
Modeling Difficulty in Recommender Systems

Benjamin Kille, Sahin Albayrak
DAI-Lab

Technische Universität Berlin
{kille,sahin}@dai-lab.de

ABSTRACT
Recommender systems have frequently been evaluated with
respect to their average performance for all users. However,
optimizing such recommender systems regarding those eval-
uation measures might provide worse results for a subset of
users. Defining a difficulty measure allows us to evaluate and
optimize recommender systems in a personalized fashion.
We introduce an experimental setup to evaluate the eligibil-
ity of such a difficulty score. We formulate the hypothesis
that provided a difficulty score recommender systems can be
optimized regarding costs and performance simultaneously.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval - Information filtering, Retrieval mod-
els, Search process, Selection process; H.3.4 [Information
Technology and Systems Applications]: Decision sup-
port

General Terms
Algorithms, Design, Experimentation, Measurement, Hu-
man factors

Keywords
difficulty, recommender systems, user modeling, evaluation

1. INTRODUCTION
Evaluating a recommender system’s performance repre-

sents a non-trivial task. The choice of evaluation measure
and methodology depends on various factors. Modeling the
recommendation task as rating prediction problem favors
measures such as root mean squared error (RMSE) and
mean absolute error (MAE) [7]. In contrast, mean aver-
age precision (MAP) and normalized discounted cumulative
gain (NDCG) qualify as evaluation measures for an item
ranking scenario [12]. In either case, two recommendation

Copyright is held by the authors/owner(s).
Workshop on Recommendation Utitlity Evaluation: Beyond RMSE (RUE
2012), held in conjunction with ACM RecSys 2012 September 9, 2012,
Dublin, Ireland.
.

algorithms are compared with respect to their average per-
formance on the full set of users. This entails that all users
are treated equally. However, we argue that the difficulty of
recommending items to users varies. Suppose we consider a
recommender system with two users, Alice and Bob. Alice
has rated a large number of items. Bob has recently started
using the system and rated a few items. The system rec-
ommends a number of items to both of them. Alice and
Bob rate the recommended items. Suppose we attempt to
evaluate two recommender algorithms based on those rat-
ings, denoted as R1 and R2. Assume that R1 predicts Al-
ice’s ratings with an error of 0.8 and Bob’s ratings with an
error of 0.9. On the other hand, we observe R2 to devi-
ate 1.0 for Alice and 0.8 for Bob, respectively. Averaging
the errors, we obtain 0.85 for R1 and 0.9 for R2. Still, R2

predicts Bob’s ratings better even though his preferences ex-
hibit higher sparsity compared to Alice’s. Besides the num-
ber of ratings, there are further factors discriminating how
well an recommendation algorithm perform for a given user.
We introduce the notion of difficulty in the context of rec-
ommender systems. Each user is assigned a difficulty value
reflecting her expected evaluation outcome. Users with high
errors or disordered item rankings receive a high difficulty
value. Contrarily, we assign low difficulty values to users
exhibiting low errors and well ordered item rankings. Rec-
ommender systems benefit from those difficulty value two-
fold. First, optimization can target difficult users who re-
quire such efforts. On the other hand, the recommender
system can provide users with low difficulty values with rec-
ommendations generated by more trivial methods. Recom-
mending most popular items represents such an approach.
Second, difficulty values enable the system to estimate how
likely a specific user will perceive the recommendations as
adequate. Thereby, the system can control interactions with
users, e.g. by asking for additional ratings to provide better
recommendations for particularly difficult users.

2. RELATED WORK
Adomavicius and Tuzhilin reveal possible extensions to

recommender systems [1]. They mention an enhanced un-
derstanding of the user as one such extension. Our work
attempts to contribute to this by defining a user’s difficulty.
Hereby, the system estimates a user’s likely perception of
the recommendations. The methods performing best on the
well-known Netflix Prize Challenge had applied ensemble
techniques to further improve their rating prediction accu-
racy [3, 11]. Both do not state an explicit modeling of rec-
ommendation difficulty on the user-level. However, ensem-

