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Abstract  
Background: Over the last decade, we have witnessed an incredible growth in the field of 

exome and genome sequencing. This information can be used to predict phenotypes for a 

number of traits of medical relevance. Here, we have focused on the identification of blood cell 

traits, developing BOOGIE, a tool recognizing relevant mutations through genome analysis and 

interpreting them in several blood traits important for transfusions.  

Results: In our method, we extract relevant mutation data and annotate a genome with 

ANNOVAR. These variants are then directly compared with our knowledge base, containing 

association rules between mutations and phenotypes for the ten major blood groups: ABO, Rh, 

Duffy, Kell, Diego, Kidd, Lewis, Lutheran, MNS and Bombay. Whenever a match is found, it is 

used to predict the related phenotype and list causative mutations. The decision process is 

implemented as an expert system, automatically performing the logical reasoning connected to 

the genome variants. Interactions with other proteins and enzymes are easily kept into account 

during the full process, e.g. for the Bombay phenotype. This rare and easily misclassified 

genetic trait involves three blood groups, making blood donations potentially lethal.  

Conclusions: BOOGIE was tested on Personal Genome Project (PGP) data. The blood traits 

for genomes with available ABO and Rh annotation were correctly predicted in between 86% 

and 100% of cases. The analysis is very efficient, making it suitable for genome scale 

diagnostic applications in personalized medicine. The versatility and simplicity of the analysis 

make it easily interpretable and allows easy extension of the protocol towards other blood 

related traits.  
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Background  
Genome analysis problem 
Advances in genome sequencing over the last years have detected a huge amount of new Single 

Nucleotide Polymorphisms (SNPs) [1], producing a tremendous growth of mutation databases. As the 

understanding of these variants is still far from being comprehensive, several bioinformatics tools like 

SIFT [2] and PolyPhen [3] were developed. Despite the relatively good performance of these methods 

[4], predicting the loss of activity of a single protein is not sufficient to explain a phenotype. The 

importance of considering several genetic loci and corresponding mutations to determine a phenotype 

has led to Genome Wide Association Studies (GWAS), focusing mainly on the multifactorial nature of 

traits [1]. As an example, consider the Bombay phenotype, a blood group for which expression of the 

trait depends on the ABO, FUT1 and FUT2 genes [5]. Finding genotype-phenotype correlations is a 

critical topic in personalized medicine, as personal genome sequencing is expected to become 

increasingly common over the next few years [6]. One of the most interesting developments in this field 

is the Personal Genome Project (PGP), collecting genome sequences and clinical phenotypes of 

participants who have signed an informed consent [7]. The goal is to make freely available for research 

the genome information for thousands of participants (PGP1K) [8].  

Here, we describe the prototype of  a new back-end tool, BOOGIE (BlOOd group Genome predIction 

Expert), for predicting the existence of antigens related to ten different blood groups through genome 

analysis based on SNP evaluation. Such a tool can assume strong relevance in blood transfusions, where 

only few blood systems are regularly considered in order to determine compatibility between donor and 

receiver [9]. 

Biological background 
Blood groups are determined by the presence of specific proteins on the surface of red blood cells and 

body fluids [10]. These proteins act as antigens and can cause severe immune reactions whenever the 

immune system recognizes exogenous red blood cells. Usually, the antigenic determinants are 

oligosaccharides located on glycoproteins and glycolipids expressed on erythrocytes and tissue cells 

[11]. This carbohydrate component is then selectively modified by enzymes that are expressed by the 

same genes that determine the inclusion in a blood group system. A brief introduction to the most 

clinically relevant blood groups studied in this work follows and is also summarized in Table 1. 

ABO group: The ABO blood type is the most important blood group system in medicine. Its antigenic 

determinants are oligosaccharides located on erythrocytes and tissue cells glycoproteins. Four 

phenotypes are related to the ABO system: A, B, AB and O. The ABO gene codes for the 

glycosyltransferases that transfer specific sugar residues to H substance. Depending on the transferred 

sugar, two different antigens A or B are obtained [11].   

Rh group: The Rhesus blood group is the second most important blood system in humans. The Rh blood 

group system is highly polymorphic, consisting of  over 45 independent antigens. Clinically, the correct 
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recognition of the Rh factor is important in blood transfusion and in the prevention and diagnosis of 

erythroblastosis fetalis disease [12]. 

Duffy group: This blood system, also known as the Duffy antigen receptor for chemokines (DARC), is 

actively expressed by erythrocytes and endothelial cells. This antigen is of a certain importance in 

patients who receive regular blood transfusions such as hemophiliacs [13].  

