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Abstract. In this paper, we present a domain recompilation-
based approach towards specifying and handling state-trajectory con-
straints in Hierarchical Task Network (HTN) planning paradigm.
The proposed constraint specification language is inspired by the
PDDL3.0 constructs. The domain-recompilation technique is based
on automata templates for the PDDL modal operators. To implement
automata embedding we have introduced conditional effect construct
in HTN. Introduction of dead automata state has helped in reducing
amount of backtracking that was required originally. The constraint
specification and handling strategy has been tested with a city tour
and travel domain modelled using HTN.

1 INTRODUCTION
Design of intelligent environment rests upon three important activ-
ities: sense, analyze and respond. The sensors acquire relevant data
from the environment, the analyze phase processes the sensor data to
generate some contextual information and the respond phase needs
to plan the actions for some assigned task given the context informa-
tion. Thus planning is an important component of intelligent environ-
ment as far as the actuation part is concerned. Below we present an
example scenario that points out the role of planners in the context
of intelligent environment.

Example 1 City tour and travel
A city tour and travel planner provides the travellers with smart plan
based on the traveller specified intents and state of the environment.
The state of the environment may be described with information re-
lated to the Points of Interests (PoIs), traffic updates, weather update
and others. The state information can be obtained or updated by im-
planting related sensors (traffic sensors, rss feeds, twitter feeds etc.)
and extracting contexts (blocked road segment, accident, inclement
weather etc.) out of the sensor data.

To deploy planners in practical settings, they need to be scalable a
feature that is lacking in most of the “first principle” planners [9]. Hi-
erarchical Task Network (HTN) planning [4] paradigm handles the
scalability issue by consuming knowledge regarding plan search pro-
cess. This indicates that HTN paradigm is a natural fit to the domains
where a planning task can be achieved through some standard pro-
cess modules.

With the constraint specification standard set in PDDL3.0 [5], re-
search in constraint-based planning has gained a considerable mo-
mentum. The classical planners that follow PDDL standard have
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made progress towards handling constraints imposed on goal states
as well as entire set of states visited by a plan. The primary chal-
lenges in planning with constraints are

• processing of the constraint expressions for the consumption by
the planning algorithm, and

• designing planning algorithm to handle constraints.

One of the popular ways to handle constraints is to model plan-
ning as a model checking problem [3]. The plan-space defines the
model which needs to be validated against the stated constraints.
One important decision here is the use of external model checkers
which in turn may call for the adaptation of the planning algorithm
that does not handle constraints. Another approach that avoids ex-
ternal model checkers and adaptation of planning algorithm is do-
main recompilation-based technique. In this approach, the effects
of constraints are simulated by including them in the planning do-
main with no changes in the planning algorithm. The external model
checker based approaches can handle complex and large number of
constraints. However, model checking is expensive in terms of time
and space. On the other hand, domain recompilation-based technique
is efficient by limiting the scope in terms of complexity and number
of constraints.

As compared to its classical counterpart, efforts towards constraint
specification and handling in HTN planning is sparse. Thus the con-
straint or preference specification scheme, the constructs required to
implement them and corresponding planning algorithm have not re-
ceived the required level of attention.

In this work, we aim at incorporating constraint processing fea-
ture in HTN planner. This is achieved through extending a state-of-
the-art open-source HTN planner, namely, JSHOP23 [7]. We have
adopted the constraint specification syntax and semantics provided in
PDDL3.0. A domain recompilation-based strategy has been adopted
to transform state-trajectory constraints into goal constraints. The
specific contributions of this paper are as follows:

• Constraint specification language
• Automata template-based approach for conversion of constraint

expression to automata
• Constructs required to embed constraint automata into planing do-

main
• Reduction of backtracking effort

The paper is organized as follows: Section 2 provides background
on HTN planning and related works in constraint-based HTN plan-
ning. Section 3 presents the constraint specification issues in HTN.
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The constraint compilation technique for HTN is described in sec-
tion 4. Section 5 describes the implementation details and some re-
sults with respect to a city tour and travel domain developed by us.

2 BACKGROUND & RELATED WORKS
Since our primary objective is to incorporate constraint specification
in HTN planning paradigm, brief backgrounds on PDDL3.0 con-
straint specification and HTN planning paradigm are provided in
this section followed by some previous efforts towards constraint and
preference-based planning.

