
Discovering Names in Linked Data Datasets

Bianca Pereira1, João C. P. da Silva2, and Adriana S. Vivacqua1,2

1Programa de Pós-Graduação em Informática,
2 Departamento de Ciência da Computação

Instituto de Matemática, Universidade Federal do Rio de Janeiro, Brazil
bianca.pereira@ppgi.ufrj.br, {jcps,avivacqua}@dcc.ufrj.br

Abstract. The Named Entity Recognition Task is one of the most com-
mon steps used in natural language applications. Linked Data datasets
have been presented as promising background knowledge for Named En-
tity Recognition algorithms due to the amount of data available and the
high variety of knowledge domains they cover. However, the discovery of
names in Linked Data datasets is still a costly task if we consider the
amount of available datasets and the heterogeneity of vocabulary used
to describe them. In this work, we evaluate the usage of rdfs:label as
a property referring to entities’ name and we describe a set of heuristics
created to discover properties identifying names for named entities in
Linked Data datasets.

Keywords: Named Entity, Named Entity Recognition, Linked Data

1 Introduction

Named Entity Recognition (NER) in natural language texts is one of the most
common tasks in Natural Language Processing. Since the sixth Message Under-
standing Conference (MUC) with the emergence of the term "named entity"
and the formalization of the NER task, the techniques for recognizing names
in texts have greatly evolved. Additionally, better knowledge bases not only for
recognition of names but also for its disambiguation have been developed.

A named entity (NE) is an entity that can be identified by a proper name [2].
Originally NEs were instances of person, organization or location classes and also
dates and numeric values. Nowadays there are many other classes that identify
NEs [3] [4].

Techniques for NER range from dictionary-based approaches to rule or ma-
chine learning ones [10]. Over time, different knowledge bases have been used
as background knowledge for the NER task: from manually created lists to
datasets using knowledge available on the Web [4]. Recently, with the emergence
of databases in Linked Data format, Linked Data datasets have been presenting
as promising sources for NEs.

The Linked Open Data cloud (LOD cloud) provides knowledge in diverse
human knowledge domains, including not only the most common types of entities
mentioned previously as NE types, but also entities in the field of music, video,
biology, among many others.

34

Several recent studies and tools have appeared linking NE mentions in free
text to Linked Data resources [11]. The first step in this task is the discovery of
which classes identify NEs and which properties refer to their names in the LD
dataset. Only after this step, that is usually performed manually, the comparison
between a name of a resource from the dataset with the name mentioned in the
text can be made.

The heterogeneity in metadata used to describe LD datasets is one of the
difficulties in using datasets from LOD cloud for NER. As a consequence of this
heterogeneity, the identification of names in a LD dataset is a hard task, which
starts with the identification of properties that refer to names, a costly task in
and of itself. Due to this, works using LD datasets for NER and entity linking
still use only a limited number of datasets available on the LOD cloud.

Our goal in this paper is to propose heuristics that help to determine which
properties contain names of NEs as their values, henceforth called PIN (Property
that Identifies Names), in generic LD datasets. Our results can be used to enable
current tools to work with different datasets without requiring a manual analysis
to understand all the metadata used to describe resources in a LD dataset.

The rest of this paper is organized as follows: in section 2 we present related
work on using Linked Data for NER. In section 3 we explain the NER task
and which features of Linked Data datasets can be used to perform this task.
Following that, we evaluate the feasibility of using the rdfs:label property as a
sole source of names in section 4 and present our algorithms for PIN identification
in section 5. In section 6 we evaluate our heuristics and present our conclusions
in section 7.

2 Related Works

There is a large number of tools (mostly commercial) using LD datasets for NER
and linking. Despite the large number of LD datasets available on the LOD cloud
they work only with a small set of them.

DBpedia Spotlight [9] is a tool which its main goal is to recognize names from
a text and link them to resources from DBPedia[1]. DBpedia Spotlight uses a
set of possible names also called surface forms created from the rdfs:label
property as well as written variations of names taken from Wikipedia links. It
is highly optimized for DBPedia and achieves high precision.

