
A method and guidelines for the cooperation of
ontologies and relational databases in

Semantic Web applications

Loris Bozzato1�, Stefano Braghin2, and Alberto Trombetta3

1 Data and Knowledge Management Unit, Fondazione Bruno Kessler, Trento, Italy
2 School of Computer Engineering, Nanyang Technological University, Singapore

3 Dip. di Scienze Teoriche e Applicate, Univ. degli Studi dell’Insubria, Varese, Italy

bozzato@fbk.eu, s.braghin@ntu.edu.sg, alberto.trombetta@uninsubria.it

Abstract. Ontologies are a well-affirmed way of representing complex
structured information and they provide a sound conceptual foundation
to Semantic Web technologies. On the other hand, a huge amount of
information available on the web is stored in legacy relational databases.
The issues raised by the collaboration between such worlds are well
known and addressed by consolidated mapping languages. Nevertheless,
to the best of our knowledge, a best practice for such cooperation is
missing: in this work we thus present a method to guide the definition
of cooperations between ontology-based and relational databases sys-
tems. Our method, mainly based on ideas from knowledge reuse and
re-engineering, is aimed at the separation of data between database and
ontology instances and at the definition of suitable mappings in both
directions, taking advantage of the representation possibilities offered by
both models. We present the steps of our method along with guidelines
for their application. Finally, we propose an example of its deployment
in the context of a large repository of bio-medical images we developed.

1 Introduction

Ontology-based knowledge representation systems are well known to be suc-
cessful in representing complex and heterogeneous information. In particular,
recently, Semantic Web tools and systems permit to build and reason over on-
tologies providing logically founded representations and even increasing possi-
bilities for data size. Moreover, the growing interest and availability of Semantic
Web ontologies opens the possibility to reuse known data sources and, above all,
to share and integrate information between systems.

On the other hand, the vast majority of data is nowadays stored in rela-
tional databases, so tools and techniques bridging ontology-based repositories
and relational databases are needed in order to effectively deploy the poten-
tial provided by ontology-based representations. Significant efforts have been
� This work has been realized while the first and second author were working at Univ.

degli Studi dell’Insubria, Varese, Italy.

Proceedings of the 2nd International Workshop on Semantic Digital Archives (SDA 2012)

73

made to make possible to provide translations between ontologies and relational
schemas in order to easily publish readily available database data: however, there
is no accepted way on how to use such tools to let cooperate an existing rela-
tional database system with a paired ontology based system. For example, to
the best of our knowledge, there is no method supporting the decision on what
to represent and how to map information in both directions by using already
available mapping languages and tools (such as D2R [5,6], Virtuoso RDFview4

and Sponger5 just to name a few).
In this work we propose our experiences in the collaboration of an ontology-

based knowledge base and a legacy relational database under a single application.
In particular, believing in the fact that the problems of this setting can be
quite common, we try to generalize the approach that we chose in our case
to a general method for the integration between an ontology and a relational
database schema, when deployed together in a Semantic Web-based application.
We refer to the definition of method provided in the context of knowledge re-
engineering [17]: a set of “orderly processes or procedures used in the engineering
of a product or performing a service”. More precisely, we define a sequence of
steps that an application designer may follow in order to decide how and what
to map between an ontology and a relational database schema.

We point out that we do not aim at defining a novel mapping language be-
tween ontologies and relational schemas. Rather we aim at a method for deciding
what are, loosely speaking, the relationships occurring between the ontology and
the relational database, e.g. to decide what data stored in the relational database
may be fruitfully published as RDF or on what data apply the inference tools
proper to ontologies, that is, how to distribute data between both repositories in
order to take advantage of the capabilities of the two representations. We have
deployed our method and guidelines during the implementation of a large image
database currently in use at a veterinary institute (namely, Istituto Zooprofilat-
tico Sperimentale della Lombardia e dell’Emilia Romagna, IZSLER for short6)
serving a large user base distributed over more than fifteen sites in northern
Italy. In the following we will briefly introduce the structure of the system that
lead us to the formulation of this method: the Imm@base system, a repository
of bio-medical images supporting advanced classification-based functionalities.

