
Query Segmentation and Resource
Disambiguation Leveraging Background

Knowledge

Saeedeh Shekarpour1, Axel-Cyrille Ngonga Ngomo1, and Sören Auer1

Department of Computer Science, University of Leipzig Johannisgasse 26,
04103 Leipzig {lastname}@informatik.uni-leipzig.de

Abstract. Accessing the wealth of structured data available on the Data
Web is still a key challenge for lay users. Keyword search is the most
convenient way for users to access information (e.g., from data reposito-
ries). In this paper we introduce a novel approach for determining the
correct resources for user-supplied keyword queries based on a hidden
Markov model. In our approach the user-supplied query is modeled as
the observed data and the background knowledge is used for parameter
estimation. Instead of learning parameter estimation from training data,
we leverage the semantic relationships between data items for comput-
ing the parameter estimations. In order to maximize accuracy and us-
ability, query segmentation and resource disambiguation are mutually
tightly interwoven. First, an initial set of potential segmentations is ob-
tained leveraging the underlying knowledge base; then the final correct
set of segments is determined after the most likely resource mapping was
computed using a scoring function. While linguistic methods like named
entity, multi-word unit recognition and POS-tagging fail in the case of
an incomplete sentences (e.g. for keyword-based queries), we will show
that our statistical approach is robust with regard to query expression
variance. Our experimental results when employing the hidden Markov
model for resource identification in keyword queries reveal very promising
results.

1 Introduction

The Data Web currently amounts to more than 31 billion triples1 and contains
a wealth of information on a large number of different domains. Yet, accessing
this wealth of structured data remains a key challenge for lay users. The same
problem emerged in the last decade when users faced the huge amount of infor-
mation available of the Web. Keyword search has been employed by popular Web
search engines to provide access to this information in a user-friendly, low-barrier
manner. However, keyword search in structured data raises two main difficulties:
First, the right segments of data items that occur in the keyword queries have
to be identified. For example, the query ‘Who produced films starring Natalie

1 See http://www4.wiwiss.fu-berlin.de/lodcloud/state/ (May 23th, 2012)

QS 83

Portman’ can be segmented to (‘produce’, ‘film’, ‘star’, ‘Natalie Portman’) or
(‘produce’, ‘film star’, ‘Natalie’, ‘Portman’). Note that the first segmentation
is more likely to lead to a query that contain the results intended for by the
user. Second, these segments have to be disambiguated and mapped to the right
resources. Note that the resource ambiguity problem is of increasing importance
as the size of knowledge bases on the Linked Data Web grows steadily. Consid-
ering the previous example2, the segment ‘film’ is ambiguous because it may
refer to the class dbo:Film (the class of all movies in DBpedia) or to the prop-
erties dbo:film or dbp:film (which relates festivals and the films shown during
these festivals). In this paper, we present an automatic query segmentation and
resource disambiguation approach leveraging background knowledge. Note that
we do not rely on training data for the parameter estimation. Instead, we leverage
the semantic relationships between data items for this purpose. While linguistic
methods like named entity, multi-word unit recognition and POS-tagging fail
in the case of an incomplete sentences (e.g. for keyword-based queries), we will
show that our statistical approach is robust with regard to query expression vari-
ance. This article is organized as follows: We review related work in Section 2.
In Section 3 we present formal definitions laying the foundation for our work. In
the section 4 our approach is discussed in detail. For a comparison with natural
language processing (NLP) approaches section 5 introduces an NLP approach
for segmenting query. Section 6 presents experimental results. In the last section,
we close with a discussion and an outlook on potential future work.

2 Related Work

Keyword queries are usually short and lead to significant keyword ambiguity [13].
Segmentation has been studied extensively in the natural language processing
(NLP) literature e.g., [8]). NLP techniques for chunking such as part-of-speech
tagging or name entity recognition cannot achieve high performance when ap-
plied to query segmentation. The work [7] addresses the segmentation problem as
well as spelling correction. It employs a dynamic programming algorithm based
on a scoring function for segmentation and cleaning. The work presented in [11]
proposes an unsupervised approach to query segmentation in Web search. The
work [15] is a supervised method based on Conditional Random Fields (CRF)
whose parameters are learned from query logs. For detecting named entities,
[3] uses query log data and Latent Dirichlet Allocation. In addition to query
logs, various external resources such as Webpages, search result snippets and
Wikipedia titles and using a history of the user activities have been used [9,
12, 1, 10]. Still, the most common approach is using context for disambiguation
[6, 2, 5]. In this work, resource disambiguation is based on the structure of the
knowledge at hand as well as semantic relations between the candidate resources
mapped to the valid segments of the input query.

