used to connect to a
service. It should be possible then to track down which device’s private key had
been compromised in case of unusual behavior.

Things become more interesting when an origin server agent A is serving a
number of different profiles P1 . . .Pn each identifying respectively users U1 . . .Un

and needs to act on behalf of each of these users. This would be the situation
for company servers, government agencies, educational institutions, charities,
football clubs, etc. This brings up two issues that need to be taken into account,
an issue of data perspective and an issue of efficiency.
6 http://www.freedomboxfoundation.org/

http://www.freedomboxfoundation.org/

Keeping views distinct First whenever A connects as U1 to a remote resource R
it has to place the data received in a separate graph from the one it stores public
non authenticated data in, and to the one it stores a representation to the same
resource R seen when connected as the different user U2. This is because the
resource may return different representations depending on who is connecting
to it - one representation for close friends of the owner of R perhaps, and one
for more distant ones. This can be illustrated using N3 graphs, by specifying
a relation between a view on a resource (using a yet to be settled on vocabu-
lary), and a graph which is the log:semantics of that view (cf. Listing 2). It is
very important that the agent receiving information from different users does
not merge the information that was destined to different users, or else informa-
tion leakage will severely reduce the trust other agents have in that server A.
This requires carefully keeping identified information that was aimed at different
users separate, perhaps by creating different graph stores: one for public - non
authenticated - information, and one graph store for each user the server needs
to authenticate as.

1 # view that the F.B Laurence has as Romeo of Juliet ’s friends
2 [a subj:View;
3 subj:of <https :// capulet . org/ j u l i e t / f r i ends> ;
4 subj:by <https ://montague . net/romeo#me> ;
5 subj:using [:modulus "2e34 ... aa24"^^xsd:hexBinary; :exponent 65537]
6] log:semantics {
7 <https :// capulet . org/ j u l i e t#ms> foaf:knows <https ://montague . net/romeo#m>,
8 <https :// capulet . org/fb#john>, <http ://montague . net/fb#laurence> .
9 } .

10
11 # view that the F.B Laurence has as Lord Capulet of Juliet ’s friends
12 # notice that the relationship of Juliet knowing Romoe is missing here
13 [a subj:View;
14 subj:of <https :// capulet . org/ j u l i e t / f r i ends> ;
15 subj:by <https ://montague . net/ father#lord> ;
16 subj:using [:modulus "ec224 ...532"^^xsd:hexBinary; :exponent 65537]
17] log:semantics {
18 <https :// capulet . org/ j u l i e t#ms> foaf:knows
19 <https :// capulet . org/fb#john>, <http ://montague . net/fb#laurence> .
20 } .

Listing 2. Views on Juliet’s FOAF profile by Freedom Box Laurence, when acting as
Romeo and when acting as Lord Montague

Efficiency Secondly, whenever the Origin Server needs to act as U1 to a remote
server R it will need to open a new TLS connection to that server using the cer-
tificate Cu1 for that user. This could require N parallel connections to the same
server S. Opening TLS connections is somewhat expensive, as it requires expen-
sive asymmetric key cryptographic computations. When N becomes large, this
inefficiency will be perceived as a serious drawback between two organizations.

Conclusion It is possible for any number of software agents to act AS the user
by creating themselves a public key as described above. This does require a very

strong trust relation to exist between the agent acting as the user and the user
herself, as the two will be mostly indistinguishable in the linked web of trust.
This method also becomes inefficient the greater the number of different users
an agent is working for. In addition to that, identification of different secretaries
is done using cryptographic keys rather than URIs.

3.2 Solution 2: Origin Server acting on Behalf of a User

In order to reduce the number of open connections to any server down to a
minimum, it would be useful if the origin server could identify itself directly
when making a request and specify on behalf of which of its users it was acting
on per request so as to be able to make multiple requests on the same TLS
connection. One way would be for the origin server acting as client to simply use
the same public key as the origin server acting as server - that is it could use
the same public key as the one used by the TLS server. It could even use the
same certificate. This would make clear to any server it was connecting to, that
it could rely on this server as much as it could on the identity of any resource,
and in particular any WebID profiles served by that server.

