
Ontology-driven Translators: The new
generation

Francisco-Edgar Castillo-Barrera

Engineering Faculty, Universidad Autónoma de San Luis Potośı, México
ecastillo@uaslp.mx

Abstract. In this paper we describe a proposal for a new generation
of translators. This approach is based on a domain ontology of software
components for driving the translation process. We use an example and
a prototype to show the feasibility of our approach.

Keywords: Domain ontology, Translators, CORBA-IDL, SPARQL, Pellet, Rea-
soner, Description logic.

1 Introduction

In software ingeniering the research about how the component context can im-
prove their assembling has been studied so long. We dispose of standard like
CORBA-IDL. We are interenting in explore the use of a domain ontology not
only for guiding the assembling of components but also for enriching the com-
ponent descriptions.

These enriching descriptions needs a different kind of translators. These ones
could be based on a domain ontology of software components for driving the
translation. This approach has some advantages like:

– Semantic associated to the code, ie in software components the entry
file which contains information about declaration of their interfaces and their
methods can be enriched with an ontology.

– New knowledge. By transforming the translations in an ontology (descrip-
tion logic) reasoners can be applied automatically and possibly generate new
knowledge (components where possible may be used).

We consider three kind of translators based on ontologies:

1. Translators that incorporates the source code of the ontology in the trans-
lation process.

2. Translators which maintain a direct communication with the domain ontol-
ogy during the translation proces.

3. Translators which before doing the translation using an ontology based on
a domain to verify that the vocabulary used in the code is correct or not.

Antibes
Typewriter
149



For example, an English to Spanish translator. This translator receives text
in English, uses an ontology to verify English language (eg WordNet).

In this paper we describe the second kind of translators. In our approach, a
populated ontology (properties,instances) is generated from a CORBA-IDL+C
file by using an ontology-based translator.

The rest of the paper is structured as follows. In Section 2 we present some re-
lated work. In Section 3 we describe our approach an Ontology-based Translator
for CORBA-IDL+C language. Section 4 describes an example and a prototype
to show the feasibility of our approach. Finally, in Section 5 we draw some con-
cluding remarks.

2 Related Work

An ontology for Syntactic and Semantic English-Korean machine was made by
Il-Sun Song, Su-Kyung Kim and Ho-Jin Choi [9]. The authors apply two trans-
lation modules to achieve their goal: Syntactic and Semantic. The first module
transforms the English structure into Korean structure and the second module
extracts an exact meaning of a word using ontologies. In contrast, our proposal
is based on Programming Languages and we use a domain ontology about Soft-
ware Components. A closely related work is a Test Specification Code Translator
using ontology and XML/XSLT Technologies presented by Lim Lian Tze, Tang
Enya Kong and Zaharin Yusoff [11]. They developed and implemented a frame-
work for translating test specification code between platform-specific languages
and they use a test domain ontology to translate correctly test keywords. We
do not use an ontology to correct word, by contrast, we use a domain ontology
for translating CORBA code in an ontology source code in OWL-DL sintax.
The most closely related work was made by Alessio Lomuscio, Hongyang Qu
and Monika Solanki [7]. This approach consists(semi-)automatically compile and
verify contract-regulated service compositions.

3 An Ontology-based Translator for CORBA-IDL+C
language

Six steps were required to build the Ontology-based Translator which generates
a populated Ontology of Software Componentes in OWL-DL language and using
n3 notation. They consist on:

1. Building an Ontology in the Domain of Software Components

2. Defining the structure of the file in CORBA-IDL++

3. Extending the keywords of CORBA-IDL language

4. Implementing the Lexical Analyzer for a CORBA-IDL++ file

5. Implementing the Syntactic Analyzer

6. Generating the Target Code by Syntax-directed Translator

Antibes
Typewriter
150



Fig. 1. The Stages of the Ontology-based Translator

In this paper, we will describe only the step one. An ontology [4][10] defines
the basic terms and relations comprising the vocabulary of a topic area, as well
as the rules for combining terms and relationships used to define extensions to
the vocabulary. The Ontology built in this work was in the domain of software
components. Ontology classes and subclasses definition were written using no-
tation 3 or n3 [2] which is similar to RDF in its XML syntax, but more easy
to understand. When we define a new vocabulary we have to define new classes,
it means what type of thing something is, we write a owl:Class. The statements
each consist of a subject, verb and object ending with a period. In n3 we can
write RDF triples in that way. The Ontology built is showed below.