Kell group: Kell antigen is a glycoprotein expressed on red blood cell membranes encoded by Kel gene, 

homologous to zinc-binding family metalloendopepsidases. The Kell system seems to be involved in 

alloimmunization in thalassemic patiens and in hemolytic disease in newborns [14].  

Diego group: This system consists of 21 antigens. The antithetic couple Dia/Dib and Wra/Wrb are 

considered the most common. Other 17 antigens are poorly distributed and considered local variation 

[15]. 

Kidd group: The Kidd blood type is one of the not Rh-dependent causes of newborn hemolytic disease. 

It remains difficult to detect due to its high serologic variability and weak in vitro expression [16]. 

Lewis group: Lewis antigens include type 1 (Lewis a and b) and type 2 (Lewis X and Y) carbohydrates. 

Lewis X and Y were recently identified as tumor-associated markers [17]. 

Lutheran group: The Lutheran gene (Lu) encodes for a glycoprotein of the Ig transmembrane receptor 

superfamily (IgSF). Lutheran includes Lua and Lub antigens, with the latter being very rare [18]. 

MNS group: The MNS system is the second blood group system discovered. It includes 46 antigens and 

at least 16 result from genetic recombination. MNS mismatch causes hemolytic newborn disease [19]. 

Bombay group: The Bombay phenotype (hh) is a severe mutation that causes silencing of the gene 

encoding for the H antigen present in blood group ABO. As a result, Bombay phenotypes result unable 

to produce either A or B antigen on red blood cells [5]. 

Expert systems 
In order to predict the blood phenotypes induced by genome variants, there are many explicit rules in the 

literature that can be considered for prediction purposes. This knowledge takes the form of “IF – THEN” 

sentences, e.g. “IF there is a total RHD deletion in the genome THEN the patient has D- phenotype in 

the RH blood system”. A large amount of explicitly coded relationships is available in databases (DBs) 

such as BGMUT [20]. This suggests the use of an inference chaining procedure as sufficient to decide 

for a given phenotype from the entire genome. Hence, we chose to exploit the principles of expert 

systems [21]. The idea behind this kind of predictors is simple. Known facts can be iteratively used by 

inference rules for finding new facts, and eventually decide about the problem of interest. This kind of 

system emulates part of the decision process taken by a human expert, since the program considers the 

known facts about a given domain of knowledge. Another interesting point about expert systems is their 

ability to exploit human intuition by means of the so-called conversational process [21], where machine 

and expert user interact to solve situations that are too complex for automatic computation. 
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Methods  
BOOGIE is designed as an in-house expert system returning blood trait predictions from a genome 

sequence input. The overall workflow is shown in Figure 1. The genome sequence is first reduced to a 

subset of SNPs on genes relevant for blood phenotypes using ANNOVAR [22]. This tool uses various 

filters to identify variants likely to have a functional impact, effectively reducing the SNPs to be 

analyzed by several orders of magnitude. It also adds useful information on gene position and SNP type 

while supporting the most common genome file formats. In our implementation, the entire genome is 

represented as a tree structure with four levels, as shown in Figure 2. Trees are the most suitable 

representation, since genetic data is fixed and the analysis puts more effort on the localization of relevant 

mutations (i.e. like the offline search problem). Hence, search time complexity in this context drops 

from O(n) to O(log n), where n is the number of mutations. Inference is used to make decisions from the 

annotated data. To predict the blood group of a patient (say, the Rh blood trait), the genome data is 

loaded into the tree-like structure. Then, taking advantage of a newly developed knowledge base, we 

check if the preconditions of each rule are satisfied according to the tree, and predict the phenotype 

arising from the genome. The knowledge base for instance knows that “IF L245V and G336V mutations 

occur in the RHCD gene THEN phenotype is c e”. Simply put, we look for the existence of these 

mutations in the patient genome, and if they both appear, the user is notified about evidence for the c and 

e traits. Information on heterozygosity and dominance is taken into account in the process through 

proper definition of conditional statements in the knowledge base. A simple conversational process is 

currently implemented by providing the user with alternative interpretations for contradictory data. The 

method is very efficient, as it can represent an entire exome in just 20 MB of memory, and can load its 

data and analyse it in seconds on a HP G62 laptop. 