Still, such an agent connecting to a remote service on behalf of one of its
users would then need to identify which user it was acting on behalf of, or the
remote service receiving a request would not know which access control rule to
apply to the requesting origin server. For example in our previous example, in
the Romeo and Juliet story, we showed how the Capulet family FBx only shows
Juliet as knowing Romeo, when Romeo makes the request on the resource, but
not when the request is made by Romeo’s father, lord Montague. That was an
easy access control rule for the Capulet FBx to make when the request was using
the WebID protocol, since there it would know via the WebID authentication
process exactly which identity the user was making the request as. But if it is
the Origin Server connecting to the Capulet FBx, identified as their Montague
Origin Server, then what representation should the Capulet FBx return? Should
it return the reduced version available to Lord Montague? Or should it return
the more complete version available to Romeo and his close friends?

The proposal here is for the Origin Server to add to each HTTP request
(made over TLS) an X-On-Behalf-Of header identifying the user on behalf of
which the request is being made with that user’s WebID, as shown below:

GET /juliet/knows HTTP/1.1
Host: capulet.org
X-On-Behalf-Of: https://montague.net/romeo#me
User-Agent: FreedomBox_FamilyEdition/0.1
Accept: application/rdf+xml,text/turtle,application/xhtml+xml

The Capulet FBx Guard having verified that this request does indeed come
from the origin server of Romeo’s profile <https://montague.net/romeo> would
then be able to accept that since the requesting server could in any case act as
Romeo whenever it chose to do so, this protocol making exchange between the

Montague and Capulet houses more efficient without making it less secure, this
be justification enough for it (the Capulet FBx) to serve the representation that
Romeo would have received had he connected to the server directly. In Section 5
we will argue that this is very similar to the way CORS deals with access control,
namely by adding a header to a request in order to clarify what agent is making
the request.

This X-On-Behalf-Of header makes it possible for the secretary to open only
one TLS connection to a remote server and be able to specify for each request
on behalf of whom it is making it. The Montague FBx could make a request to
the Capulet Freedom Box X-On-Behalf-Of Romeo, a few milliseconds later X-On-
Behalf-Of Lord Montague, and so on. Again as explained in the previous section
it is the responsibility of the Montague FBx to keep the returned information
separate, and act with discretion whenever it is acting on behalf of one or the
other of the users. As such it’s role is not unlike the role of Friar Laurence in
the play - dedication to people’s private matters requires tact and discretion.

Limitations Using the same cryptographic key between the server acting as
client and as server risks making the keys available to a wider audience, and
so increases the risk of key compromise. It may be useful if it were possible to
decouple the identity of the agent acting on behalf of another user - the secretary
- from the Origin Server.

3.3 Solution 3: Secretary acting on Behalf of a User

The origin server acting as a client on behalf of a user can then be thought of as
a keeper of secrets for that user. It should know how to distinguish what remote
servers tell it when it is acting on behalf of one user, from what a remote server
tells it when it is acting on behalf of another user. The role of the keeper of
secrets for a person is known as the secretary role - a prestigious role taken on
for example by figures such as the Secretary of State.

If we now identify the secretary that can act on behalf of a user using a
WebID, we can generalize the protocol somewhat. That is, when an agent - such
as the Montague FBx Laurence with WebID <http://montague.net/fb#laurence
> - authenticates to a remote server it can use its own WebID. This would allow
the secretary to have her own public key, and so to reduce the risk of her private
key being compromised affecting the server public key.

