Predicting virus mutations through relational learning
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Abstract

Background: Viruses are typically characterized by high mutation rates, which allow them to quickly develop
drug-resistant mutations. Mining relevant rules from mutation data can be extremely useful to understand the
virus adaptation mechanism and to design drugs that effectively counter potentially resistant mutants.

Results: We propose a simple relational learning approach for mutant prediction where the input consists of
mutation data with drug-resistance information, either as sets of mutations conferring resistance to a certain
drug, or as sets of mutants with information on their susceptibility to the drug. The algorithm learns a set of
relational rules characterizing drug-resistance and use them to generate a set of potentially resistant mutants.

Conclusions: Promising results were obtained in generating resistant mutations for both nucleoside and non-
nucleoside HIV reverse transcriptase inhibitors. The approach can be generalized quite easily to learning mutants
characterized by more complex rules correlating multiple mutations.

Background

HIV is a pandemic cause of lethal pathologies in
more than 33 million people. Its horizontal transmis-
sion trough mucosae is difficult to control and treat
because the virus has a high virulence and it infects
several type of immune surveillance cells, such as
those characterized by CD4 receptor (CD4+ cells).
The major problem in treating the human virus in-
fection is the drug selectivity since the virus pene-
trates in the cell where it releases its genetic material
to replicate itself by using the cell mechanisms. A
drug target is the replicating apparatus of the cell.
HIV antiviral molecules will be directed against sev-
eral cells such as macrophages or lymphocytes T to
interfere with viral replication. The HIV releases a

single-strand RNA particle, a reverse transcriptase
and an integrase into the cell cytoplasm. Quickly
the RNA molecule is retro-transcribed in a DNA
double strand molecule, which is integrated into the
host genome. The integration events induce a cel-
lular response, which begins with the transcription
of the Tat gene by the RNA polymerase II. Tat is a
well-known protein responsible for the HIV activa-
tion since it recruits some cytoplasm host proteins
involved in the expression of viral genes. Remark-
ably, HIV can establish a life-long latent infection
by suppressing its transcription, thus making inef-
fective the large part of antiviral drugs aimed at
controlling the viral replication. However replicating
viruses adopt several drug resistance strategies, for



instance, HIV induces amino acid mutations reduc-
ing the efficacy of the pharmaceutical compounds.
The present work is aimed at gaining knowledge
on mutations that may occur into the viral RNA
transcriptase [9]. This is an important target to de-
velop antiretroviral medicines and different types of
molecules have been found active: the Nucleoside
Reverse Transcriptase Inhibitors (NRTI) and Non
NRTI (NNRTTI). Although RNA RT inhibitors are
active the HIV virus quickly, more than frequently,
changes the RNA RT encoding sequence thus acquir-
ing drug resistance. The antiviral therapy is based
on the use of cocktails of molecules including new
RNA RT inhibitors, thus a computational approach
to predict possible mutation sites, and their sensi-
bility to drug is an important tool in drug discovery
for the antiretroviral therapy.

Computational methods can assist here by ex-
ploring the space of potential virus mutants, provid-
ing potential avenues for anticipatory drugs [1]. To
achieve such a goal, one first needs to understand
what kind of mutants may lead to resistance.

A general engineering technique for building ar-
tificial mutants is referred to as rational design [2].
The technique consists in modifying existing pro-
teins by site directed mutagenesis. It relies on a
deep domain knowledge in order to identify candi-
date mutations that may affect protein structure or
function. The process typically involves extensive
trial-and-error experiments and is also aimed at im-
proving the understanding mechanisms of a protein
behavior.

In this work we report on our initial attempt to
develop an artificial system mimicking the rational
design process. An Inductive Logic Programming
(ILP) learner [3] is trained to extract general rules
describing mutations relevant to a certain behav-
ior, i.e. resistance towards certain inhibitors. The
learned rules are then used to infer novel mutations
which may induce similar resistance.

We consider here two learning settings: in the
first one we rely on a training set made of single
amino acid mutations known to confer resistance to
a certain class of inhibitors (we will refer to this
as mutation-based learning and preliminary promis-
ing results in this setting were described in [4]), in
the second we learn the rules directly from mutants
(comprising of 1 to n amino acid mutations) that
have been experimentally tested for their resistance
to the same classes of inhibitors (we will refer to this
as mutant-based learning). This second setting is ac-

tually the most common situation, in which one is
presented with a number of mutants together with
some evidence of their susceptibility to certain treat-
ments. The goal is then to extract rules and poten-
tial mutations explaining why certain mutants con-
fer resistance and which other ones produce the same
effect.

Many machine learning methods have been ap-
plied in the past to mutation data for predicting
single amino acid mutations on protein stability
changes [5] and the effect of mutations on the pro-
tein function [6, 7] or drug susceptibility [8]. To
the best of our knowledge this is the first attempt
to learn relational features of mutations affecting a
protein behavior and use them for generating novel
relevant mutations. Furthermore, even if we focus
on single amino acid mutations in our experimental
evaluation, our approach can be straightforwardly
extended to multiple point mutations, and we are
actively working in this direction. Note that the
other approaches first generate all potential muta-
tions and then decide which of them leads to resis-
tance, whereas we produce the relevant ones directly.