2.1 PDDL3.0 Constraint Specification
Among other features introduced in PDDL3.0, constraint specifica-
tion language perhaps is the most important one. Through this lan-
guage, both the soft and hard constraints can be specified over the
goal state as well as entire state trajectory generated by a plan. To
represent the state-trajectory constraints, some modal operators were
introduced in PDDL3.0. The modal operators are of two types: rel-
ative temporal and metric temporal. The relative temporal operators
are those that do not have any explicit mention of time unlike the
metric temporal operators.

In this paper, we deal with constraints that can be specified
with relative temporal modal operators. PDDL3.0 supported
relative temporal modal operators are at end, always,

sometimes, at most once, sometime after and
sometime before. The semantics of the relative temporal
modal operators are captured through Linear Temporal Logic (LTL).
PDDL3.0 does not support nested modal operators as the nested
construct in a constraint may contribute to the exponential growth of
the corresponding automata required to process the constraint.

2.2 HTN Planning
The HTN planners differ from the classical notion of planning in
various aspects. Firstly, apart from standard classical operators or
primitive tasks, HTN makes use of methods for specifying domain
specific plan search knowledge. Secondly, the goal in HTN is pre-
sented as a complex task whereas classical planning specify goal as
a set of propositions.

A task network is defined by a set of task nodes (T ) and set of
precedence relations (P ). Each of the task nodes contains a task and
a precedence relation establishes a precedence constraint between
two tasks. If all the tasks in the task network are primitive then the
task network is called primitive.

An HTN domain (D = (O,M)) consists of primitive tasks or op-
erators (O) and methods (M ). The primitive tasks are executable and
has precondition, add list and delete list. The complex tasks are de-
composed by their corresponding methods. Depending upon differ-
ent preconditions different branches of decomposition are followed.
The decomposed tasks are more simpler than the original one and
they again form a network depicting the precedence relations among
them.

For a given task, there exists a plan plan π = o1o2 . . . on if there
is a primitive decomposition (Tp) of the initial task network T0 of the
planning problem P = (So, To, D) and π is an instance of Tp.

The planning process starts by solving the initial task network
which in turn is decomposed into more basic task network until the
whole task network becomes primitive (existence of plan) or no more
decomposition is possible (non-existence of plan).

2.3 Constraints in HTN Planning
As compared to classical planning, efforts towards specifying con-
straints or preferences have been started recently. A constraint-based
HTN planning is defined as follows

Definition 1 A constraint-based planning problem is defined as
P = (S0, T0, D,C) where C is the set of constraints. The plan π
generated for P is valid if all constraints in C are satisfied by state
trajectory generated by π.

There have been few efforts towards incorporating PDDL con-
straint specification in HTN. HTNPLAN-P [11] is an HTN-based
planner that can plan with soft constraints or preferences. A best-
first search technique and different heuristics have been used in or-
der to generate preferred plans. SCUP [8] is an algorithm to per-
form web service composition by modelling it as a preference-based
HTN planning problem. Other notable non-HTN planning algorithm
that can handle PDDL constraint constructs are HPlan-P [1] and SG-
PLAN [6].

3 PROPOSED CONSTRAINT SPECIFICATION
FOR HTN

In order to keep the constraint specification compliant to PDDL
standard, the proposed constraint specification borrows PDDL
constructs with minor modifications. The constraints are specified in
problem description in a separate block. The syntax for constraint
specification is as follows
(:constraint constraint name (:modal operator

operands))

A constraint expression starts with a :constraint tag followed
by the constraint name. The modal operator used to encode the
temporal modality is specified followed by the list of arguments
required by the modal operator. The modal operators can be anyone
of the relative temporal modal operators proposed in PDDL.

Some examples of constrains are as follows:

Example 2 There should always 3000 amount of cash available to
the traveller.
(:constraint c1 (:always ((call > avail-cash
3000))))

Example 3 Sometime in the plan poi1 has to be visited
(:constraint c2 (:eventually (visited poi1)))

Example 4 Payment by credit card will be done at most once
(:constraint c3 (:at-most-once (pay-via
creditCard)))

Example 5 poi7 has to be visited sometime before poi2
(:constraint c4 (:s-before(visited
poi2)(visited poi7))

Example 6 poi7 has to be visited sometime after poi2
(:constraint c5 (:s-after(visited
poi2)(visited poi7))

4 COMPILATION OF CONSTRAINTS
After specification, the next step is constraint processing. In this
work, we adopted a domain recompilation based technique for pro-
cessing constraints. A fully automated domain recompilation tech-
nique has the following steps.
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• Conversion of the constraint expressions into LTL formulae.
• Generating Büchi automata for LTL formulae.
• Embedding the automata into planning problem by changing the

problem and domain description.