Results  

Knowledge base 
BOOGIE relies heavily on the availability of known mutations and their phenotypes. All the data was 

manually gathered by a human annotator, and stored in a knowledge base. Data extracted from BGMUT 

[20], dbSNP [23], Uniprot [24], OMIM [25], and PubMed [26] as of May 2012 was manually curated to 

remove redundancy and resolve possible contradictions. Blood trait allelic data was stored in text files 

with the chromosome of interest, gene, locus, amino acid and nucleotide change, metabolic pathways 

involved, DB references, gene ontology annotations, known blood traits, population distribution and 

correlation with other phenotypes. A total of 580 rules were derived for usage in the identification of 

traits during this data retrieval step. It should be noted that building such a knowledge base is not a 

straightforward process [27]. The exomes under analysis may be built on different reference genomes, 

with sequencing tools generally using either NCBI build 36 or 37, e.g. the PGP data so far uses both. 

This is a key issue, requiring a conversion step to properly interpret the meaning of a variation. On the 

other hand, published mutations may assume a different reference genome. A simple example is the 
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ABO gene: the A blood-group is used as reference in the literature, whereas NCBI genome build 37 

defines the 0 blood group as reference. This may be a tricky problem, since most of the known SNPs 

have to be transformed. E.g. 297G>A, known to lead to 0 phenotype [20], will be found in a genome in 

the form of 296A>G, leading to an A blood group due to the inverted nucleotides. Finally, whenever few 

mutations express weak phenotypes, uncertainty in the decision is higher, such as T1136C in the RH 

gene. This is the main reason suggesting a conversational process in the expert system. 

Patient data and classification 
Testing BOOGIE is severely hampered by the scarcity of available genotype-phenotype pairs. To the 

best of our knowledge, only the PGP project readily provides this data. The first 10 PGP participants, 

which have the most extensive annotation, were selected as test case for BOOGIE. The method predicts 

blood groups for all tested genomes and provides additional information not immediately available  

through standard clinical trials such as classification in subgroups and presence of alleles suggesting a 

weak antigenic response. Representative results can be seen in Table 2. BOOGIE predicts correctly the 

ABO type for all 9 cases with known blood phenotype (PGP3 contains no information). The Rh blood 

type is predicted correctly in 8 out of 9 cases. For PGP4, BOOGIE predicts an intermediate condition, 

potentially dangerous in case of pregnancy, which was interpreted as Rh+. The available genomic data is 

apparently not sufficient to explain the Rh- phenotype. Overall BOOGIE accuracy for PGP10 is 100% 

for ABO and ca. 88% for Rh. No experimental validation is possible for the other blood groups 

considered in this research, at present. In view of the performance for the ABO and Rh groups, we 

expect a reasonable accuracy for these, although validation is still pending. 

A second test was performed on participants from PGP1K. This dataset differs from PGP10 as 

microarray data on a panel of known SNPs is provided instead of genome sequences. The available data 

is also much sparser, allowing us to select a total of 22 participants with known blood groups (as of 

August 2012). Results for this dataset, shown in Figure 3, broadly confirm that BOOGIE is able to 

correctly classify most of the participants for ABO, but has lower accuracy for Rh-. This is mostly the 

case for participants with incomplete SNP coverage, where missing information on a few critical SNPs 

hampers correct classification. The overall accuracy for both blood groups nevertheless remains ca. 86% 

(19 out of 22). 
 

Discussion  
In this work we have developed BOOGIE, a back-end expert system for the prediction of phenotypes 

related to blood cell traits. The application is particularly suitable for analysing a large amount of data, 

due to its efficiency both from the time complexity and memory management point of view. This is 

possible due to the known data necessary for a decision is stored in the knowledge base. Decisions taken 

by BOOGIE are easy to interpret by a human expert, as predictions rely on chaining of well-known facts 

available from the literature. This is an appealing aspect, which differs significantly from the largest part 
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of recent bioinformatics tools, which mostly use complex decision methods and learning principles that 

cannot be directly interpreted by an end-user. A key aspect is the flexibility of the system. Adding more 

data to the knowledge base will allow us to tackle similar genotype to phenotype problems, an important 

step towards predicting the likelihood of disease in personalized medicine. The approach is related to the 

simple univariate analysis used in the last years by life scientists for phenotype explanation. Several 

rules in our knowledge base consider only one SNP at a time to reach reasonable decisions for most 

blood traits. In order to strengthen the system, we plan to add optional modules for multivariate analysis 

of GWAS genomes in the future. This will be essential for the prediction of complex diseases like 

Asthma or Crohn's disease, where most genotype-phenotype relations are still unclear, so an inference 

procedure relying on rules from the literature cannot be used. This improvement can also be of great 

utility for the conversational process. 

BOOGIE is also a powerful tool for the analysis of minor blood groups, such as those systems for which 

experimental techniques for antigen detection are poorly sensitive, e.g. the KELL system. In these cases, 

analysis at the genome level can be a significant step forward. In addition to blood transfusion targets, 

the platform can also be a valuable tool for the study of population. Some anthropological marker genes 

are important due to ethnicity-specific polymorphisms of certain human populations. The versatility of 

the tool allows us to imagine different scenarios where similar methods will be used for detection of rare 

diseases or, in forensic medicine, to solve paternity assignment disputes. 