2 The underlying knowledge base and schema used throughout the paper for examples
and evaluation is DBpedia 3.7 dataset and ontology.

84 Saeedeh Shekarpour

Data: q: n-tuple of keywords, knowledge base
Result: SegmentSet: Set of segments

1 SegmentSet=new list of segments;
2 start=1;
3 while start <= n do
4 i = start;
5 while S(start,i) is valid do
6 SegmentSet.add(S(start,i));

7 i++;

8 end
9 start++;

10 end

Algorithm 1: Naive algorithm for determining all valid segments taking the
order of keywords into account.

3 Formal Specification

RDF data is modeled as a directed, labeled graph G = (V,E) where V is a
set of nodes i.e. the union of entities and property values, and E is a set of
directed edges i.e. the union of object properties and data value properties. The
user-supplied query can be either a complete or incomplete sentence. However,
after removing the stop words, typically set of keywords remains. The order in
which keywords appear in the original query is partially significant. Our approach
can map adjacent keywords to a joint resource. However, once a mapping from
keywords to resources is established the order of the resources does not affect
the SPARQL query construction anymore. This is a reasonable assumption, since
users will write strongly related keywords together, while the order of only loosely
related keywords or keyword segments may vary. The input query is formally
defined as an n-tuple of keyword, i.e. Q = (k1, k2, ..., kn). We aim to transform
the input keywords into a suitable set of entity identifiers, i.e. resources R =
{r1, r2...rm}. In order to accomplish this task the input keywords have to be
grouped together as segments and for each segment a suitable resource should
be determined.

Definition 1 (Segment and Segmentation). For a given query Q, a segment
S(i,j) is a sequence of keywords from start position i to end position j which
is denoted as S(i,j) = (ki, ki+1, ..., kj). A query segmentation is an m-tuple of
segments SGq = (S(0,i), S(i+1,j), ..., S(m,n)) where the segments do not overlap
with each other and arranged in a continuous order, i.e. for two continuous
segments Sx, Sx+1 : Start(Sx+1) = End(Sx) + 1. The concatenation of segments
belonging to a segmentation forms the corresponding input query Q.

Definition 2 (Resource Disambiguation). Lets the segmentation SG′ =
(S1

(0,i), S
2
(i+1,j), ..., S

x
(m,n)) be a suitable segmentation for the given query Q. Each

segment is mapped to multiple candidate resources from the underlying knowl-
edge base, i.e. Si → Ri = {r1, r2...rh}. The aim of disambiguation is to choose
an x-tuple of resources from the Cartesian product of sets of candidate resources
(r1, r2, ..., rx) ∈ {R1 × R2 × ...Rx} for which each ri has two important prop-
erties. First, it is among the highest ranked candidates for the corresponding

QS 85

Segments Samples of Candidate Resources
video 1. dbp:video

video game 1. dbo:VideoGame

game
1. dbo:Game 2. dbo:games 3. dbp:game
4. dbr:Game 5. dbr:Game_On

publish 1. dbo:publisher 2. dbp:publish 3. dbr:Publishing

mean 1. dbo:meaning 2. dbp:meaning 3. dbr:Mean 4. dbo:dean

mean hamster 1. dbr:Mean_Hamster_Software

mean hamster software 1. dbr:Mean_Hamster_Software

hamster 1. dbr:Hamster

software 1. dbo:Software 2. dbp:software

Table 1. Generated segments and samples of candidate resources for a given query.

segment with respect to the similarity as well as popularity and second it shares
a semantic relationship with other resources in the x-tuple.