30

pablo
Retângulo

ble techniques involve an implicit presence of such a con-
cept. Combining the outcome of several recommendation
algorithms does make sense in case a single recommenda-
tion algorithm fails for a subset of users. Such an effect is
consequently compensated by including other recommenda-
tion algorithms’ outcomes. Bellogin presents an approach
to predict a recommender systems performance [4]. How-
ever, the evaluation is reported on the system level aver-
aging evaluation measures over the full set of users. Our
approach focuses on predicting the user-level difficulty. Ko-
ren and Sill introduced a recommendation algorithms that
outputs confidence values [8]. Those confidence values could
be regarded as difficulty. However, the confidence values are
algorithm specific. We require the difficulty score’s valid-
ity to generally hold. The concept of evaluation considering
difficulty has been introduced in other domains. Aslam and
Pavlu investigated estimation of a query’s difficulty in the
context of information retrieval [2]. Their approach bases
on the diversity of retrieved lists of documents by several
IR systems. Strong agreement with respect to the docu-
ment ranking indicates a low level of difficulty. In contrast,
highly diverse rankings suggest a high level of difficulty. He
et al. describe another approach to estimate a query’s dif-
ficulty [6]. Their method compares the content of retrieved
documents and computes a coherence score. They assume
that in case highly coherent documents are retrieved the
query is clear and thus less difficult than a query resulting in
minor coherency. Genetic Algorithms represent another do-
main where difficulty has received the research community’s
attention. However, the difficulty is determined by the fit-
ness landscape of the respective problem [5, 6]. Kuncheva
and Whitaker investigated diversity in the context of a clas-
sification scenario [9]. Concerning a query’s difficulty, di-
versity has been found an appropriate measure [2]. We will
adapt two diversity measures applied in the classification
scenario for determining the difficulty to recommend a user
items.

3. METHOD
We strive to determine the difficulty of the recommenda-

tion task for a given user. Formally, we are looking for a
map δ(u) : U 7→ [0; 1] that assigns each user u ∈ U a real
number between 0 and 1 corresponding to the level of diffi-
culty. For one recommendation algorithm the difficulty for
a given user could be simply determined by a (normalized)
evaluation measure, e.g. RMSE. However, such a difficulty
would not be valid for other recommendation algorithms.
In addition, recommender systems optimized with respect
to the item ranking would likely end up with different dif-
ficulty values. We adapt the idea of measuring difficulty
in terms of diversity to overcome those issues. We assume
the recommender systems comprises several recommenda-
tions methods, denoted A = {A1, A2, . . . , An}. Each such
An generates rating predictions along with item rankings
for a given user u. We choose RMSE to evaluate the rat-
ing predictions and NDCG to assess the item ranking, re-
spectively. We measure a user’s difficulty by means of the
diversity of those rating predictions and item rankings. For
that purpose, we adjusted two diversity metrics introduced
by Kuncheva and Whitaker for classification ensembles [9].
We alter the pair-wise Q statistics to fit the item ranking
scenario. Regarding the rating prediction we adapt the dif-
ficulty measure θ.

3.1 Q statistics
Applied to the classification ensemble setting, theQ statis-

tics base on a confusion matrix. The confusion matrix con-
fronts two classifiers in a binary manner - correctly classified
versus incorrectly classified. We need to adjust this set-
ting to fit the item ranking scenario. Table 1 illustrates the
adjusted confusion matrix. We count all correctly ranked
items as well as all incorrectly ranked items for both recom-
mendations algorithms. Subsequently, the confusion matrix
displays the overlap of those items sets. Equation 1 rep-
resents the Q statistic derived from the confusion matrix.
Note that the Q statistic measures diversity in between two
recommender algorithms. Hence, we need to average the Q
statistic values obtained for all comparisons in between the
available algorithms. Equation 2 computes the final diver-
sity measure.

Qij(u) =
N11N00 −N01N10

N11N00 +N10N01
(1)

QA(u) =

(
|A|
2

)−1 ∑
Ai,Aj∈A

Qij (2)

3.2 Difficutly measure θ

Kuncheva and Whitaker introduce the difficulty measure
θ as a non-pairwise measure [9]. θ allows us to consider
several recommendation algorithms simultaneously. We it-
erate over the set of withhold items for the given user. At
each step we compute the RMSE for all recommendation
algorithms at hand. Thereby, we observe the variance in
between all recommender algorithms’ RMSE values. The
average variance displays how diverse the user is perceived
by the set of recommendation algorithms. Equation 3 cal-
culates θ. I denotes the set of items in the target user’s test
set. The σ(i) function computes the variances in between
the recommendation algorithms’ RMSE values for the given
item.

θ(u) =
1

|I|
∑
i∈I

σ(i) (3)

3.3 Difficulty measure δ

We attempt to formulate a robust difficulty measure for
recommender systems. Therefore, we propose a combination
of the Q statistic and θ. As a result, both RMSE and NDCG
are considered. The more recommendation algorithms we
include the more robust the final difficulty value will be.
Equation 4 displays a linear combination of both measures.
The parameter λ ∈ [0; 1] controls the weighting. λ = 1
allows to focus on the ranking task. The absence of rating
values might require such a setting.

δ(u|A) = λ ·QA(u) + (1− λ) · θ(u) (4)

4. EXPERIMENTAL SETTING
We will evaluate the proposed difficulty measure δ and

subsequently outline the intended experimental protocol. Sev-
eral data sets, such as Movielens 10M, Netflix and Last.fm
provide the required data. We will implement item-based

31

Ai: rank(k) ≤ rank(l) Ai: rank(k) > rank(l)

Aj : rank(k) ≤ rank(l) N11 N10

Aj : rank(k) > rank(l) N01 N00

Where rank(k) ≤ rank(l) is true.