The work of Hoffart et al. [6] performs the same task as DBPedia Spotlight
but it uses YAGO [12] as its source for NEs and the yago:means property as a
source for names.

Large KB Gazetter1 is a plug-in for GATE Platform2 that enables using a
generic LD dataset as a dictionary. It aims to allow any SPARQL query to be
used as a source for NE names.

All previous work require knowledge about every vocabulary used to de-
scribe the LD datasets in order to use them as a source for NEs. We propose to
1 http://nmwiki.ontotext.com/lkb_gazetteer/
2 http://gate.ac.uk

35

use heuristics to allow them to identify NEs and their names from generic LD
datasets without requiring manual analysis.

3 Using Linked Data for Named Entity Recognition

NER algorithms which are dictionary-based require some effort to create the
dictionary used as background knowledge. Instead of manually creating these
dictionaries, websites such as Wikipedia have been used as external knowledge
for NER[7]. These new knowledge bases require different algorithms to structure
their knowledge and extract entity names.

The main advantage of using LD datasets for NER tasks is that data is
already structured. Algorithms that use Wikipedia as a gazetteer require pre-
processing to extract all possible names of entities contained in its various pages.
In another hand, LD datasets allow the creation of SPARQL queries for data re-
trieval, making the whole process much simpler. Another feature of LD datasets
is the description of data using vocabularies or ontologies. This description en-
ables the determination of an entity’s type (person, place, etc.) through a simple
query.

LD datasets are structured using RDF [5] resources to describe entities from
the real world. Each resource is described through properties and relationships
with other resources. Both property and relationship are specified by vocabu-
laries or ontologies that indicate to a human what each one of them means.
Furthermore, RDF Schema (RDFS) [8] presents a set of properties commonly
used to describe resources in LD datasets. In our work, the rdfs:label is a rel-
evant property because it describes a human-readable name for RDF resources
often a NE name.

A starting point in searching for NE names in a LD dataset would be to
use the contents of the rdfs:label property as DBPedia Spotlight does. In the
following section, we present an analysis of the usage of rdfs:label as a unique
source for names in LD datasets.

4 Using rdfs:label as a name

The most intuitive approach for the identification of names from NEs in a LD
dataset is using the rdfs:label property. To verify the applicability of this
approach, we conducted an analysis of a small set of datasets from the LOD
cloud. Our goal was to see if this approach was sufficient for the task of acquiring
names for NEs in generic LD datasets.

The first step was to select LD datasets that contain resources describing
NEs that explicitly specify their name using properties. We selected a set of
domain-specific datasets: Linked Movie Database [5], Geo Linked Data[8], Linked
Brainz3 and Jamendo (DBTune)4. The first dataset contains data from films
3 http://linkedbrainz.c4dmpresents.org/
4 http://dbtune.org/jamendo/

36

with information such as actors, characters and performances. Geo Linked Data
describes spatial data, such as places and points of interest. The last two datasets
are about music but Jamendo focuses on indepent musical groups and singers.

In the Linked Movie Database the rdfs:label property is present in almost
all classes of entities described by the dataset. Among the classes there are those
representing NEs and those representing other types of entity. We noticed that
these other entities are, in fact, relationships between more than two entities.

For this first dataset, if we always use the rdfs:label property as a source
of names we would extract some incorrect names. Further, given that the rdfs:
label property is used to provide a human-readable label, and not necessarily
the name of the entity, the NEs present in the dataset usually had the entity
class as part of the value of the rdfs:label property. For instance, the entity
identified by the URI http://data.linkedmdb.org/resource/film_character/253
is of Film Character class and contains the text “Kate (Film Character)” in
its rdfs:label property. On the other hand, there is a set of properties that
identify the names of various NEs in the dataset: actor_name, director_name,
cinematographer_name, editor_name, among others. In the example mentioned
above, the name of the entity is represented by film_character_name property
whose value is “Kate”.

