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Abstract.
Ensuring that the thermal comfort conditions in offices are in line

with the preferences of the occupants, is one of the main aims of
a heating/cooling control system, in order to save energy, increase
productivity and reduce sick leave days. The industry standard ap-
proach for modelling occupant comfort is Fanger’s Predicted Mean
Vote (PMV). Although PMV is able to predict user thermal satis-
faction with reasonable accuracy, it is a generic model, and requires
the measurement of many variables (including air temperature, radi-
ant temperature, humidity, the outdoor environment) some of which
are difficult to measure in practice (e.g. activity levels and clothing).
As an alternative, we propose Robust Locally Weighted Regression
with Adaptive Bandwidth (LRAB) to learn individual occupant pref-
erences based on historical reports. As an initial investigation, we
attempt to do this based on just one input parameter, the internal air
temperature. Using publicly available datasets, we demonstrate that
this technique can be significantly more accurate in predicting indi-
vidual comfort than PMV, relies on easily obtainable input data, and
is fast to compute. It is therefore a promising technique to be used as
input to adpative HVAC control systems.

1 INTRODUCTION
One of the primary purposes of heating, ventilating and air condition-
ing (HVAC) systems is to maintain an internal environment which is
comfortable for the occupants. Accurately predicting comfort levels
for the occupants can enable one to avoid unnecessary heating or
cooling, and thus improve the energy efficiency of the HVAC sys-
tems. A number of thermal comfort indices (indicators of human
comfort) have been studied for the design of HVAC systems [1,2],
the most widely used of which is the Predicted Mean Vote (PMV)
index, which was developed by Fanger [1]. This conventional PMV
model predicts the mean thermal sensation vote on a standard scale
for a large group of people in a given indoor climate. It is a function
of two human variables and four environmental variables, i.e. cloth-
ing insulation worn by the occupants, human activity, air tempera-
ture, air relative humidity, air velocity and mean radiant temperature.
The values of the PMV index have a range from -3 to +3, which cor-
responds to the occupants thermal sensation from cold to hot, with
the zero value of PMV meaning neutral.

However, PMV has some drawbacks: (i) it requires many environ-
mental data whose retrieval is costly due to the sensors needed, and
it requires precise personal dependent data (i.e., clothing and activity
level) which are often difficult to obtain in practice; (ii) it is a statis-
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tical measure which assumes a large number of people experiencing
the same conditions, and so may be inaccurate for small groups, or
for variable conditions and behaviours within the space, and (iii) it
requires an expensive iterative evaluation to compute the root of a
nonlinear relation.

In this paper, we propose an alternative approach tailored to in-
dividual occupants, which relies on historical data on individual re-
sponses to internal environment conditions. We apply Robust Locally
Weighted Regression [23] with an Adaptive Bandwidth (LRAB), a
statistical pattern recognition methods, to learn, automatically, the
comfort model of each user based on their history. As a preliminary
study, we applied this method with only one input variable (internal
air temperature) and compared with PMV, using publicly available
datasets [18]. Our experimental results show that LRAB outperforms
PMV in predicting individual comfort, and hence it is a promising
technique to be used as input to heating/cooling control systems in
office environment.

The paper is organised as follows: in the next section, some back-
ground on PMV and on alternative techniques are reported. Then, in
the section 3, the proposed method is described and in the section
4, the experimental results using a public dataset [18] are shown. Fi-
nally, in the section 5, conclusions and future directions are reported.

2 BACKGROUND

The conventional PMV model has been an international standard
since the 1980s [3,4]. It has been validated by many studies, both in
climate chambers and in buildings [5,6,7]. The standard approach to
comfort-based control involves regulating the internal environment
variables to ensure a PMV value of zero [8,9,10,11,12].

The PMV model parameters are based on field studies over large
populations experiencing the same conditions. For small groups of
people within a single room or zone in a building, however, PMV
may not be an accurate measure. Kumar and Mahdavi in [17] anal-
ysed the discrepancy between predicted mean vote proposed in [1]
and observed values based on a meta-analysis of the field studies
database made available under ASHRAE RP-884 [18] and finally
proposing a framework to adjust the value of thermal comfort in-
dices (a modified PMV). The large field studies on thermal comfort
described in [27], have shown that PMV does not give correct pre-
dictions for all environments. de Dear and Brager [28] found PMV to
be unbiased when used to predict the preferred operative temperature
in the air conditioned buildings. PMV did, however, overestimate the
subjective warmth sensations of people in warm naturally ventilated
buildings. Humphreys and Nicol in [29] showed that PMV was less
closely correlated with the comfort votes than were the air temper-
ature or the mean radiant temperature, and that the effects of errors
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in the measurement of PMV were not negligible. Finally the work in
[30] also showed that the discrepancy between PMV and the mean
comfort vote was related to the mean temperature of the location.