:ComponentType a owl:Class .

:Interface a owl:Class .

:Provider rdfs:subClassOf :Interface .

:Required rdfs:subClassOf :Interface .

:Provider owl:disjointWith :Required .

:Required owl:disjointWith :Provider .

:Method a owl:Class .

:DataType a owl:Class .

:Parameter a owl:Class .

:OperatingSystem a owl:Class .

:ComponentModel a owl:Class .

:Requirements a owl:Class .

:FunctionalRequirements

rdfs:subClassOf :Requirements .

:NonFunctionalRequirements_QoS

rdfs:subClassOf :Requirements .

:PreCondition rdfs:subClassOf :Condition .

:PostCondition rdfs:subClassOf :Condition .

List 1. The main classes of the software component ontology

Antibes
Typewriter
151



Fig. 2. Ontology Verification Process based on a CORBA-IDL+C Translator

The mainly concepts used in our logic model are methods, contracts, and in-
terfaces. Interfaces define the methods used in contracts and composition. This
ontology consisted of 20 classes, 28 Object Properties, 36 Data Properties. The
ontology was written using n3 notation, it is used by RDFS and OWL DL logic
model. Some classes are showed in List 1. The Ontology is built by means of
classes and relations among concepts. Each method is specified by an inter-
face, type declarations, a pre-condition, and post-condition [3]. In addition, there
are two types of interfaces (provided and required). The interface of a method
describes the syntactic specification of the method. The typing information de-
scribes the types of input and output or both parameters and internal (local)
variables. All of the above is represented in our ontology (class Type, class Pa-
rameter, etc.). The most important part to consider in our ontology are the
Conditions (Pre, Post and Inv). The Pre-condition describes the condition of
the variables prior to the execution of the method whose behavior is described
by the Post-condition. Invariant are values which has to be hold during the hole
process.

Evaluating the ontology created The ontology developed has been evaluated
in an informal and formal way. Regarding the former, the ontology was evaluated
by the developers during the whole ontology life cycle and they used the Pellet
reasoner [3] to check the consistency of the ontology. This group supervised
the releases mainly by asking the defined competency questions and checking
whether the ontology could answer them. The second evaluation applied to the

Antibes
Typewriter
152



ontology is based on the work of Gómez-Pérez [1] who establishes five criteria
(consistency, completeness, conciseness, expandability and sensitiveness).

4 Verifying contracts between ATM and Bank
components

We used an Automated Teller Machine (ATM) example. ATM is a machine
at a bank branch or other location which enables customers to perform basic
banking activities. The component model used for describing the ATM system
was made in Chichen Itza Framework using its graphical interface of software
components, and is shown in figure 3: One example in the design phase using
the ATM example [6]. In this case the input model (semantic IDL file) only
has the information of 2 software components and we can create its instances
and relations among them using the Chichen Itza’s menus. We complement the
verification process performing queries in SPARQL.

Fig. 3. ATM and BANK Components in UML

A prototype of the framework involves a visual editor. See Fig.4. The tool
makes use of the library Flamingo and the Ribbon component [5] implemented
in Java. The process to verify a matching among components is very easy for
the user.

Fig. 4. Matching the Precondition about the amount variable using a SPARQL query

Antibes
Typewriter
153



Component Interfaces Methods

ATM IAtmService createSession(), locateBank()
IAtmClient deposit(in long Amount, in long NumClient)

Bank IBank void Withdrawal(in long CardNo, in string Password, in long Amount)
void Deposit(in long CardNo, in float Amount)

Table 1. Interfaces and Methods of ATM and Bank components

4.1 Using The Pellet Reasoner

Pellet [8] is an open-source Java based OWL DL reasoner. In our verification
process we use Pellet for checking the consistency of the ontology. Ontology
consistency is defined as a set of conditions that must hold for every ontology.
Pellet gives an explanation when an inconsistency is detected.