When considering the order of keywords, the number of segmentations for
a query Q consisting of n keywords is 2(n−1) . However, not all these segmen-
tations contain valid segments. A valid segment is a segment for which at least
one matching resource can be found in the underlying knowledge base. Thus,
the number of segmentations is reduced by excluding those containing invalid
segments. Algorithm 1 is an extension of the greedy approach presented in [15].
This naive approach finds all valid segments when considering the order of key-
words. It starts with the first keyword in the given query as first segment, then
it includes the next keyword into the current segment as a new segment and
checks whether adding the new keyword would make the new segment no longer
valid. We repeat this process until we reach the end of the query. As a running
example, lets assume the input query is ‘Give me all video games published by
Mean Hamster Software’. Table 1 shows the set of valid segments based on naive
algorithm along with some samples of the candidate resources.

Resource Disambiguation using a ranked list of Cartesian product
tuples: A naive approach for finding the correct x− tuple of resources is using
a ranked list of tuples from the Cartesian product of sets of candidate resources
{R1 × R2 × ...Rn}. The n-tuples from the Cartesian product are simply sorted
based on the aggregated relevance score (e.g. similarity and popularity) of all
contained resources.

4 Query Segmentation and Resource Disambiguation
using Hidden Markov Models

In this section we describe how hidden Markov models are used for query seg-
mentation and resource disambiguation. First we introduce the concept of hidden
Markov models and then we detail how we define the parameters of a hidden
Markov model for solving the query segmentation and entity disambiguation
problem.

86 Saeedeh Shekarpour

4.1 Hidden Markov Models

The Markov model is a stochastic model containing a set of states. The pro-
cess of moving from one state to another state generates a sequence of states.
The probability of entering each state only depends on the previous state. This
memoryless property of the model is called Markov property. Many real-world
processes can be modeled by Markov models. A hidden Markov model is an
extension of the Markov model, which allows the observation symbols to be
emitted from each state with a finite probability. The main difference is that by
looking at the observation sequence we cannot say exactly what state sequence
has produced these observations; thus, the state sequence is hidden. However,
the probability of producing the sequence by the model can be calculated as well
as which state sequence was most likely to have produced the observations.

A hidden Markov model (HMM) is a quintuple λ = (X,Y,A,B, π) where:

– X is a finite set of states, Y denotes the set of observed symbols;
– A : X × X → R is the transition matrix that each entry aij = Pr(Sj |Si)

shows the transition probability from state i to state j;
– B : X × Y → R represents the emission matrix, in which each entry bih =
Pr(h|Si) is associated with the probability of emitting the symbol h from
state i;

– π denoting the initial probability of states πi = Pr(Si).

4.2 State Space and Observation Space

State Space. A state represents a knowledge base entity. Each entity has an
associated rdfs:label which we use to label the states. The actual number of
states X is potentially high because it contains theoretically all RDF resources,
i.e. X = V ∪ E. However, in practice we limit the state space by excluding
irrelevant states. A relevant state is defined as a state for which a valid segment
can be observed. In other words, a valid segment is observed in an state if the
probability of emitting that segment is higher than a certain threshold θ. The
probability of emitting a segment from a state is computed based on a similarity
scoring which we describe in the section 4.3. Therefore, the state space of the
model is pruned and contains just a subset of resources of the knowledge base, i.e.
X ⊂ V ∪E. In addition to these candidate states, we add an unknown entity
state to the set of states. The unknown entity (UE) state comprises all entities,
which are not available (anymore) in the pruned state space. The observation
space is the set of all valid segments found in the input user query (using e.g.
the Algorithm 1). It is formally is defined as O = {o|o is a valid segment}.

4.3 Emission Probability

Both the labels of states and the segments contain sets of words. For computing
the emission probability of the state i and the emitted segment h, we compare the
similarity of the label of state i with the segment h in two levels, namely string-
similarity level and set-similarity level: (1) The set-similarity level measures

QS 87

the difference between the label and the segment in terms of the number of
words using the Jaccard similarity. (2) The string-similarity level measures the
string similarity of each word in the segment with the most similar word in the
label using the Levenshtein distance. Our similarity scoring method is now a
combination of these two metrics. Consider the segment h = (ki, ki+1, ..., kj)
and the words from the label l divided into a set of keywords M and stopwords
N , i.e. l = M ∪ N . The total similarity score between keywords of a segment
and a label is then computed as follows:

bih = Pr(h|Si) =

j∑
k=i

argmax∀mi∈M (σ(mi, kt))

|M ∪ h|+ 0.1 ∗ |N |

This formula is essentially an extension of the Jaccard similarity coefficient. The
difference is that in the numerator, instead of using the cardinality of intersec-
tions the sum of the string-similarity score of the intersections is computed. As
in the Jaccard similarity, the denominator comprises the cardinality of the union
of two sets (keywords and stopwords). The difference is that the number of stop-
words have been down-weighted by the factor 0.1 to reduce their influence (since
they do not convey much meaningful information).