The second dataset is Geo Linked Data. This dataset consists of ten named
graphs, where seven of them are datasets and the others contain some metadata.
Among these seven, we excluded two, which referred to statistical indexes and
one that referred to years, which is not our focus at this point. Of the four
remaining datasets we could verify that all names from NEs are exclusively
described by the rdfs:label property. In addition, this property does not appear
in entities that are not NEs. Even though it is possible to extract all the names
using only the rdfs:label property, a large part of the entities have values in
a format not commonly used. For example, an entity of Aeropuerto (Airport)
class has the string “Sevilla, Aeropuerto de” as the rdfs:label property value,
rather than “Aeropuerto de Sevilla”.

The third dataset selected was the Linked Brainz, a dataset created from in-
formation available on the MusicBrainz website. Linked Brainz describes entities
in the music domain such as singers, music groups and their work. It has ten
classes that represent NEs but only seven use rdfs:label to describe the name
of the entities. All NEs, even those using rdfs:label, use other properties not
only to describe the most common name of the entity, but also to describe al-
ternative names. The properties used are: skos:altLabel and skos:notation,
described by the SKOS vocabulary, foaf:name defined by the FOAF vocabu-
lary, dc:title described by the Dublin Core vocabulary, vo:sortLabel from
the OpenVocab5 vocabulary, and another geo:name property described by the
Basic Geo (WGS84 lat/long)6 vocabulary . Given that not all NE classes use the
rdfs:label property, using only this property would exclude useful information.

5 http://open.vocab.org/docs
6 http://www.w3.org/2003/01/geo/

37

The last dataset in our analysis was Jamendo, from the DBTune.org web-
site. This dataset was generated from the information of the Jamendo website
and contains information about independent music groups and artists, and their
work. This dataset does not use rdfs:label to describe their entities. All names
are described by two properties: dc:title from the Dublin Core vocabulary and
foaf:name from FOAF vocabulary.

We could verify that a range of properties may contain the names for NEs
in a LD dataset. As this list is not fixed because it depends on the vocabularies
used by each dataset, it is not possible to create an algorithm that considers
the full list of every possible property that identify names of NEs. Thus we need
to be able to identify automatically which properties contain names of NEs for
each dataset.

5 Discovering properties that refer to names

In this section, we present a set of heuristics to identify PIN (Property that
Identifies Names) in LD datasets. Each algorithm receives a LD dataset as input
and returns a set of PIN for each class in the dataset. If a specific class does not
represent NEs, the algorithm must not return a PIN for this class, otherwise,
it should return one or more PIN. Each heuristic was created based on the
assumption that names are represented by proper names. To identify if a given
string is a proper name we are considering that every string with at least 50%
of its words capitalized is a proper name.

The same basic algorithm is used differing only in the heuristic (score function
and requisites) used.

Each algorithm recovers every class in a LD dataset and every property p
that has a literal as its value for each class c found. After that, for each class
c and each property p used to describe instances of this class the algorithm
calculates a score based on the occurrence of proper names as values of p. Each
heuristic identifies as a PIN the best scored property according to their respective
requisite. As our goal is identify PIN that differ from one dataset to another we
will give priority for other properties than rdfs:label.

Four heuristics were developed, and are described in the following subsec-
tions: Naive, Parametrized Naive, Multivalue and Multivalue with Threshold.
The Naive and Parametrized Naive heuristics consider only the best scored prop-
erty for each class (return a single result) and the Multivalue and Multivalue with
Threshold heuristics return every property that score higher than a given value.

5.1 Naive Heuristic

The Naive heuristic is the simplest and returns the property that has the highest
occurrence (higher score) of proper names as its value for each class.

The score(p,c) function is given by the sum of each occurrence of a proper
name as a value of the property p in entities from class c (ec) :

scoren(p, c) =
∑

ec

{
1, if p value = proper name
0, otherwise

}
(1)

38

If every score for properties is equal to zero, class c has no PIN.