As modal operator set in PDDL is a closed one and PDDL does not
support nesting of operators, the generation of automata from a con-
straint expression can be simplified by defining automata templates
for the modal operators. Thus the conversion process is adapted into
the following steps.

• Defining automata templates for modal operators.
• Instantiating transition labels of the automata by operands of the

modal operators in the specified constraints.

4.1 Automata Templates
The automata templates are generic representation of the modal op-
erators. An automata template consists of start state, set of tran-
sitions and set of accepting states. A transition is described by a
source-destination state pair and a transition label. The automata
templates are stored as xml specification. An example automata for
at-most-once is shown in Figure 1.

On encountering a constraint expression, the corresponding au-
tomata template is retrieved and the labels of the transitions are in-
stantiated with the logical expressions formed out of the operands in
constraint expression.

4.2 Conditional Effects (CE)
After instantiation of automata, the next task is to embed it into plan-
ning problem. Thus the transitions has to be translated into a form
which the original planner can process. Conditional effect is a con-
struct that supports switch-case like syntax in operator definition.
Apart from the standard effects, the application of an operator may
impose one of multiple effects depending on the branch of precondi-
tion that is being satisfied.

Conditional effects are like operators as they have similar com-
ponents like precondition, delete list and add list. The automata
states are represented by state predicates like (state-C S0),
(state-C S1) . . . (state-C Sn). The plan state and the au-
tomata states are synchronized by adding automata state predicate to
the current plan state. Thus for a constraint C, a plan state will con-
tain no more than one of the automata state predicates. A transition
from one state Sm to another state Sn with label φ can be modelled
by a CE having

• Precondition: logical conjunction of (state-C Sm) and φ
• Delete list: current automata state i.e., (state-C Sm),
(accepting-C) if Sn is not an accepting state.

• Add list: next automata state i.e., (state-C Sn),
(accepting-C) if Sn is an accepting state.

The conditional effect form for automata representing the constraint
always (call > avail-cash 3000) (available cash
should be greater than 3000) is presented below.

(:when (!cond c3 0)

((state-c3 S0)(avail-cash ?VARC0)(call >

?VARC0 3000.0 ))

((state-c3 S0))

((state-c3 S1)(accepting-c3))

) (:when (!cond c3 1)

((state-c3 S1)(avail-cash ?VARC0)(call >

?VARC0 3000.0 ))

((state-c3 S1))

((state-c3 S1)(accepting-c3))

)

(:when (!cond c3 2)

((state-c3 S1)(avail-cash ?VARC0)(not

(call > ?VARC0 3000.0 )))

((state-c3 S1)(accepting-c3))

((state-c3 S2)(dead-c3))

)

(:when (!cond c3 3)

((state-c3 S0)(avail-cash ?VARC0)(not

(call > ?VARC0 3000.0 )))

((state-c3 S0)(accepting-c3))

((state-c3 S2)(dead-c3))

)

4.3 Automata Simulation

After representing the automata into required construct, one needs to
simulate the automata correctly to test the validity of the constraints.
This is achieved through the following changes in the original plan-
ning problem.

• Start state initialization: The start states of the automata have
to be initialized and the corresponding state predicates have
to be inserted in the plan state prior to start solving the actual
task network. This is achieved through the inclusion of a new
operators !start in the compiled domain description. The
!start operator for two constraints is shown below.

(:operator (!start)

()

()

((state-c1 S0)(state-c2 S0))

)

It is to be noted that the operator has empty precondition and
delete list. The add list consists of the predicates stating that the
automata are in start state.

• Probing plan validity: A constraint is satisfied if the correspond-
ing automata is in an accepting state at the end of the plan.
For a constraint C, the !finish operator performs this task
by checking whether (accepting-C) is there in the final
plan state. If so the plan satisfies C; otherwise it is violated. An
example finish operator is shown below.

(:operator (!finish)

(accepting-c1)(accepting-c2)

()

()

)

• Changes in operators: After applying an operator, some state pred-
icates will be changed which in turn ask for changes in the current
states of some automata. As discussed earlier, the transitions can
be modelled with CEs. The union of the set of CEs correspond-
ing to the automata for all the constraints will decide the next au-
tomata state after applying one action. Thus the union of the CEs
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Figure 1. Automata template for at-most-once modal operator

are added to the domain operators in compiled domain descrip-
tion.