4.4 Hub and Authority of States

Hyperlink-Induced Topic Search (HITS) is a link analysis algorithm for ranking
Web pages [4]. Authority and hub values are defined in terms of one another
and computed in a series of iterations. In each iteration, hub and authority val-
ues are normalized. This normalization process causes these values to converge
eventually. Since RDF data is graph-structured data and entities are linked to-
gether, we employed a weighted version of the HITS algorithm in order to assign
different popularity values to the states in the state space. For each state we
assign a hub value and an authority value. A good hub state is one that points
to many good authority states and a good authority state is one that is pointed
to from many good hub states. Before discussing the HITS computations, we
define the edges between the states in the HMM. For each two states i and j
in the state space, we add an edge if there is a path in the knowledge base
between the two corresponding resources of maximum length k. Note, that we
also take property resources into account when computing the path length.The
path length between resources in the knowledge base is assigned as weight to
the edge between corresponding states. We use a weighted version of the HITS
algorithm to take the distance between states into account. The authority of a
state is computed as:

For all Si ∈ S which point to Sj : authSj
=

∑
∀i wi,j ∗ hubSi

And the hub
value of a state is computed as:

For all Si ∈ S which are pointed to by Sj : hubSj
=

∑
∀i wi,j ∗ authSi

The
weight wi,j is defined as wi,j = k − pathLength(i, j), where pathLength(i, j) is
the length of the path between i and j. These definitions of hub and authority
for states are the foundation for computing the transition probability in the
underlying hidden Markov model.

88 Saeedeh Shekarpour

4.5 Transition Probability

As mentioned in the previous section, each edge between two states shows the
shortest path between them with the length less or equal to k-hop. The edges are
weighted by the length of the path. Transition probability shows the probability
of going from state i to state j. For computing the transition probability, we take
into account the connectivity of the whole of space state as well as the weight of
the edge between two states. The transition probability values decrease with the
distance of the states, e.g. transitions between entities in the same triple have
higher probability than transitions between entities in triples connected through
extra intermediate entities. In addition to the edges recognized as the shortest
path between entities, there is an edge between each state and the Unknown
Entities state. The transition probability of state j following state i denoted as
aij = Pr(Sj |Si). For each state i the condition

∑
∀Sj

Pr(Sj |Si) = 1 should be

held. The transition probability from the state i to Unknown Entity (UE) state
is defined as:

aiUE = Pr(UE|Si) = 1− hubSi
And means a good hub has less probability

to go to UE state. Thereafter, the transition probability from the state i to state
j is computed as:

aij = Pr(Sj |Si) =
authSj∑

∀aik>0

authSk
∗hubSi . Here, the edges with the low distance

value and higher authority values are more probable to be met.

4.6 Initial Probability

The initial probability πSi
is the probability that the model assigns to the initial

state i in the beginning. The initial probabilities fulfill the condition
∑
∀Si

πSi = 1.

We denote states for which the first keyword is observable by InitialStates. The
initial states are defined as follows:

πSi
=

authSi + hubSi∑
∀Sj∈InitialStates

(authSj
+ hubSj

)

In fact, πSi
of an initial state depends on both hub and authority values.

4.7 Viterbi Algorithm for the K-best Set of Hidden States

The optimal path through the Markov model for a given sequence (i.e. input
query keywords) reveals disambiguated resources forming a correct segmenta-
tion. The Viterbi algorithm or Viterbi path is a dynamic programming approach
for finding the optimal path through the markov model for a given sequence.
It discovers the most likely sequence of underlying hidden states that might
have generated a given sequence of observations. This discovered path has the
maximum joint emission and transition probability of involved states. The sub

QS 89

paths of this most likely path also have the maximum probability for the re-
spective sub sequence of observations. The naive version of this algorithm just
keeps track of the most likely path. We extended this algorithm using a tree
data structure to store all possible paths generating the observed query key-
words. Therefore, in our implementation we provide a ranked list of all paths
generating the observation sequence with the corresponding probability. After
running the Viterbi algorithm for our running example, the disambiguated re-
sources are: {dbo:VideoGame, dbo:publisher, dbr:Mean-Hamster-Software} and
consequently the reduced set of valid segments is: {VideoGam, publisher, Mean-
Hamster-Software} .