5.2 Parametrized Naive Heuristic

The Naive heuristic does not impose any kind of restriction for a proper name to
be recognized as a name. Therefore, this heuristic can return not only names but
also acronyms and possibly descriptions that have a high frequency of capitalized
words. Acronyms are usually short strings about 2 to 4 characters in upper case
while descriptions tend to be paragraphs or a set of paragraphs formed by a
large number of characters.

The Parametrized Naive heuristic aims to avoid occurrence of description
texts and acronyms as value for PIN. The heuristic uses two constraints min
and max to restrict the length of the string accepted as a name.

The score function (Formula 2) only counts occurrences in which p value is a
proper name with length greater than or equal to min and lower than or equal
to max.

scorepn(p, c) =
∑

ec

{
1, if p value = proper name, length(p value) ∈ [min,max]
0, otherwise

}
(2)

If the highest score is equal to 0 for a given class then there are not any PIN
associated with it.

5.3 Multivalue Heuristic

Given that many entities can be reffered to by a set of names instead of a unique
name, we propose a heuristic to identify these alternate names as well. We can
identify the most used name as a preferred name, and other names as alternate
names or acronyms referring to the same entity. The previous heuristics return
only one property as a PIN while this heuristic retrieves every possible PIN
including properties referring to acronyms. This heuristic is the same as the
Parametrized Naïve when considering the min value equal to zero and adding a
parameter with the number of returned PIN per class with a value equal to one.

In the Multivalue heuristic we intend to accept acronyms as valid values but
not descriptions. In this way, max is also used in the score function (Formula 3).

scoreMulti(p, c) =
∑

ec

{
1, if p value = proper name, length(p value) ≤ max
0, otherwise

}
(3)

The requisite to decide if a property p can be chosen as a PIN for a given
class is if its score is higher than zero.

5.4 Multivalue with Threshold Heuristic

This last heuristic is characterized by recognizing more than one property as a
PIN for each class and identifying only the best scored properties rather than
every property with a score greater than zero.

39

The score for Multivalue with Threshold is calculated based on the relative
frequency of occurrence of property p referring to names for entities in class
c. In other words, a property p will be considered a PIN only if it also appears
describing a percentage of entities higher than a given threshold for a given class.
The score function can be seen in Formula 4.

scoreThreshold(p, c) = scoreMulti(p, c)/|ec| (4)

A given entity in a real world can have many alternative names. Due to this,
the Linked Data resource representing this entity may use the same property
many times to describe these diverse names. In order to give the same weight for
each property in the dataset this heuristic only counts one occurrence of each
property for each instance of a class.

The threshold will be used to select PIN. Every property with a score higher
than the threshold value will be considered as a PIN for class c.

6 Experiments

In our evaluation process we used the same datasets aforementioned excepting
Geo Linked Data and Linked Brainz. The Geo Linked Data was not used because
it only uses rdfs:label as a PIN. The Linked Brainz has about two billion triples
what requires a machine with a high processing power and memory available to
enable a good processing time.

The evaluated datasets were: Jamendo (DBTune.org) and Linked Movie
Database[5].

6.1 Gold Standard

To enable the evaluation of our heuristics we have created a gold standard. It
was manually developed and consists of a list of classes that have NEs as its
instances and a list of PIN associated to those classes. We assume at this point
that if a class represents NEs then each one of its instances is a NE.

The steps to create the gold standard are as follows:

– Identify all classes describing resources in the dataset.
– For each class identify all properties whose value is a literal.
– Analyze the meaning of each class and property
– Select classes that define NEs as its instances
– Select a set of PIN for each class that define NEs.

For the first two steps we used SPARQL queries to list all classes and their
respective properties. Having all classes and their respective properties we an-
alyzed their meaning. In other words, we have searched for the ontology de-
scription and if it does not exist or it is inconclusive we manually analyzed few
instances of each class. These ontology descriptions are mainly searched based
on their namespace and the respective LD dataset’s project website.

40

Based on the meaning of each class and property we could identify those
that describe NEs. Each NE is identified by one or more names. We say that
a class represents NEs if it has one or more PIN associated with its instances.
We assumed that names are proper names and are infrequently shared by many
instances from the same class.