1.1 Motivating scenario

The definitions of the method and of the guidelines described in this paper have
been carried out in the context of a project to satisfy the necessity of a major
italian veterinary institute, the previously mentioned IZSLER. The requirement
was to create a repository of biomedical pictures to be annotated with seman-
tic information from well-known biomedical taxonomies, such as ICTVdb7 and

4 http://virtuoso.openlinksw.com/
5 http://virtuoso.openlinksw.com/dataspace/dav/wiki/Main/VirtSponger
6 http://www.izsler.it
7 http://www.ictvdb.org/

Proceedings of the 2nd International Workshop on Semantic Digital Archives (SDA 2012)

74

NCBI8. Moreover, the institute required a further classification of the pictures
according to the medical cases they refer to. Such information is stored in a
legacy RDB system, called DARWIN, which can not be modified for legal and
pragmatic reasons. As an example of the firsts, the information stored in the
database is used to quantify the refund which several farmers are entitled of in
case of epidemics.

The architecture of the resulting application is shown in Fig. 1. According to
the present architecture, the user interacts with the application through a web
interface developed in PHP. Such interface provides, in a comprehensive way:

(i). a guided procedure to upload new pictures, properly annotated with meta-
data retrieved from the ontology database, which – we remind – contains
both semantic data from the domain ontologies and a semantic technology-
based representation of the data contained in the legacy DARWIN system
used by the veterinary institute.

(ii). a web form for retrieving pictures and medical cases matching complex
criteria defined by the user.

All the semantic data is retrieved via both ad-hoc and dynamically composed
SPARQL queries used against a Joseki end-point. The domain ontologies data
and the annotated pictures are stored in a PostgreSQL database while the DAR-
WIN system uses of a SQLServer database. The first database has been created
using the tools provided by the Jena API while the others are connected by
means of D2RQ [5,6] mappings.

As it is easy to understand, the proposed architecture asks for the definition
of a clear policy of cooperation between the semantic and relational repositories.
After summarizing the related works on such cooperations, we introduce our
solution, presented as a general method specification.

2 Related works

Several works address the issue of generating Semantic Web content from data
stored in traditional databases. Such works can be classified, according to the
chosen approach, in three categories:

(i). Annotation of the data extracted from databases with informations track-
ing how data have been obtained,

(ii). Mapping of the database model to an ontology,
(iii). Generation of an ontology related to the relational model of the DB.

The first approach works with the so-called DeepWeb [9] only and requires
the database model to be public [8].

The second approach consists in mapping the database models to a given
ontology by means of a mapping language in order to provide access to the
content of the database as if it were a “semantic repository” [19]. Examples of

8 http://www.ncbi.nlm.nih.gov/

Proceedings of the 2nd International Workshop on Semantic Digital Archives (SDA 2012)

75

Images
Database

Ontology
Database

Immabase (PHP)

Server SPARQL (Joseki)

D2RQ

DataLoader (Jena)

le
le

le

Domain Ontology
NCBI
ICTV

....

DARWIN

D2RQ

Fig. 1. The architecture of Imm@base web-application

such approach are D2RQ [5,6] and R2O [4]. The first one takes advantage of
a proprietary mapping language, derived from the Jena assembler language, to
allow the user to incorporate domain semantics in the mapping process. R2O,
instead, is a XML based declarative language to express mappings between RDB
elements and an ontology. The mappings realized with R2O can be used to
“detect inconsistencies and ambiguities” in mapping definitions. A more detailed
analysis of mapping languages and tools can be found in [14], where the authors
also introduce interesting guidelines about how to further develop such mapping
languages. In our work we take advantage of languages provided by works like [6]
but proposing a more general methodology for the co-existence of databases and
ontologies.