• Modified initial task network: Apart from the tasks in the original
initial task network, two additional tasks !start and !finish
have to be performed. The modified initial task network in
the compiled problem description is (!start)(original

initial task network)(!finish).
• Removal of constraint block: As the constraints have already been

taken care of by the automata, they are removed in the compiled
problem description.

5 IMPLEMENTATION AND RESULTS
In this section, we describe the implementing details of constraint
processing in existing HTN framework. We study different aspects
of constraint-based HTN planning in the purview of a domain called
city tour and travel.

5.1 Constraints in JSHOP2
JSHOP2 is a java implementation of Simple Hierarchical Ordered
Planner (SHOP2) [10]. It is an open source tool for generating prob-
lem specific planner. Current implementation does not have the fa-
cility to specify and process constraints. In this work, we have ex-
tended JSHOP2 to incorporate PDDL3.0 supported relative temporal
operators. Here we describe the implementation details of the said
extension. The modifications are as follows:

• Constraint block: A constraint block has been added in the prob-
lem description to specify constraints. The constraints are ex-
pressed by using modal operators. The original ANTLR4 JSHOP2
grammar has been modified to add rules for parsing constraint ex-
pressions.

• Conditional Effect: JSHOP2 does not support conditional effect
construct. Looking at the similarity of the constructs, the CE ex-
tension has been implemented by modelling CEs as operators.

• Translation of CEs: The CEs are automatically translated into
JSHOP2 operator format and appended into the original operators.

• Inserting !start and !finish: Depending on the expressed
constraints, the !start and !finish operators are constructed
and added to the operator list in domain description.

Next we provide a brief description of HTN domain developed for
city tour and travel application and this domain is used to test the
proposed extension of JSHOP2.
4
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5.2 City Tour and Travel Domain

City tour and travel is a service provided by the city authority to
aid the prospective tourists with smart travel plans. The travellers
may specify their travel intents in terms of points of interest to be
visited, other activities. The application in response generates valid
plans with respect to the traveller’s intents and constraints imposed
by him/her. Here, we briefly describe the domain the detail of which
is given in [2].

The operators and the methods in the domain description are given
in Table 1 and Table 2 respectively.

Table 1. Operators in city tour and travel domain

Operators Synopsis
!load-pref This is used in loading a traveller intent
!set-cost This is used to set the tour cost based on avail-

able amount and estimated cost
!mark-stay-hotel Marking one hotel of traveller’s choice and

updates time of day
!lunch This is used to represent the fact that the user

has taken lunch
!dinner Mark the fact that the traveller has taken din-

ner
!set-loc The traveller has visited a particular location
!end-day Marks the end of day and reset time of day

for the next day

Table 2. Methods in city tour and travel domain

Methods Synopsis
ini-pref a generic method that loads all the traveller

intents
end-day To probe the end of day condition
find-hotel-go To find the hotel that matches traveller speci-

fied features
travel To visit the traveller provided points of inter-

est
find-rest To find the restaurant that matches traveller

specified features

The state information consists of facts related to hotels and their
services, restaurants and information about points of interest. The ini-
tial task network consists of one task that specifies choices regarding
hotels, restaurants and points of interest as arguments.
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5.3 Experimental Setup & Results
The results presented in [2] were based on original JSHOP2. Here,
we modify the experimental setup in order to test the implemented
extension over JSHOP2. The experiments have been performed on a
2.99 GHz core 2 duo Intel processor with 2GB RAM machine. The
problem description consists of 6 hotels having 7 different services
(total 15 facts), information about 17 restaurants (17 facts) and infor-
mation about 28 locations (28 facts). In experimental study, we have
considered the following test scenarios.

• Experiment I: Order of PoIs and constraint
• Experiment II: The effect of initial available cash with constraint

on PoIs.
• Experiment III: The effect of constraint over traveller’s wallet.

Experiment I: In this experiment, we test the performance of the
planner based on the setup where the traveller has specified the POIs
in some order and placed constraint on a particular PoI that needs
to be visited. All the PoIs are placed in order in the initial task net-
work description. Figure 2 depicts the effect of selecting different
PoIs and number of days to be planned. The x-axis plots the values
of the position of the constrained PoI in the PoI list specified in the
initial task network and y-axis plots the number of plan steps5 for
each constrained PoI. This experiment also presents the comparison
of planner performance in case of one-day and two-day travel plan-
ning.

