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Abstract.1  HVAC systems are significant consumers of energy, 
however building management systems do not typically operate 
them in accordance with occupant movements. Due to the delayed 
response of HVAC systems, prediction of occupant locations is 
necessary to maximize energy efficiency. In this paper we present 
an approach to occupant location prediction based on association 
rule mining, which allows prediction based on historical occupant 
movements and any available real time information. We show how 
association rule mining can be adapted for occupant prediction and 
show the results of applying this approach on simulated and real 
occupants. 

1 INTRODUCTION 

Office buildings are significant consumers of energy: buildings 

typically account for up to 40% of the energy use in industrialised 

countries [1], and of that, over 70% is consumed in the operation of 

the building through heating, ventilation, air conditioning (HVAC) 

and lighting. A large portion of this is consumed under static 

control regimes, in which heating, cooling and lighting are applied 

according to fixed schedules, specified when the buildings were 

designed, regardless of how the buildings are actually used. To 

improve energy efficiency, the building management system 

should operate the HVAC systems in response to the actual 

behavior patterns of the occupants. However, heating and cooling 

systems have a delayed response, and so to satisfy the needs of the 

occupants, the management system must predict the occupant 

behaviour . The prediction system should be accurate at both bulk 

and individual levels: the total number of occupants of a building 

or a zone determine the total load on the HVAC system, while 

knowing the presence and identity of an occupant of an individual 

office allows us to avoid waste through unnecessary heating or 

cooling without discomforting the individual. 

We believe that in most office buildings, the behaviour of the 

occupants tends to be regular. The regularity may be based on the 

time of day, or particular days of the week or times of the year. 

Behaviour within a day may also be dependent on behaviour earlier 

in the day, or dependent on the behaviour of other associated 

individuals. We require a system which is able to recognise these 

time and feature based patterns across different levels of 

granularity from observed data. Further, many office users now use 

electronic calendars to manage their schedules, and information in 

these calendars may support or override the regular behaviour. The 

reliability of the calendar data will depend on the individual 
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maintaining it, and so the prediction system needs to be able to 

learn occupant-specific patterns from the calendars. 

We propose the use of association rule mining for learning 

individual occupant behaviour patterns, using the Apriori algorithm 

[2]. From the individual patterns, we then aggregate behaviour to 

produce bulk occupancy predictions. We show how the algorithm 

can be extended to represent time series, incorporating calendar 

entries. We then propose a number of transformations of the 

learning mechanism, pruning itemsets and rules to focus in on 

useful rules, and extending the generation of itemsets in areas 

where useful patterns will be found. We evaluate the performance 

empirically on both simulated and real observed data, and show a 

14% increase in accuracy over the base algorithm, reaching up to 

79% accuracy in predicting occupant locations on real data and up 

to 85% accuracy in predicting whether rooms are occupied on 

simulated data. 

The remainder of the paper is organized as follows: Section 2 

provides an overview of association rules and the existing work on 

location prediction. Section 3 details the modifications we make to 

the mining process. In Section 4 we outline the datasets we use for 

evaluation and present our results. We conclude the paper in 

Section 5. 

2 RELATED WORK 

2.1 Location Prediction 

Existing methods for predicting occupant locations include 

bayesian networks[3], neural networks[4], state predictors[5], 

context predictors[6], eigenbehaviors [7].  

The Bayesian network approach presented in [3] predicts the 

occupant’s next location based on the sequence of their previous 

locations and the current time of day and day of the week. Based 

on the current room and the day/time, it also predicts the duration 

of the occupant’s stay in the current room. This results in separate 

predictions for the occupant’s next location and for the time they 

will move there. 

The neural network approach uses a binary codification of the 

location sequences as input to a neural network. In [4] both local 

and global predictors are considered. A local predictor is a network 

which is trained on and predicts a particular occupant, and thus 

deals only with codified location sequences. The global predictor 

takes all occupants’ location sequences, along with associated 

occupant codes, as training data, and can make predictions for any 

occupant. 
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The state predictor approach in [5] uses a two-level context 

predictor with two-state predictors. This method selects a two-state 

predictor based on the occupant’s sequence of previous locations. 