But how would the remote server know that it can trust that secretary to
be acting on behalf of a particular user? It can no longer just compare the TLS
keys of the requesting agent to see if it comes from the same Origin Server. We
need to make this relation explicit by use of a special RDF relation provisionally
called :secretary7

The remote server can then verify that the identified agent is the secretary
of the agent he wishes to act on behalf of (as specified in the X-On-Behalf-Of
header, by dereferencing that user’s profile and verifying that the user specifies
7 http://bblfish.net/work/2012/09/trust#secretary

http://bblfish.net/work/2012/09/trust#secretary

the :secretary relation there, as it would if Romeo had the FOAF profiles as
shown in Listing 3.

1 <https ://montague . net/romeo#m> a foaf:Person;
2 foaf:name "Romeo";
3 :key [:modulus "cb24 ... ed85"^^xsd:hexBinary; :exponent 65537];
4 :secretary <https ://montague . net/fb#laurence>.

Listing 3. Minimal WebID profile including a public key and a secretary relation

Cache

Alice's Server

Client cert request

TLS-Light

Service
Guard

WebID

Verifier

Protected

Resource

Bob's

Secretary

Secretary Server

Secretary

Profile

Bob's

Profile

Bob's Server

Secretary

Verif ication

Certificate & private

key verification
HTTPS GET

HTTPS GET

Authorization

TLS setup

5a

Bob

Alice

Alois

Social Graph

5b

7

4

6

1

2

3

exponent

modulus

modulus

exponent

?

?

?

?

Basic WebID Check

Secretary Check

Fig. 1. Extended WebID authentication sequence

The following enumeration describes each authentication step of Figure 1 in
detail but concentrates on the context of access delegation: (1) The secretary
opens a TLS connection with the server of the protected resource. (2) Once TLS
is set up, the HTTP request is sent to the server (e.g. a HTTP GET), with an
additional X-On-Behalf-Of header, which thereby defines the requesting agent as
a secretary and the referred to agent as the principal. (3) The guard intercepts
this request, and in turn requests client authentication using TLS session renego-
tiation. The secretary authenticates as itself by sending a certificate containing
a WebID referring to it. The TLS-Light service verifies that the secretary really
is in possession of the private key corresponding to the public key sent in the
certificate. This is defined in the TLS protocol [5]. (4) The guard asks the ver-
ification agent to verify the secretary WebID which is named in the certificate
(5a). This process is exactly as described in the WebID protocol [12]. The guard

also asks the verifier agent to check the secretary claim implied by the X-On-
Behalf-Of header. (5b) The principal agent’s relation to the secretary is verified
by dereferencing the principal ’s WebID profile, and verifying it responds with a
true to the SPARQL ASK query ASK { ?principal :secretary ?secretary . }
where the ?principal and ?secretary variables have been bound to the correct
URIs. (6) The authentication and verification process having succeeded, the au-
thorization process checking if the principal would get access to the requested
resource. (7) The resource representation can then be returned or not, depending
on the access control rules.

4 Application Scenarios

We describe two different application scenarios where WebID delegation is essen-
tial: MyProfile is a WebID identity service application and OntoWiki a semantic
data wiki.

MyProfile8 is a web service demonstrating how easy it is to both create a
WebID profile, and to build up distributed social web applications upon it. Its
main purpose is to provide a unified user account through a simple user profile.
Currently these are tied to the MyProfile project web site, but it has been
designed from the ground up to work with distributed Linked Data, making it
easy to dissociate the software stack from the MyProfile project domain name,
allowing it to be deployed on a machine under the user’s control such as a FBx.

It is very important for MyProfile to be able to use WebID access delegation,
because a single MyProfile server instance can host multiple users, and must fetch
resources for each user asynchronously in order to be able to provide a seamless
and rapid user experience. To improve user experience and overall performance,
a caching mechanism is used to refresh local copies or "views" of external data.
With multiple users coexisting on the same server, the caching mechanism needs
to be able to distinguish views of remote resources as seen by different users, as
they are served by remote servers depending on their access control and resource
filtering policies. As the number of users on MyProfile grows this has to be done
efficiently, and so re-using TLS connections where possible is important.