5 Query Segmentation using Natural Language
Processing

Natural language processing (NLP) techniques are commonly used for text seg-
mentation. Here, we use a combination of named entity and multi-word unit
recognition services as well as POS-tagging for segmenting the input-query. In
the following, we discuss this approach in more detail.

Detection of Segments: Formally, the detection of segments aims to transform
the set of keywords K = {k1, .., kn} into a set of segments T = {t1, ..., tm}
where each ki is a substring of exactly one tj ∈ T . Several approaches have
already been developed for this purpose, each with its own drawbacks: Semantic
lookup services (e.g., OpenCalais3 and Yahoo! SeoBook4 as used in the current
implementation) allow to extract named entities (NEs) and multi-word units
(MWUs) from query strings. While these approaches work well for long queries
such as “Films directed by Garry Marshall starring Julia Roberts”, they fail
to discover noun phrases such as “highest place” in the query “Highest place
of Karakoram”. We remedy this drawback by combining lookup services and a
simple noun phrase detector based on POS tags. This detector first applies a
POS tagger to the query. Then, it returns all sequences of keywords whose POS
tags abide by the following right-linear grammar:

1. S → adj A 2. S → nn B 3. A→ B
4. B → nn 5. B → nn B

where S is the start symbol, A and B are non-terminal symbols and nn (noun)
as well as adj (adj) are terminal symbols. The compilation of segments is carried
as follows: We send the input K to the NE and MWU detection services as well
as to the noun phrase detector. Let N be the set of NEs, M the set of MWUs
and P the set of noun phrases returned by the system. These three sets are
merged to a set of labels L = (N ⊕M)⊕ P, where ⊕ is defined as follows:

A⊕B = A ∪B\{b ∈ B|∃a ∈ A overlap(a, b)}, (1)

where overlap(a, b) is true if the strings a and b overlap. The operation ⊕ adds
the longest elements of B to A that do not overlap with A. Note that this
operation is not symmetrical and prefers elements of the set A over those of the
set B.

3 http://viewer.opencalais.com/
4 http://tools.seobook.com/yahoo-keywords/

90 Saeedeh Shekarpour

6 Evaluation

The goal of our experiments was to measure the accuracy of resource disam-
biguation approaches for generating adequate SPARQL queries. Thus, the main
question behind our evaluation was as follows: Given a keyword-based query(KQ)
or a natural-language query (NL) and the equivalent SPARQL query, how well
do the resources computed by our approaches resemble the gold standard. It is
important to point out that a single erroneous segment or resource can lead to
the generation of a wrong SPARQL query. Thus, our criterion for measuring the
correctness of segmentations and disambiguations was that all of the recognized
segments as well as all of the detected resources had to match the gold standard.

Experimental Setup So far, no benchmark for query segmentation and resource
disambiguation has been proposed in literature. Thus, we created such a bench-
mark from the DBpedia fragment of the question answering benchmark QALD-
2 5. The QALD-2 benchmark data consists of 100 training and 100 test questions
in natural-language that are transformed into SPARQL queries. In addition, it
contains a manually created keyword-based representation of each of the natural-
language questions. The benchmark assumed the generic query generation steps
for question answering: First, the correct segments have to be computed and
mapped to the correct resources. Then a correct SPARQL query has to be in-
ferred by joining the different resources with supplementary resources or liter-
als. As we are solely concerned with the first step in this paper, we selected 50
queries from the QALD-2 benchmark (25 from the test and 25 from the training
data sets) that were such that each of the known segments in the benchmark
could be mapped to exactly one resource in the SPARQL query and vice-versa.
Therewith, we could derive the correct segment to resource mapping directly
from the benchmark6. Queries that we discarded include “Give me all soccer
clubs in Spain”, which corresponds to a SPARQL query containing the resources
{dbo:ground, dbo:SoccerClub, dbr:Spain }. The reason for discarding this
particular query was that the resource dbo:ground did not have any match in
the list of keywords. Note that we also discarded queries requiring schema infor-
mation beyond DBpedia schema. Furthermore, 6 queries out of the 25 queries
from the training data set and 10 queries out of 25 queries from the test data
set required a query expansion to map the keywords to resources. For instance,
the keyword “wife” should be matched with “spouse” or “daughter” to “child”.
Given that the approaches at hand generate and score several possible segmenta-
tions (resp. resource disambiguation), we opted for measuring the mean reciprocal
rank MRR [14] for both the query segmentation and the resource disambigua-
tion tasks. For each query qi ∈ Q in the benchmark, we compare the rank ri
assigned by different algorithms to the correct segmentation and to the resource
disambiguation: MRR(A) = 1