Each state within the selected predictor is a prediction; the current 

state is used as the prediction, and the state may then change 

depending on whether the prediction was accurate. Being a two-

state predictor, each possible location has two corresponding states, 

so a maximum of two incorrect predictions for any given sequence 

is necessary to change future predictions, resulting in fast 

retraining if an occupant changes their behavior. 

The second level of this predictor can store the frequencies of 

the possible next locations for each sequence, instead of state 

predictors. This makes it equivalent to a markov model approach. 

These approaches all predict the occupant’s next location, and 

with the exception of the Bayesian network, only use the 

occupant’s recent locations. Our application requires longer term 

predictions and we believe there may be more general associations 

between the occupants’ locations at different times which allow for 

such predictions. Association rule mining is intended to discover 

general patterns in data and so we propose to investigate whether 

association rule mining can be used to predict occupant locations. 

2.2 Association Rules 

Association rule mining was introduced in [2] as an unsupervised 

approach to finding patterns in large datasets. The original 

application was discovering patterns in datasets of transactions, 

where each transaction was a market basket, i.e. a set of purchased 

items. In that application items were literals, simple strings which 

are either present or absent in a transaction; however the algorithm 

can be applied without modification to sets of attribute/value pairs. 

We chose the Apriori algorithm as it is the most basic association 

rule mining algorithm and thus simplest to modify. 

Let U be a universe of items. A dataset D is a set of instances 

  , where each instance is a set of items from U. An itemset X 

is a subset of U. The frequency of X, , is the number of 

instances I in D for which   , while the support is: 

 

   (1) 

 

An association rule is an implication of the form    where 

X and Y are itemsets such that     . This rule states that 

each instance which contains X tends to contain Y. The support of 

the rule is   . The confidence of the rule is how often it 

is correct as a fraction of how often it applies: 

 

       (2) 

 

The purpose of an association rule mining algorithm is to find 

the set of rules which are above user-specific thresholds of 

confidence and support. The first step is to find all itemsets which 

are ‘frequent’ according to the support threshold. Association rules 

are then generated from these itemsets, and any rules which fall 

below the user-specified minimum confidence are discarded. 

Confidence is used to measure the reliability of a rule in terms of 

how often it is correct according to the training data. Finding the 

frequent itemsets is the more difficult step, as the desired itemsets 

must be found among the total    itemsets which can be 

generated. 

Apriori uses breadth first search to find all frequent itemsets. 

First all itemsets of size 1 are enumerated. Itemsets whose support 

falls below the support threshold (infrequent itemsets) are 

removed, as any superset of an infrequent itemset will also be 

infrequent. Candidate itemsets of size 2 are then generated by 

combining all frequent itemsets of size 1, and infrequent itemsets 

of size 2 are removed. This process continues, finding frequent 

itemsets of size n by generating candidates from the itemsets of 

size n-1 and removing infrequent itemsets, until an n where no 

frequent itemsets exist is reached. 

Once the frequent itemsets have been found, for each frequent 

itemset X all rules of the form      where    and 

   are generated, and those which do not obey the confidence 

threshold are discarded. 

 

3 ADAPTING ASSOCIATION RULE 
MINING FOR OCCUPANT PREDICTION 

The first task in applying association rule mining is to determine 

the format of the dataset. We define an instance to be a single day 

for a single occupant, recording for each time slot the location of 

the occupant. It also includes a set of scheduled locations, 

specifying where the occupant's calendar stated they would be. 

Finally, each instance records which occupant and day of the week 

it applies to. Thus the set of attributes in our dataset is  
       , where d is the day, o is the occupant,  is the 

occupant’s location at time slot n, and  is the location the 

occupant was scheduled to be in at time n. Our objective then is to 

find rules which predict the value of an attribute in     based on 

the other attributes. In order to be able to compare confidences 

meaningfully, we restrict our attention to rules which predict single 

attributes. 