OntoWiki [2] is a web application, which allows publication, exploration as
well as manipulation of arbitrary RDF knowledge bases in distributed scenarios.
We refer to it as a data wiki, since it adopts the wiki philosophy (ease of editing,
tracking of changes, integrated discussions) on the one hand, while focusing on
structured information on the other hand. Furthermore OntoWiki is an adapt-
able application framework, which supports the creation of Linked Data based
applications on the web [6]. In addition to the usual features of wikis, OntoWiki
provides a sophisticated extension system, such that it can be adapted for a va-
riety of use-cases. Although the wikis usually enable anyone to edit everything,
numerous real-world applications require access-control mechanisms. OntoWiki
has built-in support for authorization on graph and action level. Furthermore

8 http://myprofile-project.org/

http://myprofile-project.org/

several authentication protocols can be employed, including amongst others the
WebID protocol.

A first use-case for WebID access delegation within OntoWiki arises from
the need to import external data. Since WebID profiles can contain personal
information, access to such data should be restricted with the WebID proto-
col. Although a user may (or may not in the case of a periodically executed
automatic synchronization process) initiate the import procedure manually via
the OntoWiki user interface, the actual fetching is done in the background. An
OntoWiki instance does not know of any private keys of users of the system.
Thus the system is not able to use that information when requesting data. With
WebID access delegation though, profiles can be fetched on behalf of the user
instead.

Another use-case where access delegation can be employed is within the Se-
mantic Pingback protocol [13]. With Semantic Pingback owners of resources can
be notified when for example a link to such a resource is created elsewhere on the
web. In order to protect the protocol against spam attacks, a Pingback server will
fetch the desired resource and check, whether the stated link is indeed contained
in the data. The source resource that links to the target resource and thus is
fetched by a Pingback server might be access restricted, for example in a scenario
where a friending process is initiated [11]. For privacy reasons the owner of the
WebID profiles will very likely hide the triples in question (e.g. foaf:knows) on
anonymous access attempts. With WebID access delegation again, the resources
can be fetched by the Pingback server on behalf of the resource owner.

This will require some further changes to the delegation protocol discussed
up to now. Specifically the :secretary relation currently does not distinguish
what kind of responsibilities the principal wishes to give to the secretary. It
is currently assumed that the secretary has full rights. For OntoWiki knowing
the Social Network is all that is needed to make access control decisions and
full delegation powers may not be needed. The ability to describe more limited
secretary relations could be very helpful here.

5 Related Work

OAuth 2.0 [4] is the latest version of the OAuth protocol, which is being pre-
sented as an access delegation protocol, enabling users to grant access to third-
party services to their personal resources, instead of sharing their passwords
with those third-party services. OAuth includes two main parts: obtaining an
access token by asking the resource owner (i.e. the user) to grant access, and
then using the tokens to access protected resources. Here is a typical example
of using OAuth. Ann has a Twitter account and decides to support her favorite
project by using Flattr9. Since she would rather not create a new account, Flattr
offers her the possibility of using her Twitter account to log into Flattr. Once
authenticated, Twitter informs her that Flattr would like to access her personal

9 A micro payment service: http://flattr.com

http://flattr.com

information. She can now choose if she wants to grant or deny to Flattr access
to her Twitter account information.

The advantage here is that Ann only had to use her Twitter credentials to
log into Flattr. However, the disadvantage is that Flattr requires an existing
trust relationship with Twitter, thus limiting the number of supported services.
Even if OAuth provides authentication as a by-product of having the resource
owner authorize a third-party client to her resource server, its main focus is
on resource authorization rather than on federated identity. In short, OAuth
is used to provide access for external services to local user resources without
disclosing the user’s credentials. OAuth is used to allow an agent to request a
user’s resources while WebID delegation is used to allow an agent to request
resources the user could request herself.