The third approach consists of the semi-automatic generation of an ontol-
ogy from the database schema [15,16]. Such approach typically uses reverse-
engineering techniques to generate the ontology from the database schema, like
the ones we describe in Section 3.1, and to migrate the mapped data from the
database creating ontological instances based on the tuples.

Moreover, several works have been presented with respect to the development
of tools and algorithms to automatically match and merge ontology schemas,
such as [1,3,13,18] (refer to [12] for a more detailed discussion). Such techniques
may be used as tools for the identification of the common schema and for the
definition of the mapping among the distinct repository which will be defined
using the proposed method. Finally, [10] presents an ontology language, an ex-
ample of formally defined mapping language and a query engine, all of which
are based on the description logic DL-Lite.

Proceedings of the 2nd International Workshop on Semantic Digital Archives (SDA 2012)

76

To the best of our knowledge there are no proposals for methods pointing
out the rationale and the steps one should follow in order to let a DB and an
ontology-based store cooperate under a single system. The most similar work
can be found in [2], where the authors present some use cases of integration of
ontologies and relational databases. The main difference with our work is that
in [2] there is the limitation of accessing data contained in the database read
only, while our approach allows for the modification of data. Thus, the proposed
method aims to the cooperation of data from repositories of different nature
in order to provide the final user fully fledge access to the data, instead of a
read-only RDF-based view of data stored in RDBMSs.

3 Cooperation method

The method we propose is aimed at guiding the separation of data between re-
lational database (RDB) objects and ontology instances and defining a suitable
mapping between the two repositories, in order to let them cooperate consis-
tently. To achieve this, we have to address several issues, namely:

– the treatment of consistent references between the two schemas,
– the integration in an existing repository of an external data source,
– the identification of static and changing data,
– the decision on where to store schema instances.

The method defines a mapping table, which specifies, for each conceptual object
(entity or relationship) in both the re-engineered repositories, where to store
the respective instances and whether and how to refer to them. The mapping
table should be sufficient to define a formal mapping between the sources, either
by modifying the representation of conceptual objects in both sides or defining
mapping in both directions e.g. by using mapping languages as D2RQ [5]. As
we discuss in the guidelines (see Section 3.2), the choices about separation of
instances should be guided by the cost and feasibility of modifications to each of
the two knowledge bases. Note that the method does not assume the existence of
one or both of the sources: if the ontology or the RDB already exists, its under-
lying conceptual model is extracted, otherwise the model has to be defined from
the system specifications and requirements. The method mainly operates over
conceptual representations of the two repositories: intuitively, entities correspond
to ontology classes and DB tables, while relationships correspond to ontology
properties and attributes in DB tables. Our method assumes that the concep-
tual models are to be defined in a formalism suitable for representing relevant
properties of both sides: we assumed to use graphical models defined following
the notations presented in [7,11]. Note that in the case of the RDB, defining
such schema roughly corresponds to the extraction of its relational schema.

3.1 Method specification

In this section we present the tasks of our method using the following schema, de-
rived from the definitions in [17,20]: we divide our method in activities composed

Proceedings of the 2nd International Workshop on Semantic Digital Archives (SDA 2012)

77

by tasks. In Fig. 2 we show the outline of the activities and tasks of our method:
we shortly describe each task and its required input and output documents.

The method is composed by two distinct activities: the first one is a reverse
engineering phase on the available information about DB and ontology, while the
second is a forward engineering phase for the definition of the mapping. In the
first activity A1 the method analyzes the available description of the database
and ontology (either the conceptual schema, the requirements or directly the
sources structure) in order to extract a conceptual representation of the en-
tire system. In T1 and T2, thus, the conceptual schemas of the two sources
is retrieved or generated from the descriptions. The two are combined in T3
by recognizing and merging (possibly automatically [12]) the entities shared by
both schemas. This represents the conceptual schema of the integrated system
and it is the starting point to the following activity A2, in which the decision
on the instance separation is taken and the related mappings are defined. In T4
the entities which instances have to be shared are recognized by the knowledge
engineer. In T5 the decision about the distribution to such instances can take
place, thus also defining the direction of mapping for their representation in the
other schema. The same is done in T6 for relationships. The last task T7 con-
sists in the logical modelling of the mapping, defining the actual objects in both
knowledge stores to be mapped with the technical solutions of choice.