Figure 2. Effect of position of constrained PoI

From the specified list, the number of PoIs selected by the planner
is limited by the number of days to be visited and available cash. It is
to be noted that in both one-day and two-day plan the number of plan
steps increases linearly with the relative position of the constrained
PoI with notable spikes in two-day plan. The explanations behind the
observations are as follows.

• Linearity: To include the constrained PoI in the plan, the planner
needs to backtrack, remove the PoI that was selected last and in-
clude the constrained PoI. This takes same amount of steps to be
performed for each PoI preceding the constrained PoI. This at-
tributes to the linearity of the plan step size growth.

• Spikes: A spike is observed when a PoI with high cost is selected
as constrained PoI. To satisfy the budget, the planner needs to
remove more than one PoIs or select some other PoIs to make
room for the constrained PoI. Hence the amount of backtracking
increases non-linearly.

5 The total number of steps including backtracking steps required by the plan-
ner

Experiment II: In this experiment, we study the effect of initial cash
on the number of plan steps. The planner was asked to generate plan
for two-day trip with constraint on one particular PoI to be visited.
Figure 3 presents the variation of number of plan steps with initial
cash available to the traveller.

Figure 3. Effect of initial cash and constrained PoI

Similar experiment has been performed on the planner without any
constraints. The variation was similar as in Figure 3 with minor de-
crease in number of plan steps.

In both the cases, no plan was getting generated below a certain
limit on initial cash. After that the number of plan steps was
increasing in rapid rate with increasing initial cash upto a certain
limit and was decreasing again with increasing cash.

Experiment III: In this experiment, we put constraint like
‘the traveller should always have greater than 3000 amount of cash
available’. With this constraint, the variation in the number of plan
steps with initial cash has been studied and presented in Figure 4.

Figure 4. Effect of constraint over traveller’s wallet with ‘always’ modal
operator

It is noticed that for smaller and larger amount of cash the planner
has been able to generate plan within reasonable time. However, for
moderate amount of cash (900 – 4000) planner failed to generate
plan with the given computing power. This is due to huge amount of
backtracking in case moderate initial cash.

5.4 Avoiding some Pitfalls
In experiment III, the planner should indicate that the constraint is
violated for initial cash less than 3000. Instead, the planner back-
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tracks enormously with different available options. A close look at
the automata for the modal operators reveals an interesting state of
the automata which we call as dead state. A dead state is defined as
the run phase of the automata in which the automata is in a state that
does not have any outgoing transition. For example, S2 is a dead state
of the automata for always operator (Figure 5).

Figure 5. Dead state of always automata

For any value less than 3000 the automata will be in a dead state
and will never reach the accepting state. Consequently, the accep-
tance check operator !finish will fail and the planner will back-
track with other instantiations of variables, operators and methods.

This huge amount of backtracking can be avoided by making the
planner aware of the dead state. Whenever an automata is in a dead
state (dead-C) predicate is added to the aggregated state informa-
tion. The precondition of the !finish operator for a constraint C is
changed to (or (accepting-C)(dead-C)).

The improvement in performance of the planner after the inclusion
of dead state is shown in Figure 6.

Figure 6. Performance improvement due to inclusion of dead state

6 Discussion
In this paper, we have adopted a domain recompilation-based tech-
nique towards extending HTN planner for handling temporal con-
straints. The constraints are processed by representing them into au-
tomata corresponding to the modal operators used to express them.
The resulting automata have been embedded into the original plan-
ning domain thus generating new domain and problem descriptions
that the original planner can consume without the knowledge of the
existence of any constraints. We have tested different aspects of the
constraint-based HTN planner with a city tour and travel domain.
Different issues and limitations of the proposed extension are dis-
cussed below.

• The automata for the modal operators have been specified through
generic templates. This limits the scope of expressive power of
the constraint specification. The inclusion of expressions involv-
ing nested modal constructs calls for automatic translation of con-
straint expressions into automata.

• The present extension deals with only untimed (LTL) category of
the modal operators where the automata template-based constraint
processing is feasible. However, the constraint expression involv-
ing the timed modal operators cannot be captured through the cur-
rent scheme.

We will take up the above mentioned issues as our future research
challenges.
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