Cross Origin Resource Sharing (CORS) In this paper we proposed to add an
X-On-Behalf-Of header to each HTTP request made by a secretary in order to
be able to identify the principal she is working for in that particular request.
This is quite a major semantic addition to HTTP, but for which there is a
widely adopted precedent, namely CORS10, the Cross Origin Resource Sharing
specification at the W3C.

CORS defines two agents, one acting on behalf of the other, and these are:
(1) The Browser: it takes the role of the secretary as it is acting on behalf of
a JavaScript agent - the principal. It identifies itself as the browser user. (2)
JavaScript code: hosted on the WWW and identified by the Origin Server that
hosted it. This JavaScript agent requests resources from the Browser, but it is
unable to do it directly. CORS identifies the remote principal with an Origin
header, and uses any HTTP authentication method to identify the secretary.

The use cases for CORS are slightly different from the ones for our delegation
proposal but the logic is similar. In CORS the browser is using its own iden-
tity credentials when connecting to remote servers (e.g. a bank), but it needs
to alert the remote service that the request originates from a different agent.
The browser also needs to make sure the remote server understands this, es-
pecially when authentication is required, to allow the remote server to evaluate
whether it trusts the JavaScript agent. In the Section 3 use cases, the remote site
trusts the principal, but may not be aware of the secretary. In our proposal, the
identification of the agent in the X-On-Behalf-Of header is much more precise.
Combined with the ability of the secretary to also identify herself with a WebID,
it builds an explicit trust relation between the principal and the secretary. The
vagueness of the Origin identity of the principal in CORS makes a lot of this
close to impossible.

It is a topic of further research to evaluate in which circumstances it is impor-
tant for the secretary to also make sure that the remote server is aware that the
connection being made is X-On-Behalf-Of the specified principal. Otherwise it is
possible that the secretary herself be made liable for the actions she is making
on behalf of her principal, especially were she to make PUT, POST or DELETE re-

10 http://www.w3.org/TR/cors/

http://www.w3.org/TR/cors/

quests. The CORS protocol determines this by requiring an initial HEAD request
to a resource to be made, which will determine whether the server understands
CORS. With the help of TLS the server hosting the remote resource could have a
WebID profile describing it to be an understander of the X-On-Behalf-Of header,
making the protocol a lot more efficient and secure once more.

Usage Restrictions such as proposed in [10] can be used to allow clients and
servers to specify restrictions on what is allowed to be done with the documents
they publish using headers such as X-UsageRestrictions. This would for example
allow someone posting a picture to a server to specify that this does not entail
transfer of ownership.

Similarly, using such an HTTP header, it should be possible for the server
serving a protected resource to specify which groups of users a resource represen-
tation is intended for. This could remove an important reason for the existence of
the X-On-Behalf-Of header discussed above. The guard on the server would just
need to add the secretary for the principal as one of those agents authorized to
access the information. It would know the identity of the secretary for that user
by consulting the WebID profile, which it needs to have downloaded anyway.

But how would the guard know that the secretary understood the header
and the corresponding restriction vocabulary? After all most servers and clients
do not know this vocabulary - it has not even been settled on yet - and so
cannot be held responsible for not understanding it. We can reach again here
to our WebID profile to settle this: the secretary can specify herself as being
an understander of that vocabulary in her profile with a triple such as :me a
trust:VocabularyUnderstander. The server would check for this statement in
the secretary’s WebID profile before serving the resource. The advantage of this
method would be that it would require less changes to the WebID authentication
protocol, could be a lot more flexible but does require the development of a simple
usage restriction vocabulary. The secretary relation still remains essential.

6 Conclusion and Future Work

In this paper we justified the need for an agent, such as a Social Web application,
to act on behalf of a user in the role of a secretary. The server may need to do
things asynchronously in the background for the user (the principal), and may
have a number of different users for which this needs to be done efficiently.
Our proposal for supporting such a communication schema involves adding a
:secretary relation from the principal’s profile to the agent that acts on its
behalf. The secretary then connects to the resource using her own WebID. We
then came up with two solutions on how the client can specify that it is acting
as a secretary:

(1) The secretary making the request can add an X-On-Behalf-Of header field
referring to the WebID of the principal in whose name she acts. This is especially
useful if resources return different representations depending on who makes the
request, or on behalf of whom a request is made.