Table 1: Adjusted confusion matrix

and user-based neighborhood recommenders, matrix factor-
ization recommenders along with slope-one recommenders.
All those recommendation methods do not require data ex-
cept user preferences. As a first step, we split each data sets
in three partitions. The first partition will be used for train-
ing and the second partition to assign each user a difficulty
score according to Equation 4. Finally, the third partition
will be used as evaluation data set. The subset of users
with comparably low difficulty score will receive recommen-
dations based on a non-optimized recommendation method
such as the most popular recommender. The subset of users
with medium difficulty score will receive recommendations
generated by slightly optimized recommender algorithms.
Finally, the particularly hard users will receive recommenda-
tions generated by highly optimized recommenders. We will
compare both required efforts and recommendation quality
against approaches dealing with all users in the same ways.
Such approaches will include optimizing recommenders to
perform well averaged over the full set of users and recom-
mending all users with trivial recommenders, for instance
most popular recommendations. Our hypothesis is that the
difficulty score will allow us to achieve lower costs along with
a comparably high recommendation quality by selecting an
appropriate recommendation algorithm for a given user. In
addition, we will observe what user characteristics determine
her difficulty.

5. CONCLUSION AND FUTURE WORK
We introduced the notion of difficulty in the context of

recommending items to users. Measuring that task’s dif-
ficulty on user-level allows a more personalized optimiza-
tion of recommender systems. Users with comparably low
difficulty scores receive adequate recommendations without
much efforts. On the other hand, users with a compara-
bly high difficulty score may be asked to provide additional
data to improve the system’s individual perception. A com-
bination of the Q statistic and the difficulty measure θ -
both adjusted to fit the recommendation scenario - allows
us to measure the difficulty for a given user. The calculation
requires a sufficiently large data set containing user prefer-
ences on items along with a set of implemented recommen-
dation algorithms. We introduced an experimental setting
that we will use to evaluate the presented methodology in
section 4. In addition, we intend to apply pattern recog-
nition techniques to find correlations between the difficulty
score and user characteristics. For instance, the number
of ratings is known to correlate with the difficulty for new
users (”cold-start problem”) and users with a large number
of items (”power-users”) [10].

6. ACKNOWLEDGEMENTS
This work is funded by the DFG (Deutsche Forschungs-

gemeinschaft) in the scope of the LSR project.

7. REFERENCES
[1] G. Adomavicius and A. Tuzhilin. Toward the next

generation of recommender systems: A survey of the
state-of-the-art and possible extensions. IEEE
Transaction on Knowledge and Data Engineering,
17(6):734–749, 2005.

[2] J. A. Aslam and V. Pavlu. Query hardness estimation
using jensen-shannon divergence among multiple
scoring functions. In Proceedings of the 29th European
conference on IR research, ECIR’07, pages 198–209,
2007.

[3] R. M. Bell and Y. Koren. Lessons from the netflix
prize challenge. SIGKDD Explor. Newsl., 9(2):75–79,
2007.

[4] A. Bellogin. Predicting performance in recommender
systems. In Proceedings of the fifth ACM conference
on Recommender systems, pages 371–374. ACM, 2011.

[5] M. Hauschild and M. Pelikan. Advanced
neighborhoods and problem difficulty measures. In
Proceedings of the 13th annual conference on Genetic
and evolutionary computation, GECCO ’11, pages
625–632, 2011.

[6] J. He, M. Larson, and M. De Rijke. Using
coherence-based measures to predict query difficulty.
In Proceedings of the IR research, 30th European
conference on Advances in information retrieval,
ECIR’08, pages 689–694, 2008.

[7] J. Herlocker, J. Konstan, L. Terveen, and J. Riedl.
Evaluating collaborative filtering recommender
systems. ACM Transactions on Information Systems,
22(1):5–53, 2004.

[8] Y. Koren and J. Sill. Ordrec: an ordinal model for
predicting personalized item rating distributions. In
Proceedings of the fifth ACM conference on
Recommender systems, RecSys ’11, pages 117–124,
New York, NY, USA, 2011. ACM.

[9] L. Kuncheva and C. Whitaker. Measures of diversity
in classifier ensembles and their relationship with the
ensemble accuracy. Machine Learning, 51:181–207,
2003.

[10] A. Said, B. Jain, and S. Albayrak. Analyzing
weighting schemes in collaborative filtering: Cold
start, post cold start and power users. In 27th ACM
Symposium On Applied Computing (SAC ’12), New
York, NY, USA, 2012. ACM.

[11] G. Takacs, I. Pilaszy, B. Nemeth, and D. Tikk. Major
components of the gravity recommendation system.
SIGKDD Explorations, 9(2), 2007.

[12] S. Vargas and P. Castells. Rank and relevance in
novelty and diversity metrics for recommender
systems. In Proceedings of the fifth ACM conference
on Recommender systems, RecSys ’11, pages 109–116,
New York, NY, USA, 2011. ACM.

32