This structure is coherent with the one presented in [17,20] for the non-
ontological resource re-engineering process: however, our method does not aim
at the development of a new ontology but to a re-engineering of both sources
in the context of the development of a semantic technology-based application.
Moreover, we remark that our method can be applied either when one of the
sources is available (by extracting its conceptual schema), when only its concep-
tual schema is available or when we just have the information (e.g. requirements)
to derive the conceptual schema of each part. We also remark that some of the
tasks described in the method specification (e.g. T1 and T2) are easily mecha-
nized, in particular when the knowledge bases are already present.

The outputs of our method are two mapping tables : the entity table and the
properties table. The entity table should describe, for each conceptual entity:

– Ontology class, DB table: where its instances are stored,
– Mapping: logical mapping on classes and DB tables,
– ID: property chosen as identifier,
– Source: original source.

The properties table should describe, for each relation:

– Ontology property, DB column: where its instances are stored,
– Mapping: mapping on ontology properties and DB columns,
– Domain and range: conceptual entities linked by the property.

We present an execution of our method and an example of the resulting docu-
ments in the following sections.

Proceedings of the 2nd International Workshop on Semantic Digital Archives (SDA 2012)

78

A1.Conceptual Modeling Activity
Reverse engineering on sources to ex-
tract complete conceptual schema of
the system.
Input: DB and ontology, their conceptual

models or requirements

Output: Total conceptual model

T1. DB schema extraction
Extract conceptual schema from
DB.
Input: DB, requirements or original DB

schema

Output: DB conceptual schema

T2. Ontology schema extraction
Extract conceptual schema from
ontology.
Input: Ontology, requirements or origi-

nal ontology schema

Output: Ontology conceptual schema

T3. Total schema definition
Merge previous schemas to obtain
a complete system schema.
Input: DB and ontology schemas

Output: Total conceptual model

A2. Mapping Definition Activity
Forward engineering on extracted
model for the definition of mapping
tables.
Input: Total conceptual model

Output: Complete mapping tables

T4. Shared schema extraction
Identify conceptual objects to be
shared between schemas.
Input: Total conceptual model

Output: Shared conceptual schema

T5. Instances distribution
For every entity, decide where to
store its instances.
Input: Shared conceptual schema

Output: Instances table

T6. Relationships distribution
For every relationship, decide
where to store its instances.
Input: Shared schema, instances table

Output: Properties table

T7. Logical modeling
Define actual classes and tables to
be mapped.
Input: Shared schema, mapping tables

Output: Complete mapping tables

Fig. 2. Method specification

3.2 Guidelines

In the following we suggest some guidelines useful for the application of our
method and the definition of the mapping between DB and ontology. First of
all, the following guidelines may drive the decision on which of the two schemas
refer when storing instances of a conceptual object.

– Ontology instances: data can be stored as instance of ontology classes and
properties mostly because it is necessary to draw inferences from this data.
This can be useful when arranging data in complex taxonomies or meron-
imies or when it is needed to verify correctness of the data with respect to the
ontology logical constraints. Another scenario where this choice is necessary
is when one needs to comply with an external (possibly standard) ontology.
In general, ontology instances should be treated as fixed and non-changing
data, mostly representing “metadata” of the application to be developed.

– RDB instances: on the other hand, DB instances should represent the “work-
ing data” of the application, that is the data that one expect to be updated

Proceedings of the 2nd International Workshop on Semantic Digital Archives (SDA 2012)

79

and changed the most. Other reasons to leave out such data from the ontol-
ogy include the fact that only simple queries (and no inferences) over this
data are needed, or the fact that they represent only “administrative” data
that is uninteresting to map and publish over the ontology.