4.2 Code Generated by the Translator

Part of the code generated by the Translator using the ATM and BANK IDL
files is showed below.

:ATM a :ComponentType .

:BANK a :ComponentType .

:IAtmClient a :Interface .

:IAtmClient :hasMethod :deposit .

:IBank a :Interface .

:IBank :hasMethod :withdrawal .

:deposit a :Method .

:withdrawal a :Method .

:amount a :Parameter .

:numclient a :Parameter .

:deposit :hasNumParameters 2 .

:deposit :hasParameter :amount .

:amount :hasIndexOrder 1 .

:deposit :hasPrecond :condition1 .

:

5 Conclusions

In this paper we have presented and described an Ontology-based Translator-
Compiler for generating a populated ontology source code (instances and prop-
erties) based on an Domain Ontology of Software Components.

A formal verification based on a Reasoner (Pellet) can be applied at the
target code generated in an automatic way, without expertise. In addition we
can extract information and knowledge using SPARQL queries. This code can
be classified in a certain domain increasing the reuse and compatibility of the
component with others. Besides, the verification of the contracts can be done.

Antibes
Typewriter
154



The Ontology used was represented in a logic-based language (OWL DL). The
OWL DL ontology proposed is checked with the Pellet reasoner and it has a
finite complexity (it has not problems of decidibility).

The main contribution of this work is to generate a populated Ontology
of properties and instances from a CORBA-IDL+C file by using an Ontology-
based Translator which can be used for verifying contracts among components
in a formal way. In our example, we have verified the matching among software
components using reasoners (formal method based on a Description Logic Rea-
soner) for verifying the matching of the software components based on Contracts,
a software components ontology, interfaces (pre-conditions, post-conditions and
invariants), SPARQL queries.

References

1. Bechhofer, S., Goble, C.A., Horrocks, I.: Daml+oil is not enough.
In: SWWS. pp. 151–159 (2001), http://www.informatik.uni-
trier.de/ ley/db/conf/semweb/swws2001.htmlBechhoferGH01

2. Berners-Lee, T., Connolly, D., Hawke, S.: Semantic web tutorial using n3. In:
Twelfth International World Wide Web Conference (2003)

3. Crnkovic, I., Larsson, M.: Building reliable component-based software systems.
Artech House computing library, Norwood, MA (2002)

4. Gruber, T.: Toward principles for the design of ontologies used for knowledge
sharing. pp. 907–928 (1995)

5. Java.net: Flamingo. http://java.net/projects/flamingo/ (2010)
6. kiu Lau, K., Wang, Z.: A survey of software component models. Tech. rep., in

Software Engineering and Advanced Applications. 2005. 31 st EUROMICRO Con-
ference: IEEE Computer Socity (2005)

7. Lomuscio, A., Qu, H., Solanki, M.: Towards verifying contract regulated service
composition. In: Web Services, 2008. ICWS’08. IEEE International Conference on.
pp. 254–261. IEEE (2008)

8. Parsia, B., Sirin, E.: Pellet: An owl dl reasoner. In: In Proceedings of the Interna-
tional Workshop on Description Logics (2004)

9. Seo, E., Song, I.S., Kim, S.K., Choi, H.J.: Syntactic and semantic english-
korean machine translation using ontology. In: Proceedings of the 11th in-
ternational conference on Advanced Communication Technology - Volume
3. pp. 2129–2132. ICACT’09, IEEE Press, Piscataway, NJ, USA (2009),
http://dl.acm.org/citation.cfm?id=1701655.1701781

10. Staab S., Studer R., S.H., Sure, Y.: Knowledge processes and ontologies. vol. 16,
pp. 26–34 (Jan-Feb 2001)

11. Tze, L., Kong, T., Yusoff, Z.: A test specification code translator using ontology
and xml/xslt technologies

Antibes
Typewriter
155