(2) The server can specify usage restrictions in the header of the HTTP re-
sponse, allowing the secretary only to pass the information on to the principal
for example. Perhaps this could be done using the WebAccessControl vocabu-
lary11, dgFOAF [9], or ideas coming from the policy creation and management
communities [8].

In our future work we will try to close the gap between the policy and access
control vocabularies on the one hand and WebID authentication on the other
hand. This will require mostly standardization work and seeing which type of
solution is the most apt to gain traction in a wider community. As we deploy
Social Web servers the need for a such a standard will be felt more and more
strongly.

References

1. WebID 1.0: Web Identification and Discovery, 2011. Available at http://webid.
info/spec/.

2. S. Auer, S. Dietzold, and T. Riechert. OntoWiki - A Tool for Social, Semantic
Collaboration. In Proceedings of the ISWC2006, volume 4273 of LNCS. Springer,
2006.

3. A. Barth. The Web Origin Concept. Technical report, IETF, 2011. http://tools.
ietf.org/html/rfc6454.

4. Ed. D. Hardt. The OAuth 2.0 Authorization Framework. Technical report, IETF,
2012. http://tools.ietf.org/html/draft-ietf-oauth-v2-31.

5. T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol – Version
1.2. Technical report, IETF, 2008.

6. N. Heino, S. Dietzold, M. Martin, and S. Auer. Developing Semantic Web Ap-
plications with the OntoWiki Framework. In Networked Knowledge - Networked
Media, volume 221, pages 61–77. Springer, 2009.

7. P. Hoffman and J. Schlyter. The DNS-Based Authentication of Named Entities
(DANE) Transport Layer Security (TLS) Protocol: TLSA. RFC 6698 (proposed
standard), IETF, 2012. http://tools.ietf.org/html/rfc6698.

8. L. Kagal, T. Finin, and J. Hendler, editors. Proceedings of the Semantic Web and
Policy Workshop, held in conjunction with the 4th International Semantic Web
Conference, 7 November, 2005, Galway Ireland, 2005.

9. F. Schwagereit, A. Scherp, and S. Staab. Representing Distributed Groups with
dgFOAF. In Proceedings of the (ESWC2010), June 2010.

10. O. Seneviratne and L. Kagal. Addressing Data Reuse Issues at the Protocol Level.
In POLICY, pages 141–144. IEEE Computer Society, 2011. Also published as
"Usage Restriction Management for Accountable Data Transfer on the Web" at
http://dig.csail.mit.edu/2011/Papers/IEEE-Policy-httpa/paper.pdf.

11. H. Story, A. Sambra, and S. Tramp. Friending On The Social Web. In Federated
Social Web Europe 2011, 2011.

12. H. Story Story, B. Harbulot, I. Jacobi, and M. Jones. FOAF+SSL: RESTful Au-
thentication for the Social Web. In Proceedings of SPOT2009, 2009.

13. S. Tramp, P. Frischmuth, T. Ermilov, and S. Auer. Weaving a Social Data Web
with Semantic Pingback. In Proceedings of the EKAW 2010, volume 6317 of LNAI.
Springer, 2010.

11 http://www.w3.org/wiki/WebAccessControl

http://webid.info/spec/
http://webid.info/spec/
http://tools.ietf.org/html/rfc6454
http://tools.ietf.org/html/rfc6454
http://tools.ietf.org/html/draft-ietf-oauth-v2-31
http://tools.ietf.org/html/rfc6698
http://dig.csail.mit.edu/2011/Papers/IEEE-Policy-httpa/paper.pdf
http://www.w3.org/wiki/WebAccessControl

	Extending the WebID Protocol with Access Delegation