Each PIN was identified as referring to a preferential name, an alternative
name or an acronym. Preferential name is the most frequent name for a given
NE. Properties associated with preferential names appears only once in a Linked
Data resource that describes a NE but those associated with alternative names
and acronyms may appear zero or more times. Acronyms are identified by having
many capitalized characters in a single word while alternative names do not have
this feature.

There are some dataset features that should be pointed out. In every dataset
there are classes that do not refer to NEs and therefore do not have PIN. An-
alyzing the meaning of classes we notice that a class does not always describe
NEs or even entities. Some examples are: class Playlist in Jamendo and class
Performance in Linked Movie Database. The instances of Performance class are
not NEs but ternary relationships involving actors, films and characters. These
instances have properties responsible to link them with other entities but their
values are string representations of related entities names and not URIs, as is
recommended for relationships in Linked Data.

Another feature founded is that we can not use only the ontology description
to identify if a class describes NEs because sometimes the ontology description
is not available as in the case of Linked Movie Database.

We also have to make some observations about properties classified as con-
taining preferential or alternative names. In Linked Movie Database there are
some properties that share the same values such as dc:title and rdfs:label
for the class Film then in this case both were identified as referring to preferential
names.

6.2 Evaluation

The goal for the heuristics developed is, primarily, the identification of PIN as-
sociated with preferential names. If a heuristic identifies alternative names or
acronyms we understand this as a correct answer however it is not the best
answer. In the case of Multivalue and Multivalue with Threshold we intend to
retrieve every PIN from the LD dataset. In any case we understand the identi-
fication of PIN for classes that do not identify NEs as an error.

Our experiments were processed in two steps. Each one evaluates all heuristics
using a different dataset. For each dataset we made a local installation using the
RDF files provided by CKAN website in order to provide results that do not
change during our experiments.

Jamendo Jamendo is a small dataset with 11 classes being 3 of them describing
NEs, each one containing 1 PIN.

41

The Naive Heuristic found all three properties correctly plus another one:
mo:text from Lyrics class. This represents song letters which are reproduced
as a value for property mo:text. The incorrect classification of this property is
due to the fact that we are considering every string as possible names regardless
whether a string has many or few letters.

In the Parametrized Naive Heuristic, we considered that the value of the
candidate properties should have minimum length of 4 and maximum length of
100 characters. Although the number of occurrence for mo:text has dropped,
the same classes and properties were obtained.

There was an increase of false positive candidate PIN with the Multivalue
Heuristic because it discovered a new property for each of the classes Record and
MusicArtist since it selects not only the best scored properties but any property
of a class with non-zero score. In the Multivalue with threshold heuristic, we
established that the maximum length of a string is 100, and use values 0.4, 0.6,
0.8 and 0.95 as threshold. With 0.4, 0.6 and 0.8 as threshold, the classes Record
and MusicArtist and their properties were correctly identified. Increasing the
threshold to 0.95, no property was identified. The overall results of application
of each heuristic can be seen in Table 1.

Table 1. Results from PIN identification heuristics for Jamendo Dataset

Heuristic PIN found False positives
Naive 3 (100%) 1

Parametrized Naive 3 (100%) 1
Multivalue 3 (100%) 3

Multivalue with Threshold (0.4 , 0.6, 0.8) 2 (66.67%) 0
Multivalue with Threshold (0.95) 0 (0%) 0

Linked Movie Database The Linked Movie Database[5] has a large number
of classes (53 classes being 34 describing NEs). It has its own ontology that,
unfortunately, does not have description for its classes and properties available
on CKAN or dataset website.

This dataset has a particular feature. There are some entities that belongs to
two different classes. For example, the resource identified by the URI http://dat
a.linkedmdb.org/resource/actor/1 has two rdf:type values: Actor and Per-
son. Due to this the Person class does not have a unique PIN associated with
preferential names and each one of these PIN does not appear together.