Although this format is all that is needed to run Apriori, it is 

unlikely to produce usable results. The items in our dataset have 

semantics which are critical for the eventual application, but 

Apriori by default treats them all as equivalent. 

The location attributes     represent an ordered list of 

time/location pairs which it is our objective to predict. However, 

Apriori has no concept of the importance of or ordering over these 

items, so it will produce rules which run counter to the order, i.e. 

rules which use later locations to predict earlier locations, and 

which make useless predictions, e.g. predicting timetable entries.  

A further important attribute distinction is that      and 

    are actual location data, whereas d and are data labelling 

the location data, i.e. meta-data. Due to this their values are in a 

sense fixed. For example, in an instance which describes occupant 

A’s movements on a Monday, d and o are fixed at Monday and A 

respectively, whereas all the other attributes can, in principle, take 

any value in their domain. This affects the meaning of the support 

metric as the maximum support for any itemset which includes d or 

o will be less than 1. Since support is used to determine which 

itemsets are considered frequent, patterns which occur frequently 

for certain days and/or agents will be rated as less frequent due to 

the inclusion of other days and agents in the dataset. 

A problem with regard to the content of the data is that the 

many common patterns tend to be the least interesting, while we 

require low frequency patterns to be found in order to make 

predictions in unusual circumstances. Consider for example an 

occupant who has a 90% chance of being in their office in any 
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timeslot from 9am to 5pm. In this case, any pattern of the form “in 

at N implies in at M” where N and M are between 9-5 will have 

support of at least 80%, thus all such patterns will be found. But 

there is no real correlation there; all these patterns could be 

summarized simply as “the occupant is likely to be in”. At the 

extreme opposite end, we have days when the occupant does not 

turn up at all, due to illness or other reasons – a very obvious 

pattern which would be represented by rules such as "out at 9,10,11 

implies out at 12”. Such rules could have confidence close to 100% 

if the occupant tends to be in in the morning, but if absences are 

rare the itemset behind the rule will have such low support it won’t 

even be a candidate. Since enumerating every itemset is not 

feasible, we wish to eliminate the common uninteresting ones and 

focus on the less common but interesting ones. 

3.1 Candidate/Rule Pruning 

As mentioned above, standard Apriori has no concept of the 

relationships between the items in an instance which exist in 

occupancy data. Due to this it will by default generate some useless 

rules. The important features are that the location attributes      
represent an ordered list and that they are the only attributes we 

wish to predict. As an itemset which does not contain any of these 

attributes cannot produce a rule which predicts any of them, we 

eliminate itemsets which do not contain some subset of      
during candidate elimination. This prunes areas of the itemset 

lattice which could not provide useful predictions. 

With regard to rule generation, we only wish to predict the 

future based on the past (i.e. rules which obey the ordering of  

  , and we only wish to predict a single location at a time in 

order to allow meaningful comparison of the rules at rule selection 

time. Thus our rule generation is as follows: for every itemset 

{   ,   , where l is a location item and x is any other type 

of item,  is the consequent and all other items are the antecedent. 

3.2 Support Modification 

In 2.1 we provided the typical definition of support, the proportion 

of the instances which contain the itemset/rule. To deal with the 

reduction in support for itemsets which contain metadata items, we 

redefine support as follows: 

 

   (3) 

 

For market basket items, which can in principle occur in every 

instance, this is the same definition. In the case of our metadata 

attribute/value pairs however, this definition results in a different 

value which is normalized such that the maximum value of 

supp(X) is always 1 for comparison to other support values. 

Using this modified support threshold in Apriori allows it to 

find itemsets when have a lower support due to their metadata 

attributes. However this greatly increases the area of the itemset 

lattice which is explored for any given support threshold. Thus, in 

order to conserve memory, we mine each possible combination in a 

separate pass. For every combination of metadata attributes/values 

C, we initialize Apriori with all itemsets of size    which are 

a superset of C, instead of standard 1-itemsets. This allows the 

generation of every itemset which contains that metadata 

combination in a separate pass. 