In addition to the relative inaccuracy, the PMV model is a nonlin-
ear relation, and it requires iteratively computing the root of a nonlin-
ear equation, which may take a long computation time. Therefore, a
number of authors have proposed alternative methods of calculation
to the main one proposed in [1]. Fanger [1] and ISO [4] suggest us-
ing tables to determine the PMV values of various combinations be-
tween the six thermal variables. Sherman [13] proposed a simplified
model to calculate the PMV value without any iteration step, by lin-
earizing the radiation exchange term in Fanger’s model. This study
indicated that the simplified model could only determine precisely
when the occupants are near the comfort zone. Federspiel and Asada
[14] proposed a thermal sensation index, which was a modified form
of Fanger’s model. They assumed that the radiative exchange and
the heat transfer coefficient are linear, and they also assumed that
the clothing insulation and heat generation rate of human activity
are constant. They then derived a thermal sensation index that is an
explicit function of the four environmental variables. However, as
the authors said, the simplification of Fanger’s PMV model results
in significant error when the assumptions are not respected. On the
other hand, in [15] and [16] different approaches have been proposed
in order to compute PMV avoiding the difficult iterative calculation.
The former proposes a Genetic Algorithm—Back Propagation neu-
ral network to learn user comfort based both on historical data and
real-time environmental measurements. The latter proposes a neural
network applied to the iterative part of the PMV model that, after a
learning phase, based on historical data, avoids the evaluation of such
iterative calculation in real-time.

Finally, recent trends in the study of the thermal environment con-
ditions for human occupants are reported in the recently accepted
revisions to ASHRAE Standard 55, which includes a new adaptive
comfort standard (ACS) [19]. According to de Dear and Brager [20]
this adaptive model could be an alternative (or a complementary) the-
ory of thermal perception. The fundamental assumption of this alter-
native point of view states that factors beyond fundamental physics
and physiology play an important role in building occupants expec-
tations and thermal preferences. PMV does take into account the heat
balance model with environmental and personal factors, and is able to
account for some degrees of behavioral adaptation such as changing
one’s clothing or adjusting local air velocity. However, it ignores the
psychological dimension of adaptation, which may be particularly
important in contexts where people’s interactions with the environ-
ment (i.e. personal thermal control), or diverse thermal experiences,
may alter their expectations, and thus, their thermal sensation and
satisfaction. In particular, the level of comfort perceived by each in-
dividual also depends on their degree of adaptation to the context and
to the environmental changes, and therefore the specificity of each
individual should be taken into account to learn and predict comfort
satisfaction.

For this reason, some authors have proposed techniques based on
learning the perception of comfort by individuals. For example, in
[21] the author proposes a system able to learn individual thermal
preferences using a Nearest Neighbor Classifier, taking into account
only four variables (air temperature, humidity, clothing insulation
and human activity), acquired by means of wearable sensors. In [22],
a Nearest Neighbor Classification-like method was implemented in
order to learn individual user preferences based on historical data,
using only one variable (air temperature).

In this study we consider such alternative and more practical ap-

proaches to predicting thermal comfort through the automatic learn-
ing of the comfort model of each user based on his/her historical
records. We apply the Robust Locally Weighted Regression [23]
technique with an Adaptive Bandwidth (LRAB), one of the fam-
ily of statistical pattern recognition methods. Non-parametric regres-
sion methods, or kernel-based methods, are well established meth-
ods in statistical pattern recognition [24]. These methods do not
need any specific prior relation among data. Hence, there are no pa-
rameter estimates in non-parametric regression. Instead, to forecast,
these methods retain the data and search through them for past simi-
lar cases. This strength makes non-parametric regression a powerful
method due to its flexible adaptation in a wide variety of situations.
The Robust Locally Weighted Regression is one of a number of non-
parametric regressions. It fits data by local polynomial regression and
joins them together. This method was first introduced by Cleveland
[23] and further developed for multivariate models [25].

3 THE PROPOSED METHOD

The proposed method is largely inspired by the work in [23]. In the
following, we will only describe the proposed LRAB method, while
for a more general description of the robust locally weighted regres-
sion, the readers should refer to the work in [23].