Note that this means that the actual data would be stored in the DB, while the
metadata would be stored as ontology instance. Note also that, in both cases, the
choice can be affected by where the original instances were stored, the modifia-
bility of the sources or the impact that these modification can cover. Moreover,
as it is clear from the method, not every conceptual object in both parts takes
part in the mapping: however, by re-engineering the conceptual schema we can
decide to move an object from a schema to the other.

Once the choice on where to store instances has been done, the following
guidelines suggest how to map and identify these instances in the two directions,
so that they are visible in the other schema.

– Instances in DB, class in ontology: this partly corresponds to the case treated
by mapping tools. From DB to ontology, entity instances can be mapped to
individuals of a class naming them, e.g. as ClassName ID. To identify in the
DB mapped instances once they are retrieved from the ontology, one can
map the ID or primary key of the instance as a hasID datatype property
value referred to the ontology instance.

– Instances in ontology, values in DB: we can suggest different solutions to
access or refer to external ontology instances into the DB records. A solution
consists in directly using the URI of the referred individual in the DB tuples:
however, this solution can be non satisfactory in that one can not check the
validity and consistency of the references and can not add information to such
individuals in the DB. Another solution is to keep in the DB a table relating
the DB tuples to their counterpart individual in the ontology: additional data
for the objects (not available in the ontology) can be stored in other columns
of such table. A similar solution, but more demanding in terms of updates
to the DB schema, consists in using the URI (or a transformation of it) of
the ontology instance as the ID of the tuple of their counterpart in the DB.
A relaxation of the previous solution consists in defining a transformation
from the URI (or other property value) of ontology individuals to the value
used as ID in the DB.

4 Example

In the following section we present a simple example for the application of the
previously proposed method. More precisely, we present a simplification of the
actual integration of the DB schema and ontology mentioned in our motivating
scenario. Note that the operations described in the following of the section have
been performed manually because of the dimension of the problem. In order to
deal with more complex scenarios it will be required to develop tools supporting
the tasks described in Section 3.

Proceedings of the 2nd International Workshop on Semantic Digital Archives (SDA 2012)

80

In the case of our example, we assume to already have the ontology concep-
tual schema (since basically we are adding a new ontology to an existing DB
based system) and to be able to extract the conceptual schema from DB tables.
Moreover, we assume (by relaxing the situation of our motivating scenario) that
we can freely modify both parts. In our example, ideally, the DB mostly con-
tains the data pertaining to the actual files representing medical images, while
the ontology stores the relations between the concepts represented in the subject
of images.

Given these premises, in the following we proceed trough the tasks of our
method, providing examples for the most relevant produced documents. For
simplicity, we only represent the properties and relations of the main entities of
our system.

After the first two tasks T1 and T2, given the previous assumptions, we
obtain the conceptual schema of the DB and of the ontology, which are shown in
Fig. 3 and Fig. 4. In particular, note that their structure is slightly different: e.g.
the entity Origin (representing the method of acquisition of an image) appears
only in the DB schema, while in the ontology schema Image is specialized in
MacroImage and MicroImage (actual photographs versus microscopy images)
which need to be treated differently in our system. Most notably, only the ontol-
ogy contains the relations between the entities representing subject properties
as in the case of hasPosition for Lesion.

Fig. 3. DB Conceptual schema

In task T3 we merge the two schemas in the total conceptual schema, considering
the shared attributes: for example, note the case of the information about gender,
in the DB represented as attribute and in the ontology as object property. We
do not show this schema, for space and significance reasons. After obtaining the
total schema, we can also begin to define the contents of the entity and property
tables, mainly by filling in the names of entities and the properties with their
specified domain and range.