Acknowledgements  
The works is supported by Cariplo grant 2011/0724 and FIRB Futuro in Ricerca grant RBFR08ZSXY to 

S.T. G.M. is an AIRC research fellow. 

References 
1. Altshuler DM, Gibbs RA, Peltonen L, Altshuler DM, Gibbs RA, Peltonen L, 

Dermitzakis E, Schaffner SF, Yu F, Peltonen L et al: Integrating common and rare 
genetic variation in diverse human populations. Nature 2010, 467(7311):52-58. 

2. Ng PC, Henikoff S: Predicting deleterious amino acid substitutions. Genome Res 
2001, 11(5):863-874. 

3. Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, Kondrashov 
AS, Sunyaev SR: A method and server for predicting damaging missense mutations. 
Nat Methods 2010, 7(4):248-249. 

4. Thusberg J, Vihinen M: Pathogenic or not? And if so, then how? Studying the effects 
of missense mutations using bioinformatics methods. Hum Mutat 2009, 30(5):703-
714. 

5. Dipta TF, Hossain AZ: The Bombay blood group: are we out of risk? Mymensingh 
Med J 2011, 20(3):536-540. 



 7 

6. von Bubnoff A: Next-generation sequencing: the race is on. Cell 2008, 132(5):721-
723. 

7. Ball MP, Thakuria JV, Zaranek AW, Clegg T, Rosenbaum AM, Wu X, Angrist M, Bhak 
J, Bobe J, Callow MJ et al: A public resource facilitating clinical use of genomes. 
Proc Natl Acad Sci U S A 2012, 109(30):11920-11927. 

8. Personal Genome Project [http://www.personalgenomes.org/] 

9. Anstee DJ: Red cell genotyping and the future of pretransfusion testing. Blood 2009, 
114(2):248-256. 

10. Denomme GA: Molecular basis of blood group expression. Transfus Apher Sci 2011, 
44(1):53-63. 

11. Seltsam A, Hallensleben M, Kollmann A, Blasczyk R: The nature of diversity and 
diversification at the ABO locus. Blood 2003, 102(8):3035-3042. 

12. Avent ND, Reid ME: The Rh blood group system: a review. Blood 2000, 95(2):375-
387. 

13. Zhao Y, Mangalmurti NS, Xiong Z, Prakash B, Guo F, Stolz DB, Lee JS: Duffy antigen 
receptor for chemokines mediates chemokine endocytosis through a 
macropinocytosis-like process in endothelial cells. PLoS One 2011, 6(12):e29624. 

14. Yang MH, Li L, Kuo YF, Hung YS, Yu LC, Hung CS, Tsai SJ, Lin KS, Chu DC: 
Genetic and functional analyses describe a novel 730delG mutation in the KEL 
gene causing K0 phenotype in a Taiwanese blood donor. Transfus Med 2011, 
21(5):318-324. 

15. Xu XG, He J, He YM, Tao SD, Ying YL, Zhu FM, Lv HJ, Yan LX: Distribution of 
Diego blood group alleles and identification of four novel mutations on exon 19 of 
SLC4A1 gene in the Chinese Han population by polymerase chain reaction 
sequence-based typing. Vox Sang 2011, 100(3):317-321. 

16. Liu JC, Wang Y, Liu FP, He YS: The manual Polybrene test has limited sensitivities 
for detecting the Kidd blood group system. Scand J Clin Lab Invest 2009, 69(7):797-
800. 

17. Soejima M, Koda Y: Molecular mechanisms of Lewis antigen expression. Leg Med 
(Tokyo) 2005, 7(4):266-269. 

18. Kikkawa Y, Miwa T, Tohara Y, Hamakubo T, Nomizu M: An antibody to the lutheran 
glycoprotein (Lu) recognizing the LU4 blood type variant inhibits cell adhesion to 
laminin alpha5. PLoS One 2011, 6(8):e23329. 

19. Heathcote DJ, Carroll TE, Flower RL: Sixty years of antibodies to MNS system 
hybrid glycophorins: what have we learned? Transfus Med Rev 2011, 25(2):111-124. 

20. Patnaik SK, Helmberg W, Blumenfeld OO: BGMUT: NCBI dbRBC database of 
allelic variations of genes encoding antigens of blood group systems. Nucleic Acids 
Res 2012, 40(Database issue):D1023-1029. 



