CEUR-WS.org/Vol-914/paper_37.pdf

Linked Data Fusion in ODCleanStore*

Jan Michelfeit and Tomas Knap

Charles University in Prague, Dept. Software Engineering
Malostranské nam. 25, 118 00 Prague, Czech Republic
michelfeit.jan@gmail.com, tomas.knap@mff.cuni.cz

Abstract. As part of LOD2 project and OpenData.cz initiative, we
are developing an ODCleanStore framework enabling management of
Linked Data. In this paper, we focus on the query-time data fusion in
ODCleanStore, which provides data consumers with integrated views on
Linked Data; the fused data (1) has solved conflicts according to the
preferred conflict resolution policies and (2) is accompanied with prove-
nance and quality scores, so that the consumers can judge the usefulness
and trustworthiness of the data for their task at hand.

The advent of Linked Data [1] accelerates the evolution of the Web into
an exponentially growing information space (see the linked open data cloud!)
where the unprecedented volume of data will offer information consumers a level
of information integration and aggregation agility that has up to now not been
possible. Consumers can now “mashup” and readily integrate information for
use in a myriad of alternative end uses. Indiscriminate addition of information
can, however, come with inherent problems, such as the provision of poor quality,
inaccurate, irrelevant or fraudulent information. All will come with an associate
cost of the data integration which will ultimately affect data consumer’s benefit
and linked data applications usage and uptake.

To overcome these issues, as part of the OpenData.cz initiative and LOD2
project?, we are developing the ODCleanStore (ODCS) framework® (1) enabling
management of Linked Data — data cleaning, linking, transformation, and quality
assessment — and (2) providing data consumers with a possibility to consume
integrated data, which reduces the costs of the web application development.

The overall picture of ODCS is depicted in Figure 1. ODCS processes RDF
data feeds (collections of RDF quads, one data feed = one named graph*) in
the staging area; feeds can be uploaded to the staging area by any third-party

* The work presented in this article has been funded in part by EU ICT FP7 under
No.257943 (LOD2 project), the Czech Science Foundation (GACR, grant number
201/09/H057), and GAUK 3110.

! http://richard.cyganiak.de/2007/10/lod/

2 http://opendata.cz, http://lod2.cu

3 To download the code, please visit http://sourceforge.net/p/odcleanstore

4 RDF triples can be extended to quads (s, p,o0,g) where g is the named graph [3] to
which the data belongs. When talking about “data in the named graph ¢”, we mean
all the quads (x,*,*,g)).



Nen-trivial Data Processing

Query +
—consumer's—3
policies

Clean
Database ¢
RDF data + Master | ;.50 pata

[é—provenance +— Data Data (Ontologies)
data quality Database

Web service fusion A gministrators

Sle=
Publishing II
applications

Web service

Transforming;
Pipelines

Query
Executor

Consumer

Fig. 1. ODCleanStore Framework

application registered in ODCS, e.g. by various extractors. Based on the identi-
fier of the feed, the appropriate transforming pipeline is launched; the pipeline
successively executes a defined (and customizable) set of transformers ensuring
that data in the processed feed is cleaned, resources deduplicated and linked to
already existing resources in the clean database or in the linked open data cloud,
data is enriched with new resources, arbitrarily transformed, and the quality of
the feed (graph score) is assessed. When the pipeline finishes, the augmented
RDF feed is populated to the clean database together with any auxiliary data
and metadata created during the pipeline execution, such as links to other re-
sources or metadata about the feed’s graph score.

Data consumers can query (via third-party applications) the clean database
to obtain data about the certain resource (e.g. a city, such as the German city
“Berlin”). Since the same resource can be described by various sources (feeds),
conflicts may arise when integrating data about that city. To solve this, ODCS
applies in the data fusion algorithm certain conflict resolution policies which
resolve data conflicts in the resulting RDF data; these policies can be cus-
tomized by the consumer. Furthermore, the resulting integrated RDF data is
supplemented with provenance metadata (data origin) and quality scores of the
integrated quads, so that data consumers can judge the usefulness and trustwor-
thiness of the resulting data for their task at hand; the quality score is influenced
by the quality of the feed the triples originate from (graph score) and by the ap-
plied conflict resolution policy [4]. The data fusion algorithm runs during query
time, because consumers in different situations can have different requirements
on the data.

This paper briefly describes the data fusion algorithm in ODCS in Section 1;
the algorithm is fully described in [4]. The practical demonstration® based on
the illustrative examples in Section 1 gives further insight into the work of the
data fusion algorithm.

To the best of our knowledge, there is just one another linked data fusion
software — Sieve — currently under development [5]. Sieve is part of Linked Data
Integration Framework®. Differently from our approach, Sieve fuses data while

® http://www.ksi.mff.cuni.cz/ knap /iswc12
5 http://wwwd.wiwiss.fu-berlin.de/bizer /1dif/



being stored to the clean database and not during execution of queries, thus,
provides no data fusion customization during data querying.

1 Linked Data Fusion

Suppose that the clean database of ODCS contains data about the German
city Berlin coming from multiple sources — DBpedia, GeoNames, and Freebase”.
Let us assume that Alice, a data consumer, is an investigative journalist who is
writing a story about Berlin; thus, she submits the keyword “Berlin” to the query
execution component of ODCS and she would like to get all the information the
framework knows about Berlin fused from the available sources.