We report an experimental evaluation focused on
HIV RT. RT is a well-studied protein: a large num-
ber of mutants have been shown to resist to one or
more drugs and databases exist that collect those
data from different sources and make them available
for further analyses [10].

We tested the ability of our approach to gener-
ate drug-resistant amino acid mutations for NRTI
and NNRTI. Our results show statistically signifi-
cant improvements for both drug classes over the
baseline results obtained through a random genera-
tor. Mutant-based results confirm our previous find-
ings [4] extending them to the more natural setting
in which only information on mutant behavior is ob-
served. Additional background knowledge allows to
produce here more compact and simple hypotheses,
which have the advantage of generating a reduced
number of candidate mutations.

The approach can be in general applied in mu-
tation studies aimed at understanding protein func-
tion. By searching for residues most likely to have
a functional role in an active site, the approach can
for instance be used in the engineering of enzyme
mutants with an improved activity for a certain sub-
strate.



Results
Datasets

We applied our approach to predict HIV RT mu-
tations conferring resistance to two classes of in-
hibitors: Nucleoside RT Inhibitors (NRTT) and Non-
Nucleoside RT Inhibitors (NNRTT). The two classes
of inhibitors differ in the targeted sites and rely on
quite different mechanisms [11,12]. NNRTT inhibit
the reverse transcriptase by binding to the enzyme
active site, therefore directly interfering with the en-
zyme function. NRTT are instead incorporated into
the newly synthesized viral DNA for preventing its
elongation.

We collected datasets for both mutation-based
and mutant-based learning. The former (Dataset 1)
is a dataset of amino acid mutations derived from
the Los Alamos National Laboratories (LANL) HIV
resistance database! by Richter et al. [13], who used
it to mine relational rules among mutations. It con-
sists of 95 amino acid mutations labeled as resistant
to NRTT and 56 labeled as resistant to NNRTI, over
a set of 581 observed mutations. For the mutant-
based setting, we collected (Dataset 2) HIV RT
mutation data from the Stanford University HIV
Drug Resistance. The database provides a dataset
of selected mutants of HIV RT with results of sus-
ceptibility studies to various drugs, and was previ-
ously employed [8] for predicting drug resistance of
novel (given) mutants?. It is composed of 838 dif-
ferent mutants annotated with susceptibility levels
(low, medium and high) to drugs belonging to the
NRTT (639 mutants) and NNRTT (747 mutants) drug
classes. We considered a setting aimed at identifying
amino acid mutations conferring high susceptibility
(with respect to medium or low), and considered a
mutant as highly susceptible to a drug class if it was
annotated as being highly susceptible to at least one
drug from that class.

Learning in first order logic

Our aim is to learn a first-order logic hypothesis
for a target concept, i.e. mutation conferring re-
sistance to a certain drug, and use it to infer novel
mutations consistent with such hypothesis. We rely
on definite clauses which are the basis of the Pro-
log programming language. A definite clause is an
expression of the form h < b1 AND ... AND bn,

Thttp://www.hiv.lanl.gov/content/sequence/RESDB/

where h and the bi are atomic literals. Atomic lit-
erals are expressions of the form p(t1, ., tn)
where p/n is a predicate symbol of arity n and the
ti are terms, either constants (denoted by lower
case) or variables (denoted by upper case) in our
experiments. The atomic literal h is also called the
head of the clause, typically the target predicate,
and bl AND ... AND bn its body. Intuitively, a
clause represents that the head h will hold whenever
the body b1 AND ... AND bn holds. For instance,
a simple hypothesis like res_against (A,nnrti) <
mutation(A,C) AND close_to_site(C) would indi-
cate that a mutation C in the proximity of a binding
site confers to mutant A resistance against a nnrti.
Learning in this setting consists of searching for a
set of definite clauses H = {c¢;,...,cm} covering all
or most positive examples, and none or few nega-
tive ones if available. First-order clauses can thus
be interpreted as relational features that character-
ize the target concept. The main advantage of these
logic-based approaches with respect to other ma-
chine learning techniques is the expressivity and in-
terpretability of the learned models. Models can be
readily interpreted by human experts and provide
direct explanations for the predictions.

Background knowledge
We built a relational knowledge base for the problem
domain. Table 1 summarizes the predicates we in-
cluded as a background knowledge. We represented
the amino acids of the wild type with their posi-
tions in the primary sequence (aa/2) and the spe-
cific mutations characterizing them (mut/4). Target
predicates were encoded as resistance of the muta-
tion or mutant to a certain drug (res_against/2).
Note that this encoding considers mutations at the
amino acid rather than nucleotide level, i.e. a sin-
gle amino acid mutation can involve up to three nu-
cleotide changes. While focusing on single nucleotide
changes would drastically expand the space of pos-
sible mutations, including the cost (in terms of nu-
cleotide changes) of a certain amino acid mutation
could help refining our search procedure.
Additional background knowledge was included
in order to highlight characteristics of residues and
mutations:

typeaa/2 indicates the type of the natural amino

2downloadable at http://hivdb.stanford.edu/cgi-bin/GenoPhenoDS.cgi



acids according to the Venn diagram grouping
based on the amino acids properties proposed
in [14]. For example, a serine is a tiny and
polar amino acid.