|Q|
∑
qi

1
ri
. Note that if the correct segmentation

5 http://www.sc.cit-ec.uni-bielefeld.de/qald-2
6 The queries and result of the evaluation and source code is available for download

at http://aksw.org/Projects/lodquery

QS 91

0
0.2
0.4
0.6
0.8

1

Naïve & HMM Greedy & HMM NLP

0.84
0.64

1
0.84

0.4

0.76 0.72 0.64 0.7 0.72 0.64
0.83

NL-train KQ-train NL-test KQ-test

(a) Queries that require query expansion are included.

0
0.2
0.4
0.6
0.8

1

Naïve & HMM Greedy & HMM NLP

1

0.63

1 1

0.36

0.68

1

0.53
0.41

1

0.53 0.5

NL-train KQ-train NL-test KQ-test

(b) Queries that require query expansion are not included.

Fig. 1. Mean reciprocal rank of query segmentation (first stage).

(resp. resource disambiguation) was not found, the reciprocal rank is assigned
the value 0. The parameter analysis revealed that the optimal value of θ for
punning the state space is the range [0.6, 0.7] which we set it to 0.7.

Results We evaluated our hidden Markov model for resource disambiguation
by combining it with the naive (Naive & HMM) and the greedy segmentation
(Greedy & HMM) approaches for segmentation. We use the natural language
processing (NLP) approach as a baseline in the segmentation stage. For the re-
source disambiguation stage, we combine ranked Cartesian product (RCP) with
the natural language processing (NLP & RCP) and manually injected the correct
segmentation (RCP) as the baseline. Note that we refrained from using any query
expansion method. The segmentation results are shown in Figure 1. The MRR
are computed once with the queries that required expansion and once without.
Figure 1(a), including queries requiring expansion, are slightly in favor of NLP,
which achieves on overage a 4.25% higher MRR than Naive+HMM and a 24.25%
higher MRR than Greedy+HMM. In particular, NLP achieves optimal scores
when presented with the natural-language representation of the queries from the
“train” data set. Naive+HMM clearly outperforms Greedy+HMM in all settings.
The main reason for NLP outperforming Naive+HMM with respect to the seg-
mentation lies in the fact that Naive+HMM and Greedy+HMM are dependent
on matching segments from the query to resources in the knowledge base (i.e. seg-
mentation and resource disambiguation are interwoven). Thus, when no resource
is found for a segment (esp. for queries requiring expansion) the HMM prefers an
erroneous segmentation, while NLP works independent from the disambiguation

92 Saeedeh Shekarpour

0

0.2

0.4

0.6

0.8

1

Naïve & HMM Greedy & HMM NLP & RCP RCP

0.74

0.48

0.64 0.64
0.74

0.28

0.42

0.56

0.3
0.24

0.34

0.56

0.3 0.29

NL-train KQ-train NL-test KQ-test

(a) Queries that require query expansion are included.

0

0.2

0.4

0.6

0.8

1

Naïve & HMM Greedy & HMM NLP & RCP RCP

0.97

0.63

0.84 0.84
0.97

0.36

0.55

0.93

0.5
0.41

0.57

0.93

0.5 0.5

NL-train KQ-train NL-test KQ-test

(b) Queries that require query expansion are not included.