The Naive heuristic identified 31 out of 41 PINs. There was a draw between
the hits number for rdfs:label and the correct PIN in many classes but as
rdfs:label has lower priority according to our algorithm the correct proper-
ties were identified as PIN. Only two PIN had more hits than rdfs:label:
movie:film_character_name from Character class and movie:film_company_
name from Film Company class.

42

There were also a large number of false positives due to two features of the
dataset. The first is that the Linked Movie Database has classes we did not
recognize as identifying NEs such as Film Focus or Film Distribution Medium.
Regardless whether these classes do not identify NEs they have properties de-
scribing their names such as “Theatre” or “CD” for instances of Film Distribution
Medium. The second feature is literals as values for properties referring to re-
lationships. There are some classes such as Performance that identify ternary
relations between instances of Actor, Character and Film but properties relating
an instance of Performance with instances of the other classes have strings as
their values instead of URIs. In this case, these relationships were returned as
PIN due to a wrong description used in the dataset.

The Parametrized Naive heuristic identified the correct PIN (movie:country
_name) instead of properties referring to acronyms(movie:country_iso_alpha3)
due to parameters min = 4 and max = 100 as expected. This heuristic had more
false positives due to the recognition of rdfs:label rather than the correct PIN
for some classes. It happens because the rdfs:label value is composed by the
value of the correct name plus the class name so some values for the correct PIN
were discarded by the min parameter but the rdfs:label for the respective
entity was not discarded because its value has more characters. If rdfs:label
has at least one hit more than the correct PIN, this heuristic will recognized it
as a PIN.

The Multivalue heuristic identified all PIN from the dataset. It could also
identified every PIN for the Person class because it does not restrict the number
of hits to recognize a property as a PIN. Although the 100% of recall this heuristic
retrieved a large number of false positive. This heuristic had the same problem
identified in the Naive Heuristic but the previous get only one property as a
PIN.

At last, the Multivalue with Threshold Heuristic did not identified any PIN
for the Person class as we expected. It still have a high number of false positives
due to features aforementioned. The overall results can be seen in Table 2.

Table 2. Results of PIN identification heuristics for Linked Movie Database

Heuristic PIN found False positives
Naive 31 (75.61%) 21

Parametrized Naive 19 (46.34%) 33
Multivalue 41 (100%) 85

Multivalue with Threshold (0.4) 35 (85.36%) 68
Multivalue with Threshold (0.6) 35 (85.36%) 65
Multivalue with Threshold (0.8) 34 (82.93%) 61
Multivalue with Threshold (0.95) 32 (78.05%) 54

43

6.3 Analysis

Each heuristic has different characteristics and the best fit will depend on the
dataset features.

The Naive and Parametrized Naive Heuristics do not prioritize recall. They
return only one PIN for each NE class and these PIN refer only to preferable
names for NEs. Thus they presented a better precision because they usually iden-
tify the right PIN but they do not return every possible PIN from the dataset. In
applications that need to recognize names in a LD dataset without many errors
these two heuristics are preferable. Moreover, the Multivalue and Multivalue with
Threshold have a better recall. The Multivalue Heuristic returns every possible
PIN from the dataset recognizing every PIN in our experiments but also return-
ing a high number of false positives. The Multivalue with Threshold Heuristic
allows mantaining the recall but with more precision. As we increase the value
of the Threshold we have less false positives with a good recall. These last two
heuristics are preferable in applications that only need PIN to reduce the search
space for names. The results for each heuristic can be seen in Table 3.

In addition our heuristics could also identify which classes have NE as their
instances. Each class that have at least one PIN recognized can be seen as NE
class.

Despite the high number of false positives, our heuristics have obtained a rea-
sonable result in this preliminary study. The next step is evaluating our heuristics
using a bigger set of LD datasets in order to acquire more insights about com-
mon Linked Data features and how the heuristics perform with new features.
The heuristics may also be important to provide an overview of which proper-
ties are actually used to describe names for NEs in LD datasets and to reduce
the search space for names of NEs described in the dataset. Therefore, they help
using generic datasets in LD as knowledge bases for NER and linking tasks.