Before giving precise details on the LRAB procedure, we attempt
to explain the basic idea of the method. Let (xi, yi) denote a re-
sponse, yi, to a recorded value xi, for i = 1, . . . , n. In this paper
xi denotes an environmental variable (in our case air temperature)
and the response yi represents the satisfaction degree (integer-valued
on a 7-points scale from −3 to +3) that the user has given in re-
sponse to the condition xi, and then stored in a database. The aim is
to assess the response ŷk (i.e. predict the degree of satisfaction) for
a input value xk. The approach aims to estimate a local mean, fitting
the recorded data by means of a local linear regression centered at
xk. This involves, for a fixed entry point xk, solving a least squares
problem, where αk and βk are the values that minimize:

n�

i=1

�
yi − αk − βk(xi − xk)

�2
ω(xi − xk;h) (1)

Then αk is the response ŷk for the point xk. The kernel function
ω(xi − xk;h), is generally chosen to be a smooth positive function
which peaks at 0 and decreases monotonically as |xi −xk| increases
in size. The smoothing parameter h controls the width of the kernel
function and hence the degree of smoothing applied to the data. This
procedure computes the initial fitted values. Now, for each (xi, yi),
a different weight, ψi is defined, based on the residual (ŷi − yi)
(the larger the residual, the smaller the associated weight). Then, the
function (1) is computed replacing ω(xi − xk;h) with ψi ∗ ω(xi −
xk;h). This is an iterative procedure.

3.1 Kernel function and Adaptive bandwidth

In the following we introduce the concepts of kernel function (and
adaptive bandwidth) and residuals, then we describe the algorithm in
details. There are many criteria to choose the kernel function based
on the theoretical model of the function that has to be fitted. For a
locally weighted regression, a common choice is a tri-cubic function,
which generally can be written as: ω(u) = (1− |u|3)3, for |u| ≤ 1,
and ω = 0 otherwise [23]. Starting from these considerations, we
propose a similar kernel function:
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ω(xi − xk;h) =

�
1−

� |xi − xk|
h

�3
�2

(2)

for |xi − xk| ≤ h; otherwise ω = 0. The outer exponent is 2 (in
place of 3 as in the standard tri-cubic function), because of empirical
considerations (preliminary experiments on smaller set of data were
carried out to select the shape of the kernel function).

Finally, we need to choose the bandwidth h. The choice here needs
to take into account the fact that the density of the recorded data
may be variable. In particular, there may be areas in which the data
are clustered closely together (which suggests that a narrow band-
width would be appropriate), while, on other hand, other areas may
be characterised by sparse data (in which case a choice of a large
bandwidth is better). In view of this, it would be appropriate to have
a large smoothing parameter where the data are sparse, and a smaller
smoothing parameter where the data are denser (Figure 1). In this sit-
uation an adaptive parameter has been introduced. Let the ratio ν/n
(where ν < n), describes the proportion of the sample which con-
tributes strictly positive weight to each local regression (for example
if the ratio is 0.7, it means that 70% of the recorded data contributes
to the regression). Once we have chosen ν/n (that means we have
chosen ν, as n is fixed), we select the ν nearest neighbours from the
new entry point xk. Then, the smoothing parameter h is denoted by
the distance of the most distant neighbour among the ν neighbours
selected. It should be noted that the entire procedure requires the
choice of a single parameter setting.

Figure 1. In locally weighted regression, points are weighted by proximity
to the current xk in question using a kernel function. A linear regression is
then computed using the weighted points. Here, an adaptive bandwidth h

based on the density of the recorded data is proposed.

3.2 Computing the residuals and weights update
In this section we introduce the update mechanism for the weighted
function (2), based on the residuals (ŷi − yi) for i = 1, . . . , n, as
mentioned at start of Section 2. Define the bisquare function:

Γ(ξ) = (1− ξ2)2 (3)

for |ξ| < 1; otherwise Γ = 0.
Then, for a fixed new entry point xk, let:

ρi = (ŷi − yi) (4)

be the residuals for i = 1, . . . , n, between the original points yi and
the estimated points ŷi (i.e. by means of αk and βk), and let m be the

median of the |ρi|. As described in [23], we now choose robustness
weights by:

ψi = Γ(ρi/6m) (5)

At each step of the proposed procedure, the equation (5) is used to
update the weight of the function (2) based on the residual ρi. In this
way the value of the kernel function (2) at each recorded points xi,
is decreased (increased) where the residual value in xi (i.e. ψi) is too
high (too low), so as to improve the regression for the next step.

3.3 The algorithm
The proposed method can be described by the following sequence of
operations:

LRAB

1: Initialize: set parameters ν
2: For each entry point xk:
2.1: minimise (1)
2.2: while iterations < max iterations do:
2.2.1: for each i compute (5)
2.2.2: minimise (1) replacing ω with ψi ∗ ω

2.3: end while
3: end

The algorithm is initialized by setting only one parameter (step
1). Then, for each new entry point xk (step 2), it first computes an
initial fitting (step 2.1), then it strengthens the initial regression by
the steps 2.2.1 to 2.2.2, performing the sub-procedure described in
the previous section, iteratively. If we have K new entry points xk

in total, the steps from 2.1 to 2.3 are repeated K times (one time for
each new entry point).