3.3 Windowing 

Some important patterns have such low support that trying to find 

them by simply lowering the support threshold would result in a 

combinatorial explosion. Instead we will use the structure of the 

data to target them specifically. An example of such a pattern is a 

full day of absence: a very obvious pattern, but one which occurs 

so infrequently that it won’t be learned. As our location attributes 

form an ordered list we can define subsets of them which are 

consecutive, temporal windows over the location data. By mining 

these subsets individually, we can reduce the size of the space of 

itemsets while still discovering the itemsets which describe 

consecutive elements of the low support patterns. 

We define a window as:        

 where i and j denote the first and last timeslots, and n and m 

denote the beginning and length of the window respectively. In the 

windowing phase, we search within every window of the chosen 

length. This approach ignores patterns which span times which do 

not fit within a window. We choose to focus on patterns which 

occur in consecutive time slots as predicting occupant locations 

based on their most recent movements has been shown to work by 

the other approaches discussed in 2.2. 

For distinct patterns windowing is sufficient to find rules which 

will make the correct predictions should the pattern recur. Taking 

the example of an occupant who is absent all day, within each 

window we will learn that consecutive hours of absence imply 

absence in the next hour. Taken in combination, these rules will 

state that at any hour of the day, consecutive absence implies 

continued absence, although we are still not learning sequences in 

the same sense as the approaches in 2.2, as the individual rules are 

still tied to specific time slots. These rules are added to the rules 

mined from the complete instances. 

3.4 Rule Selection 

Once the rules are generated we need a mechanism to choose a rule 

to make a prediction. When a prediction is required, values for any 

subset of the possible attributes can be supplied in the form of an 

itemset V. A target for the prediction  is also given. We search 

the generated rules for all rules    where    and   . 
From these we select the rule with the highest confidence to make 

the prediction2.  

4 EXPERIMENTAL EVALUATION 

To test our approach we use three different datasets: (i) data 

obtained from a simulator which generates occupancy patterns, (ii) 

data recorded by occupants of the 4C lab in UCC, and (iii) data 

from the Augsburg Indoor Location Tracking Benchmarks [8]. 

4.1 Occupancy Simulator 

We have developed an occupancy simulator loosely based on the 

work of [9]. We model the activities which the occupants engage in 

during the day to determine their location. The model can also be 

viewed as a markov chain, where each state is a set of generated 

events and each transition adds a new event to the set. 
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We have a set of agents A for whom we wish to generate 

locations over a period of time. To determine these locations we 

have a set of tasks T which can be assigned to agents. Each task 

has a set of attributes, enumerated below, which determine the 

agent’s location for a period of time. To assign tasks to agents we 

have a set of roles R, each of which contains a set of tasks. Each 

agent then has a set of roles which apply to them. A role is chosen 

for each agent from their respective set at the beginning of each 

day based on a probability distribution over their possible roles. 

Roles are defined as           where  
and are sets of possible arrival and finish times outside which the 

agent is absent,  is a set of possible durations for the role,  is a 

flag indicating whether the agent may attend meetings in this role, 

and    are sets of tasks of different types. 

There are three different types of task in order to represent 

different kinds of activities which can occur. These types differ in 

how the task’s start time is selected and the order in which the 

tasks are evaluated: 

Primary tasks are evaluated first:        where 

 is a set of possible start times,  is a set of possible durations, 

 is a set of possible locations, and  is the base probability of the 

task occurring. Values are chosen from , and  based on 

associated probability distributions. A primary task will not occur 

if the agent is not available at the time chosen. 

Secondary tasks are evaluated once all primary tasks are done: 

       where the attributes are as above, except 

that times are selected from  in a set order until a free time slot is 

found. A secondary task will not occur if the agent is not free at 

any of the possible times. 

For every empty slot which is left unassigned at the end of the 

process, a tertiary task is select to fill the slot:    . 