When fusing data, the data fusion algorithm in ODCS has to deal with data
conflicts, which happen when two quads have inconsistent object values for a
certain subject s and predicate p; such quads are called o-conflicting quads and
the conflicting object values of these o-conflicting quads are called conflicting
values. The solution of the conflicts is prescribed by the conflict resolution poli-
cies, which may be specified globally or per predicate. We distinguish two types
of conflict resolution policies — deciding and mediating. Deciding policies select
one or more values from the conflicting values, e.g., an arbitrary value (ANY),
maximum value (MAX), the value with the highest quality (BEST), or all con-
flicting values (ALL). Mediating policies compute new value, e.g. an average
(AVG) of the conflicting values. For example, Alice may specify she would like
to receive in the response all the distinct values for the subject representing
Berlin and predicate rdf : type (deciding conflict resolution policy ALL). On the
other hand, she may want to compute for the same subject average value (AVG)
for the values of the predicate geo:lat, select the best value with the highest
quality (BEST) for rdfs:label of Berlin, and select maximum value (MAX)
from the values of the predicate dbprop:populationTotal of Berlin.

When describing the data fusion algorithm within execution of consumer’s
queries in ODCS, we suppose that the typical pre-fusing processes [2] — schema
mapping (the detection of equivalent schema elements in different sources) and
duplicate detection (detection of equivalent resources) has already been done.
Therefore, we suppose that (1) proper mappings between ontology elements
are available in the master data database in Figure 1, e.g. that geo:1lat and
fb:location.geocode.latitude are denoted as equivalent predicates holding
latitude of Berlin, and (2) owl:sameAs links between resources representing the
same entity (the German city Berlin) were created by the proper transformers
(linkers) on the transforming pipeline.

The input to the data fusion algorithm is (1) a collection of quads from
the clean database to be fused — the quads (x,*,**),(*,* x,*), where z is the
URI representing Berlin in some source (2) owl:sameAs links between URI re-
sources occurring in the quads (output of the deduplication and schema mapping
pre-fusion processes), (3) data fusion settings (including set of selected conflict

" Identifiers for the resource Berlin are: http://dbpedia.org/resource/Berlin,
http://sws.geonames.org/2950159/, http://rdf.freebase.com/ns/en.berlin



resolution policies), and (4) graph scores of the named graphs (feeds) from which
the quads originate. The output is a collection of fused quads enriched with data
quality and source named graphs for each fused quad.

The fusion algorithm firstly replaces URIs of resources representing the same
concept (i.e. connected by an owl:sameAs links) with a single URI and removes
duplicate quads®. Consequently, quads are grouped to the sets of comparable
quads — i.e. quads having the same subject and predicate; o-conflicting quads
form subset of the corresponding comparable quads. For each set of comparable
quads, two steps (Step S1 and S2) are executed: Step S1 chooses and applies a
conflict resolution policy determined by the predicate of the comparable quads
and Step S2 computes quality of the quads resulting from Step S1. Multiple real-
world cases lead us to three factors influencing the computation of the quality
of the resulting fused quads (in Step S2): (1) graph scores of the source named
graphs containing the processed comparable quads, (2) number of object values
within the set of comparable quads which agree on the same object value, and
(3) the difference between conflicting values of the comparable and o-conflicting
quads. Details of the quality computation are in [4].

2 Conclusions

This paper introduces query-time data fusion algorithm in ODCleanStore —
the framework for managing Linked Data. The practical demonstration® shows
the maturity of the algorithm and demonstrates its features — application of
conflict resolution policies and computation of the quality of the fused quads.
Full theoretical background behind the data fusion algorithm is in [4].

References

1. C. Bizer, T. Heath, and T. Berners-Lee. Linked Data - The Story So Far. Interna-
tional Journal on Semantic Web and Information Systems, 5(3):1-22, 2009.

2. J. Bleiholder and F. Naumann. Data fusion. ACM Comput. Surv., 41(1):1:1-1:41,
Jan. 2009.

3. J. J. Carroll, C. Bizer, P. Hayes, and P. Stickler. Named graphs, Provenance and
Trust. In WWW ’05: Proceedings of the 14th international conference on World
Wide Web, pages 613-622, New York, NY, USA, 2005. ACM.

4. T. Knap, J. Michelfeit, and N. M. Linked Open Data Aggregation: Conflict Resolu-
tion and Aggregate Quality. METHOD 2012 : The 1st IEEE International Workshop
on Methods for Establishing Trust with Open Data, COMPSAC (to appear), 2012.
http://www.ksi.mff.cuni.cz/ knap/files/method.pdf).

5. P. N. Mendes, H. Miihleisen, and C. Bizer. Sieve: Linked Data Quality Assess-
ment and Fusion. In 1st International Workshop on Linked Web Data Management
(LWDM 2011) at the 15th International Conference on Extending Database Tech-
nology, EDBT 2012, March.

8 Quads having the same subject, predicate, object, and the named graph.
9 http://www.ksi.mff.cuni.cz/ knap/iswc12