Jamendo Linked Movie Database
Heuristics Precision Recall F-Score Precision Recall F-Score
Naive 0.75 1 0.8571 0.5962 0.7561 0.6667

Parametrized Naive 0.75 1 0.8571 0.3654 0.4634 0.4085
Multivalue 0.5 1 0.6667 0.3254 1 0.4910

Multivalue (Threshold = 0.4) 1 1 1 0.3398 0.8536 0.4861
Multivalue (Threshold = 0.6) 1 1 1 0.35 0.8536 0.4964
Multivalue (Threshold = 0.8) 1 1 1 0.3579 0.8293 0.5
Multivalue (Threshold = 0.95) 0 0 0 0.3721 0.7805 0.5039

Table 3. Overall Results for the application of every heuristic for PIN identification

7 Conclusion

In this paper we started to address the problem of finding names for NE in
generic Linked Data datasets. Due to the heterogeneity in the description of

44

these datasets, the identification of properties that have names as their values is
not trivial. We analyzed the feasibility of using rdfs:label as a unique source
for NE names and then presented a set of heuristics for identification of PIN,
those properties whose values may be names for NEs.

We conducted a preliminary study using our heuristics with two datasets
from the LOD cloud. Both datasets have a significant number of triples, classes
and properties. We created a gold standard to evaluate our heuristics. Based on
the results of the evaluation, we discovered that our heuristics can be used to
identify PIN for these LD datasets, but given that the heuristics’ accuracy were
not 100%, we suggest that they undergo a process of manual review before they
are used in applications that require 100% accuracy.

8 Acknowledgments

This work was supported by a grant from CAPES, Brazil.

References

1. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: Dbpedia:
A nucleus for a web of open data. The Semantic Web pp. 722–735 (2007)

2. Chinchor, N.: Overview of muc-7/met-2 (1998)
3. Cohen, W., Sarawagi, S.: Exploiting dictionaries in named entity extraction: com-

bining semi-markov extraction processes and data integration methods. In: Pro-
ceedings of the tenth ACM SIGKDD. pp. 89–98. ACM (2004)

4. Etzioni, O., Cafarella, M., Downey, D., Popescu, A., Shaked, T., Soderland, S.,
Weld, D., Yates, A.: Unsupervised named-entity extraction from the web: An ex-
perimental study. Artificial Intelligence 165(1), 91–134 (2005)

5. Hassanzadeh, O., Consens, M.: Linked movie data base. In: Proceedings of the 2nd
Workshop on Linked Data on the Web (LDOW2009) (2009)

6. Hoffart, J., Yosef, M., Bordino, I., Fürstenau, H., Pinkal, M., Spaniol, M., Taneva,
B., Thater, S., Weikum, G.: Robust disambiguation of named entities in text pp.
782–792 (2011)

7. Kazama, J., Torisawa, K.: Exploiting wikipedia as external knowledge for named
entity recognition. In: Proceedings of the EMNLP-CoNLL 2007. pp. 698–707 (2007)

8. Lopez-Pellicer, F., Silva, M., Chaves, M., Javier Zarazaga-Soria, F., Muro-
Medrano, P.: Geo linked data. In: Database and Expert Systems Applications.
pp. 495–502. Springer (2010)

9. Mendes, P., Jakob, M., García-Silva, A., Bizer, C.: Dbpedia spotlight: shedding
light on the web of documents. In: Proceedings of the 7th International Conference
on Semantic Systems. pp. 1–8. ACM (2011)

10. Nadeau, D., Sekine, S.: A survey of named entity recognition and classification.
Lingvisticae Investigationes 30(1), 3–26 (2007)

11. Rizzo, G., Troncy, R.: Nerd: A framework for unifying named entity recognition
and disambiguation extraction tools. EACL 2012 p. 73 (2012)

12. Suchanek, F., Kasneci, G., Weikum, G.: Yago: A large ontology from wikipedia
and wordnet. Web Semantics: Science, Services and Agents on the World Wide
Web 6(3), 203–217 (2008)