Tertiary tasks are selected based on an associated probability 

distribution in the role. They have fixed duration and can appear 

multiple times, and so their only property is a location. 

Primary tasks represent activities which must occur at a fixed 

time if they occur and take priority over other tasks, while 

secondary and tertiary tasks represent less important and 

miscellaneous activities which are scheduled around other tasks. 

We also model meetings, which are essentially tasks involving 

multiple agents. Because they involve multiple agents, each 

meeting has a set of relevant agents rather than each agent having a 

set of meetings. We have two types of meetings: 

Primary meetings are evaluated before all other tasks and 

meetings:         . Primary meetings have 

the same attributes as primary tasks. In addition, they have a set of 

required agents , whom all must be available for the meeting to 

occur, and a set of optional agents , who will attend if possible. 

Secondary meetings are evaluated after primary meetings and 

primary tasks:         . Secondary meetings 

have the same properties as secondary tasks. In addition, they have 

a set of agents  a minimum number of available agents required 

for the meeting to occur . 
The model used to generate the data used in this evaluation 

includes 8 agents. 3 of these are lecturers, the remaining 5 are 

students. The lecturers each have a one person office, which they 

leave to give lectures and labs at fixed times with high probability. 

The students share an open plan office, which they leave to have 

one-on-one meetings with their supervisor (one of the lecturers). 

All agents also go to lunch, choosing whether to remain in the 

building or leave based on individual probabilities, attend a weekly 

group meeting which is dependent on certain agents being present 

to run it, and have a chance of missing an entire day due to illness. 

To simulate how a system using this approach would actually 

function, we use a contiguous dataset which is split such that there 

is 2 months of training data with the following 3 weeks as test data. 

4.2 UCC Data 

To gather data to test our approach, five occupants of the 4C lab in 

University College Cork including the authors manually recorded 

their movements over a period of 1-2 months using google 

calendar. Each occupant recorded their location by room code if 

within a campus building, or marked themselves as ‘away’ if off 

campus. The data was recorded from 8am to 6pm with half-hour 

granularity, with any occupancy of significantly shorter duration 

than 30 minutes filtered out. The occupants also recorded their 

timetables for the time period, which recorded the locations they 

were scheduled to be in in the same format as the record of their 

actual movements. 20 locations were frequented by the occupants 

including the ‘away’ location. The test set for this evaluation was 

the most recent two weeks of data for each occupant, while the 

training set was all the preceding data each occupant had recorded, 

which covered between 3 and 7 weeks. 

4.3 Augsburg Dataset 

This external dataset contains data on 4 occupants for 1-2 weeks in 

summer and 1-2 months in fall. The format of the dataset is a series 

of timestamped locations for each occupant. In order to be able to 

apply Apriori to the data, we converted it to the same timeslot 

format as our gathered data. An occupant’s location in each 

timeslot is the location they spent the majority of that timeslot in 

according to the original data. Following this conversion there are 

7 locations frequented by the occupants including ‘away’. 

4.4 Experiments 

We generate rules from each training set using a minimum support 

and confidence of 0.2 and 0.5 respectively. During windowing we 

use a window size of 6 slots and a minimum support of 0.05. We 

evaluate the predictions of the association rules for each test set by 

predicting the location of each occupant at each time slot in the test 

set and recording the following statistics: 

• Overall Accuracy: The percentage of predictions made 

which were correct 

• Exact Occupancy: The percentage of room/time 

combinations for which the correct occupancy was 

exactly predicted 

• Binary Occupancy: The percentage of room/time 

combinations for which the room was correctly predicted 

to be occupied or not 

Occupancy level prediction accuracy is only available on the 

simulated dataset, as the collected dataset does not feature shared 

rooms, rendering occupant location prediction and occupancy level 

prediction essentially the same. 