 8 

21. Russell SJ, Norvig P: Artificial Intelligence: A Modern Approach, 3rd edn: Pearson 
Education; 2009. 

22. Wang K, Li M, Hakonarson H: ANNOVAR: functional annotation of genetic variants 
from high-throughput sequencing data. Nucleic Acids Res 2010, 38(16):e164. 

23. Sherry ST, Ward MH, Kholodov M, Baker J, Phan L, Smigielski EM, Sirotkin K: 
dbSNP: the NCBI database of genetic variation. Nucleic Acids Res 2001, 29(1):308-
311. 

24. The UniProt Consortium: Ongoing and future developments at the Universal Protein 
Resource. Nucleic Acids Res 2011, 39(Database issue):D214-219. 

25. Online Mendelian Inheritance in Man, OMIM [http://www.ncbi.nlm.nih.gov/omim] 

26. PubMed [http://www.ncbi.nlm.nih.gov/pubmed/] 

27. Thomas PE, Klinger R, Furlong LI, Hofmann-Apitius M, Friedrich CM: Challenges in 
the association of human single nucleotide polymorphism mentions with unique 
database identifiers. BMC Bioinformatics 2010, 12 Suppl 4:S4. 

 

 



 9 

Figures 
 

Figure 1  – Overview of the BOOGIE workflow. 

The genome data is annotated by ANNOVAR, and the resulting information is used to infer 

phenotypes. Optionally, the user can interact with the system whenever the produced output do 

not satisfy the expectation (e.g. BOOGIE cannot decide between two phenotypes due to 

unavailable data). b) Overview of the tree-like representation of the genome 

 

 

Figure 2  – BOOGIE tree-like genome representation levels. 
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Figure 3  – BOOGIE performance on the PGP1K dataset 

Benchmarking results on the 22 PGP1K participants with publicly available ABO and Rh 

phenotypes. The comparison between predicted (P) and real (R) data is shown for each 

phenotype (A, B, AB, 0, Rh+ and Rh-) with the respective accuracy in the lower right corner.  

Note that this dataset contains micro array observations rather than genome data, making it 

intrinsically incomplete. Incorrect predictions marked with (*) have missing data for some 

important SNPs used by BOOGIE. 

 
 

Tables 
 

Table 1 – Overview of the ten used blood systems. 

 

Blood Relevant genes Possible antigens 
ABO ABO A, B, O 

RH RHCE, RHD D, E, e, C, c plus 50 minor antigens 

Duffy DARC FY(a), FY(b) 

Kell KEL K1, K2, plus 23 minor antigens 

Diego SLC4A1 Dia, Dib,  Wra/Wrb

Kidd SLC14A1 Jk(a), Jk(b) 

Lewis FUT3 a, b 

Lutheran BCAM Lu(a), Lu(b) plus 15 minor antigens 

MNS GYPA, GYPB, GYPE M, N, S, s plus 40 minor antigens 

Bombay FUT1, FUT2 H, secretor 
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Table 2 – Predicted phenotypes for selected PGP10 participants.  

Results are shown for three representative participants, listing the known phenotype and 

BOOGIE predictions for sub-groups in each phenotype. In this table Rh+ assignments are a 

consequence of predicted “c; e; weakD” antigenes. The predictions are correct except for PGP4, 

erroneously predicted to be Rh+.  

 
 PGP1 PGP4 PGP8 

Known O + A - B + 

ABO O A B 

Rh c; e; weak D c; e; weak D c; e; weak D 

DUFFY FY(a+); FY(b-) FY(a-); FY(b+) FY(a-); FY(b+) 

KELL K2; K21+; K4-; K3-; K11; 
K17; K14,; K24; K6+; K7-

K2; K21+; K4-; K3-; K11; 
K17; K14; K24; K6+; K7- 

K2; K21+; K4-; K3-; K11; 
K17; K14; K24; K6+; K7- 

Diego Dib; Memph neg Dib; Memph neg Dib; Memph neg 

KIDD Jk(a-); Jk(b+) Jk(a-); Jk(b+) Jk(a+); Jk(b-) 

Lewis negative negative negative 

Lutheran 
Lu(a-); Lu(b+); 

Lu6+; Lu9-; Lu4; Lu8+; 
Aua+; Aub- 

Lu(a-); Lu(b+); 
Lu6-; Lu9+; Lu4-; Lu8+; 

Aua-; Aub+ 

Lu(a-); Lu(b+); 
Lu6+; Lu9-; Lu4-; Lu8+; 

Aua+; Aub- 

MNS M; S M; s M,s 

Bombay H+; secretor H+; secretor H+; secretor 

 