Proceedings of the 2nd International Workshop on Semantic Digital Archives (SDA 2012)

81

Fig. 4. Ontology Conceptual schema

We can now begin the forward engineering activity: the first task T4 con-
sists in identifying the shared schema in the total schema, which corresponds in
picking out the instances that are not to be mapped, following the given guide-
lines. For example Origin and the attributes as author and notes only belongs
to the DB while MicroImage is only to be contained in the ontology. The shared
schema obtained in this task is shown in Fig. 5.

Fig. 5. Shared schema

The next two tasks T5 and T6 consist in separating the instances and relations
of DB and ontology and thus defining the direction and the choices for the
mapping, as suggested in our guidelines. For example, note that since Protocol
and Image represent the data of our system, they are stored in the DB and
mapped to their classes in the ontology. On the other hand, the objects actually
detailed in the ontology have to be only referred in the DB instances.

In the last task T7, the mapping tables are completed with the actual DB
tables and columns to be mapped. The final mapping tables for our example
are shown in Table 1. Note that the proposed tables only contain relevant parts
of the actual mapping tables for our schemas. We remark that the structure
and notations used to present our method are simply suggestions for a manual
execution of the method and can be replaced or hidden to the user in case of an
implementation.

Proceedings of the 2nd International Workshop on Semantic Digital Archives (SDA 2012)

82

Entity Mapping Onto.Class DB Table ID Source
Protocol DB - O Protocol Protocol Protocol.ID O, DB
Image DB - O Image Image Image.ID O, DB
MacroImage DB - O MacroImage Image Image.ID O
MicroImage O MicroImage - URI O
Species O - DB Species - URI O, DB
Gender O - DB Gender - URI O
Organ O - DB Organ - URI O, DB
Origin DB - Origin Origin.ID DB

Domain Property Range Type Mapping DB column
Image (DB) representsDiagnosis Diagnosis (O) object DB - O Image.diagnosis

origin Origin (DB) object DB Image.origin
hasImageCode <string> datatype DB - O Image.code image
notes <string> datatype DB Image.notes
author <string> datatype DB Image.author
...

MacroImage (DB) representsOrgan Organ (O) object DB - O Image.organ
representsLesion Lesion (O) object DB - O Image.lesion
isCarcass <boolean> datatype DB - O Image.carcass

Lesion (O) hasPosition Organ (O) object O -

Table 1. Entity and Property tables (excerpt)

5 Conclusions

In this paper we presented a method that allows a relational database and an
ontology – as deployed in a Semantic Web application – to collaborate towards
a fruitful distribution of data between them. We also provided guidelines in
order to support the decisions to be taken in the deployment of our method.
We defined the presented method motivated by the scenario of a system for
the management of bio-medical images. In such project, semantic technologies
are used to relate data from a relational database containing information about
images to ontologies containing complex metadata classifying them.

The method we proposed in these pages represents a first step towards the
definition of a generally applicable re-engineering process: for its further de-
velopment, it is certainly necessary to refine and evaluate the proposal with
experiences on several real-world applications scenarios. Moreover, the proposed
guidelines are not thought to constitute a complete best practice, but they want
to draw the attention to some relevant aspects of the cooperation and possibly
promote discussion about these issues. Another interesting direction for further
developments is the study of the automatization possibilities and the effective
implementation for the tasks of our method.

Acknowledgments

We would like to thank the IZSLER institute for the support and collaboration.