We test the association rules on their ability to predict with and 

without the timetable data available, and their ability to predict 

next-hour and next-day. The former determines whether the values 

of     are available when predicting, and is marked ‘no 
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Timetable’ if they are not. The latter determines whether    

are available, where n is the time slot being predicted, ’Next Hour’ 

if this information is available, and ‘Next Day’ if it is not. 

4.5 Results 

4.5.1 Algorithm Modification 

Table 1.  Algorithm Evaluation Results (UCC Dataset) 

 No Support Mod / 

NoWindowing  

No Windowing All  

Overall 

Accuracy  
65% 74% 79% 

 

Table 1 shows accuracy gains due to the extra areas of the itemset 

lattice explored due to Windowing and Support Modification. 

Support Modification adds the most accuracy, as it allows 

searching for more occupant-specific patterns. Windowing 

provides a smaller boost by allowing us to find patterns which 

describe rarer events. 

The predictor highlights any instances where less than 50% of 

time slots were predicted correctly as problem instances. The 

addition of Support Modification and Windowing reduce the 

number of these problem instances by approx. 66% on all datasets. 

4.5.2 Generated Data 

Table 2. Generated Data Evaluation Results 

Prediction Overall Exact Binary 

Next-Hour 69% 67% 85% 

Next-Day 66% 66% 83% 

Next Hour (No Timetable) 69% 66% 85% 

Next Day (No Timetable) 64% 64% 81% 

 

Table 2 shows the prediction accuracy for the agents in the 

generated data. These agents have a high probability of attending 

their timetabled tasks and narrow windows within which they 

arrive at and leave the building. Due to this their overall behavior is 

quite predictable, resulting in only a 5% drop in accuracy when 

predicting next-day locations without timetable data compared to 

next-hour predictions. The variations in their behavior, such as 

missing tasks or entire days, are purely random and thus 

unpredictable, reducing the accuracy in all tests. 

The exact and binary occupancy level accuracy values vary due 

to the open plan office which the students share. The exact 

occupancy is the same as or slightly lower than the overall 

accuracy as the occupancy for the open plan office can be predicted 

incorrectly if any one student is predicted incorrectly. The binary 

occupancy accuracy is significantly higher due to the high 

probability of the open plan office being occupied by at least one 

student coupled with the high probability of correctly predicting 

the presence of at least one student. 

4.5.3 UCC Data 

Table 3. UCC Data Evaluation Results 

 Next 

Hour 

Next 

Day 

Next Hour (no 

Timetable) 

Next Day (no 

Timetable) 

Overall 

Accuracy 
79% 66% 79% 65% 

Table 3 shows higher overall accuracy on the UCC data than on the 

generated data, which may indicate that the regular habits of 

individual people are less random than the probability model in our 

simulator. The drop in accuracy for next-day predictions compared 

to next-hour predictions shows that more intelligent predictions of 

the real occupants’ movements later in the day can be made based 

on their movements earlier on, if that information is available. 

Figure 1 shows the overall accuracy across the day. The next 

day and next hour predictions are of equal accuracy at the 

beginning and end of the day and at lunch time, as these are the 

times at which people’s movements are most reliable. 

Outside these times, data on the occupant’s movements that day 

are needed to make accurate predictions. The next-day predictions 

drop in accuracy at 14:00. This is due to the system being unable to 

make a prediction for 14:00 without information on earlier 

movements, indicating that relevant rules based solely on historical 

movements at that time were below the confidence threshold. 

Figure 2 shows per-occupant overall accuracy for next-hour and 

next-day predictions. In all cases next-day predictions are equal or 

worse than next-hour predictions, but the degree varies between the 

agents. One occupant is predictable enough that the overall 

accuracy is equal, though this does not necessarily mean that 

exactly the same predictions were made in both tests. 