Fig. 2. Mean reciprocal rank of resource disambiguation (second stage).

phase. However, as it can be observed NLP depends on the query expression.
Figure 1(b) more clearly highlights the accuracy of different approaches. Here,
the MRR without queries requiring expansion is shown. Naive+HMM perfectly
segments both natural language and keyword-based queries. The superiority of
intertwining segmentation and disambiguation in Naive+HMM is clearly shown
by our disambiguation results in the second stage in Figure 2. In this stage,
Naive+HMM outperforms Greedy+HMM, NLP+RCP and RCP in all four ex-
perimental settings. Figure 2(a) shows on average 24% higher MRR, although
queries requiring expansion are included. In the absence of the queries that re-
quired an expansion (Figure 2(b)), Naive+HMM on average by 38% superior
to all other approaches and 25% superior to RCP. Note that RCP relies on
correct segmentation which in reality is not always a valid assumption. Gener-
ally, Naive+HMM being superior to Greedy+HMM can be expected, since the
naive approach for segmentation generates more segments from which the HMM
can choose. Naive+HMM outperforming RCP (resp. NLP+RCP) is mostly re-
lated to RCP (resp. NLP+RCP) often failing to assign the highest rank to the
correct disambiguation. One important feature of our approach is, as the evalu-
ation confirms, the robustness with regard to the query expression variance. As
shown in Figure 2, Naive+HMM achieves the same MRR on natural-language

QS 93

and the keyword-based representation of queries on both – the train and the
test – datasets. Overall, Naive+HMM significantly outperforms our baseline
Greedy+HNM as well as state-of-the-art techniques based on NLP.

7 Discussion and Future Work

We explored different methods for bootstrapping the parameters (i.e. different
distributions tested e.g., normal, Zipf) of the HMM. The results achieved with
these methods only led to a very low accuracy. The success of our model relies on
transition probabilities which are based on the connectivity of both the source
and target node (hub score of source and sink authority) as well as taking into
account the connectivity (authority) of all sink states. Employing the HITS
algorithm leads to distributing a normalized connectivity degree across the state
space. More importantly, note that considering a transition probability to the
unknown entity state is crucial, since it arranges states with the same emitted
segments in a descending order based on their hub scores. Most previous work
has been based on finding a path between two candidate entities. For future, we
aim to realize a search engine for the Data Web, which is as easy to use as search
engines for the Document Web, but allows to create complex queries and returns
comprehensive structured query results7. A first area of improvements is related
to using dictionary knowledge such as hypernyms, hyponyms or co-hyponyms.

References

1. D. J. Brenes, D. Gayo-Avello, and R. Garcia. On the fly query entity decomposition
using snippets. CoRR, abs/1005.5516, 2010.

2. L. Finkelstein, E. Gabrilovich, Y. Matias, E. Rivlin, Z. Solan, G. Wolfman, and
E. Ruppin. Placing Search in Context: the Concept Revisited. In WWW, 2001.

3. J. Guo, G. Xu, X. Cheng, and H. Li. Named entity recognition in query. ACM,
2009.

4. J. M. Kleinberg. Authoritative sources in a hyperlinked environment. J. ACM,
46(5), 1999.

5. R. Kraft, C. C. Chang, F. Maghoul, and R. Kumar. Searching with context. In
WWW ’06: 15th Int. Conf. on World Wide Web. ACM, 2006.

6. S. Lawrence. Context in web search. IEEE Data Eng. Bull., 23(3):25–32, 2000.
7. K. Q. Pu and X. Yu. Keyword query cleaning. PVLDB, 1(1):909–920, 2008.
8. Lance A. Ramshaw and Mitchell P. Marcus. Text chunking using transformation-

based learning. CoRR, 1995.
9. K. M. Risvik, T. Mikolajewski, and P. Boros. Query segmentation for web search.

2003.
10. A. Shepitsen, J. Gemmell, B. Mobasher, and R. Burke. Personalized recommen-

dation in social tagging systems using hierarchical clustering. ACM, 2008.
11. B. Tan and F. Peng. Unsupervised query segmentation using generative language

models and wikipedia. In WWW. ACM, 2008.
12. B. Tan and F. Peng. Unsupervised query segmentation using generative language

models and wikipedia. ACM, 2008.
13. A. Uzuner, B. Katz, and D. Yuret. Word sense disambiguation for information

retrieval. AAAI Press / The MIT Press, 1999.
14. E. Vorhees. The trec-8 question answering track report. In Proceedings of TREC-8,

1999.
15. X. Yu and H. Shi. Query segmentation using conditional random fields. ACM,

2009.

7 A prototype of our progress in this regard is available at http://sina.aksw.org.