4 EXPERIMENTS
This section describes the experimental results obtained from a com-
parison between the proposed method and the PMV. Although PMV
is not based on a learning approach, in this paper, we compare our
method with PMV since the latter is the international standard used
to predict comfort in current building design and operation [32,33].

In particular, LRAB has been compared with the PMV index on
real data from ASHRAE RP-884 database [18]. This collection con-
tains 52 studies with more than 20,000 user comfort votes from dif-
ferent climate zones. However, some of these field studies contain
only a few votes for each user. Thus they are not well suited for test-
ing the proposed algorithm. This is because our approach seeks to
learn the user preferences based on their votes, and it requires suffi-
ciently many data records. For this reason, only the users with more
than 5 votes have been used to compute the proposed LRAB. After
removing the studies and records as described above we were left
with 5 climate zones, 226 users and 7551 records (Table 1).

As a starting point, we consider only one environmental variable
(i.e. inside air temperature) to evaluate the proposed LRAB. LRAB
has been implemented in MatlabTM, using the trust-region method to
minimize the problem in (1), with a termination tolerance of 10−6.
The experiments have been performed through leave-one-out valida-
tion, for each user (i.e., using a single observation from the original
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Climate zone users records

Hot arid 59 2594
Mediterranean 51 1899
Semi arid 21 2185
Tropical Savana 54 476
Continental 41 397

Table 1. Number of users and records divided by climate zones, and used
in the experiments

sample as the validation data, and the remaining observations as the
training data).

As with the field study [22, 31], the algorithms are evaluated con-
sidering the difference ∆V between the computed votes by both
LRAB (evaluated) and PMV (reported in the database) and the ac-
tual vote (reported in the database) on a three-level accuracy scale
[22, 31] as reported below:

• Precise: ∆V < 0.2
• Correct: 0.2 ≤ ∆V < 0.5
• Approximation: 0.5 ≤ ∆V < 0.7

Figure 2. Average accuracy of predicting user comfort in 5 different
climate zones.

Figure 2 illustrates how accurately the LRAB predicts the actual
comfort vote of each user compared with PMV. In all 5 climate zones,
LRAB predicts the actual vote better than PMV especially in the ac-
curacy level ∆V < 0.2 and has up to 200% of the number of occu-
pants for whom a precise value is predicted. However, having a close
look to the Figure 2, we notice that in the first three climate zones
(i.e. hot arid, mediterranean and semi-arid), LRAB achieves more
than 25% accuracy (∆V < 0.2), while in the last two climate zones
(i.e. tropical savana and continental) it achieves only 16% and 18%
of the same accuracy level respectively. We think that this discrep-
ancy is because there is a lack of data for the last two climate zones
compared the first three. In fact, in the former we have 476 records
on 54 users (tropical savana) and 397 records on 41 users (continen-
tal), as shown in Table 1. Hence, in these case studies we have 8.8
and 9.6 records per user on average, respectively. Conversely, in the
first three climate zones, we have 44, 37 and 104 records per user on
average, respectively (table 1). As the proposed LRAB essentially
learns from the data, it requires a sufficient amount of data to give
the best results.

5 CONCLUSIONS AND FURTHER STEPS
In the present paper, we have applied robust locally weighted re-
gression with an adaptive bandwidth to predict individual thermal
comfort. The approach has been characterized and compared with
the standard PMV approach. The experiments were carried out using
publicly available datasets: they have shown that our LRAB outper-
forms the traditional PMV approach in predicting thermal comfort.
Since LRAB can be computed quickly, and requires only a single
setting parameter that is easily obtained, then if individual comfort
responses are available, this method is feasible for use as a comfort
measure in real time control.

The next step will be:(i) the comparison of our LRAB to other
(nonparametric) regression mechanisms (e.g., CART, neural net-
works, k-NN) and (ii) the extension of the method to accept multiple
environment variables (for example humidity, external air tempera-
ture etc.) in order to improve the above results. This mainly means
the choice of a different kernel function to the one used here, in order
to avoid a bias problem on the boundaries of the predictor space, a
kind of problem that may be arise especially in the multidimensional
case [26].

This work is part of the Strategic Research Cluster project ITOBO
(supported by the Science Foundation Ireland), for which we are ac-
quiring occupant comfort reports and fine grained sensor data, and
constructing validated physical models of the building and its HVAC
systems. The intention is then to use the comfort reports and sensor
data as input to our LRAB method, and then to use the output of
LRAB as the input to intelligent control systems which optimise the
internal comfort for the specific individual occupants.
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