The availability of timetable data makes no difference to the 

accuracy of the predictions in either case. In general the timetable 

entries in this dataset are weekly meetings. Without the presence of 

irregularly scheduled meetings no extra useful correlations can be 

found. Furthermore meetings can be cancelled, relocated or 

rescheduled without sufficient notice to update the timetable, or the 

occupant can be absent, all of which will reduce the reliability of 

the timetable-related rules. 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.  Prediction accuracy across the day for next-hour (solid) and 

next-day (dashed) predictions 

 
Figure 2.  Prediction accuracy by occupant for next-hour (solid) and next-

day (dashed) predictions 

 

A recurring pattern in the selection of rules is the use of 

timetable entries to predict movements before the meeting, and the 
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use of those predicted movements to predict attendance at the 

meeting. This does not help accuracy on next-day predictions, as in 

these cases the meetings are always scheduled every week and thus 

do not allow discrimination between different patterns of 

movement. However, this does show that in cases where the 

meeting may or may not be scheduled, the timetable data could 

improve accuracy for times before the scheduled event, as well as 

for the event itself. 

4.5.4 Augsburg Dataset 

Table 4. External Data Evaluation Results 

 Two Season Fall 

Overall Accuracy 40% 56% 

 

Table 4 shows overall accuracy on two evaluations on this data. 

The ‘Two Season’ evaluation trains on the summer data and tests 

on the fall data. Our prediction accuracy is low while accuracy 

levels of 70-80% are achieved in [10]. We believe there are two 

reasons for this. First, the occupant patterns are predictable 

sequences but at irregular times of day and our approach cannot 

learn a sequence of movements independently of the time at which 

it occurs. If an occupant repeats the same sequence of movements 

at different times, other approaches will treat this as reinforcement 

of a single sequence, whereas our approach will attempt to learn 

rules representing multiple separate sequences. Second, the 

evaluation in [10] only predicts the destination of an occupant 

when they move rather than predicting their location at each time 

slot. 

The ‘Two Season’ evaluation limits the training data to a 

maximum of two weeks for each occupant, therefore we also 

evaluated a split of the fall data where the final week is used for 

testing, leaving approximately a month of preceding data per 

occupant for training. The increased training set results in a 

significant increase in accuracy, however our approach still has 

difficulty predicting these occupants.  

5 CONCLUSIONS AND FUTURE WORK 

In this paper we presented an approach for applying association 

rule mining to the problem of predicting future occupant locations. 

We implemented our approach using a modification of a standard 

association rule mining algorithm, and presented experimental 

results which show that our modification of the algorithm can 

predict actual occupant movements with a high degree of accuracy, 

but is dependent on the types of patterns in the occupancy data. 

In comparison to standard approaches, association rule mining 

has some benefits and drawbacks. While most other approaches 

predict an occupant’s next location from a sequence representing 

the occupant’s recent movements, our aim is to predict for any time 

slot using whatever information is available, whether it be the 

occupant’s recent movements the same day, or simply their 

historical patterns. This is successful on two of the datasets, but our 

approach’s inability to learn time-independent sequences means we 

fall short of the existing approaches on the third dataset. We intend 

to perform a deeper investigation of how our approach compares to 

existing approaches on our datasets. 

There is existing work on extending Apriori to add new 

functionality, including sequence mining and mining with 

taxonomies. As part of our future work we intend to integrate these 

features into our modified Apriori. Sequence mining will allow it 

to perform better on datasets similar to the Augsburg dataset, as 

well as improving performance on the other datasets, by finding 

time-independent patterns. Taxonomies would allow the 

specification of a hierarchy over the possible locations an occupant 

may occupy. For example, we may generalize all locations to a 

simple in or out of office value for each occupant, and then find 

that in some cases where we cannot predict an occupant’s exact 

location with high confidence, we can be highly confident that they 

will not be in their office. 

We also wish to consider inter-instance mining. In many cases 

an occupant’s movements will depend on other occupants, for 

example a meeting not occurring due to someone being absent. By 

learning patterns between occupants we could recognize these 

cases and improve our prediction accuracy. 

The eventual goal is to integrate this approach with occupant 

localization systems such as [11], and predictive control systems 

such as [12]. Using occupant localization data, a system based on 

our approach could provide the predictions necessary for more 

energy efficient building control.i 
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