References

1. Alexe, B., Chiticariu, L., Miller, R.J., Tan, W.C.: Muse: Mapping understanding
and design by example. In: ICDE. pp. 10–19. IEEE (2008)

Proceedings of the 2nd International Workshop on Semantic Digital Archives (SDA 2012)

83

2. Auer, S., Feigenbaum, L., Miranker, D., Fogarolli, A., Sequeda, J.: Use Cases and
Requirements for Mapping Relational Databases to RDF. RDB2RDF XG Working
Draft, W3C (Jun 2010), http://www.w3.org/TR/rdb2rdf-ucr/

3. Aumueller, D., Do, H.H., Massmann, S., Rahm, E.: Schema and ontology matching
with coma++. In: Özcan, F. (ed.) SIGMOD Conference. pp. 906–908. ACM (2005)

4. Barrasa, J., Corcho, O., Gómez-Pérez, A.: R2O, an Extensible and Semantically
based Database-to-Ontology Mapping Language. In: Proceedings of SWDB2004.
pp. 1069–1070. Springer (2004)

5. Bizer, C.: D2R MAP - A Database to RDF Mapping Language. In: Proceedings
of WWW03 (Posters) (2003)

6. Bizer, C., Cyganiak, R.: D2RQ - Lessons Learned. W3C Workshop on RDF Access
to Relational Databases (Oct 2007), http://sites.wiwiss.fu-berlin.de/suhl/
bizer/pub/w3c-d2rq-positionpaper/

7. Brockmans, S., Haase, P.: A Metamodel and UML Profile for Networked Ontolo-
gies - A Complete Reference. Tech. rep., Institute AIFB, Universität Karlsruhe,
Germany (2006)

8. Handschuh, S., Staab, S., Volz, R.: On deep annotation. In: Proceedings of
WWW03. pp. 431–438 (2003)

9. He, B., Patel, M., Zhang, Z., Chang, K.C.C.: Accessing the deep web. Commun.
ACM 50(5), 94–101 (2007)

10. Poggi, A., Lembo, D., Calvanese, D., Giacomo, G.D., Lenzerini, M., Rosati, R.:
Linking data to ontologies. J. Data Semantics 10, 133–173 (2008)

11. Presutti, V.: D2.5.1. A Library of Ontology Design Patterns: reusable solu-
tions for collaborative design of networked ontologies. NeOn Project Deliverable
D2.5.1/v1.2, NeOn (Feb 2008)

12. Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching.
VLDB J. 10(4), 334–350 (2001)

13. Raunich, S., Rahm, E.: Atom: Automatic target-driven ontology merging. In:
Abiteboul, S., Böhm, K., Koch, C., Tan, K.L. (eds.) ICDE. pp. 1276–1279. IEEE
Computer Society (2011)

14. Sahoo, S., Halb, W., Hellmann, S., Idehen, K., Thibodeau, T., Auer, S., Sequeda,
J., Ezzat, A.: A Survey of Current Approaches for Mapping of Relational Databases
to RDF. RDB2RDF XG Report, W3C (Jan 2009), http://www.w3.org/2005/

Incubator/rdb2rdf/RDB2RDF_SurveyReport.pdf

15. Stojanovic, L., Stojanovic, N., Volz, R.: Migrating data-intensive web sites into the
semantic web. In: Proceedings of SAC. pp. 1100–1107. ACM (2002)

16. Stojanovic, N., Stojanovic, L., Volz, R.: A reverse engineering approach for mi-
grating data-intensive web sites to the semantic web. In: Proceedings of IFIP. pp.
141–154 (2002)

17. Suárez-Figueroa, M.C.: D5.4.1. NeOn Methodology for Building Contextualized
Ontology Networks. NeOn Project Deliverable D5.4.1/v1.0, NeOn (Feb 2008)

18. Suchanek, F.M., Abiteboul, S., Senellart, P.: Paris: Probabilistic alignment of re-
lations, instances, and schema. CoRR abs/1111.7164 (2011)

19. Sugumaran, V., Storey, V.C.: The role of domain ontologies in database design:
An ontology management and conceptual modeling environment. ACM Trans.
Database Syst. 31(3), 1064–1094 (2006)

20. Villazón-Terrazas, B.: D2.2.2. Methods and Tools Supporting Re-engineering.
NeOn Project Deliverable D2.2.2/v2.0, NeOn (Feb 2009)

Proceedings of the 2nd International Workshop on Semantic Digital Archives (SDA 2012)

84