color/2 indicates the type of the natural amino
acids according to the coloring proposed
in [15]. For example the magenta class includes
basic amino acids as lysine and arginine while
the blue class includes acidic amino acids as
aspartic and glutamic acids. These groups of
amino acids do not overlap as in the previous
case.

same_type_aa/3 indicates whether two residues be-
long to the same type T, i.e. a change from one
residue to the other conserves the type of the
amino acid.

same_color_type/2 indicates whether two residues
belong to the same coloring group, ie. a
change from one residue to the other conserves
the coloring group of the amino acid.

same_type_mut_t/3 indicates that a residue substi-
tution at a certain position does not modify
the amino acid type T with respect to the wild
type. For example mutation i123v conserves
the aliphatic amino acid type while mutation
i123d does not (i.e. different_type mut_t/3
holds for it).

same_color_type mut/2 indicates that a residue
substitution at a certain position does not
modify the amino acid coloring group with
respect to the wild type. For example mu-
tation d123e conserves the blue amino acid
group while mutation d123a does not (i.e.
different_color_type mut/2 holds for it).

Other background knowledge facts and rules
were added in order to express structural relations
along the primary sequence and catalytic propensity
of the involved residues:

close_to_site/1 indicates whether a specific posi-
tion is distant less than 5 positions from a
residue belonging to a binding or active site.
In our specific case, the background theory in-
corporates knowledge about a metal binding
site and a heterodimerization site.

location/2 indicates in which fragment of the pri-
mary sequence the amino acid is located. Lo-
cations are numbered from 0 by dividing the
sequence into fragments of 10 amino acid
lenght.

catalytic_propensity/2 indicates whether an
amino acid has a high, medium or low cat-
alytic propensity according to [16].

mutated_residue_cp/5 indicates how, in a mutated
position, the catalytic propensity has changed
(e.g. from low to high).

Algorithm overview
The proposed approach is sketched in Figure 1.

Step 1: Learning phase
The first step is the learning phase. An ILP learner
is fed with a logical representation of the data D
and of the domain knowledge B to be incorporated,
and it returns a first-order logical hypothesis H for
the concept of mutation conferring resistance to a
certain class of inhibitors.

In this context there are two suitable ways to
learn the target concept, depending on the type of
input data and their labeling:

a) the one-class classification setting, learning a
model from positive instances only. This is the
approach we employ for Dataset 1: positive ex-
amples are mutations for which experimental
prove is available that shows resistance to a
drug, but no safe claim can be made on non-
annotated mutations.

b) the binary classification setting, learning to
discriminate between positive and negative
instances.  This setting is appropriate for
Dataset 2: positive examples are in our exper-
iments mutants labelled as highly susceptible
to the drug class, negative examples are those
with medium or low susceptibility.

The hypothesis is derived using the Aleph (A
Learning Engine for Proposing Hypotheses) ILP sys-
tem3, which allows to learn in both settings. In the
one-class classification case, it incrementally builds a
hypothesis covering all positive examples guided by a

Shttp://www.comlab.ox.ac.uk/activities/machinelearning/Aleph/aleph.html



Bayesian evaluation function, described in [17], scor-
ing candidate solutions according to an estimate of
the Bayes’ posterior probability that allows to trade-
off hypothesis size and generality. In the binary clas-
sification case, Aleph builds the hypothesis covering
all positive examples and none or few negative ones,
guided by an m estimate evaluation function [18].

Aleph adds clauses to the hypothesis based on
their coverage of training examples. Given a learned
model, the first clauses are those covering most train-
ing examples and thus usually the most representa-
tive of the underlying concept.

In Figure 2 we show a simple example of learned
hypothesis covering a set of training mutants from
Dataset 2. The learned hypothesis models the abil-
ity of a mutation to confer the mutant resistance to
NNRTT and is composed of four first-order clauses,
each one covering different sets of mutations of the
wild type as highlighted in colors: yellow for the first
clause, blue for the second, red for the third, and
green for the fourth one. Some mutations are cov-
ered by more than one clause as shown by the color
overlaps. Bold letters indicate residues involved in
the RT metal binding site (D110, D185 and D186)
or the heterodimerization site (W401 and W414).

Step 2: Generative phase

The second step of our approach is the generative
phase, in which the learned hypothesis is employed
to find novel mutations that can confer drug resis-
tance to an RT mutant. A set of candidate muta-
tions can be generated by using the Prolog inference
engine starting from the rules in the learned model.
The rules are actually constraints on the character-
istics that a mutation of the wild type should have
in order to confer resistance to a certain inhibitor,
according to the learned hypothesis.

Algorithm 1 details the mutation generation pro-
cedure. We assume, for simplicity, to have a model
H for a single drug class. The procedure works by
querying the Prolog inference engine for all possi-
ble variable assignments that satisfy the hypothesis
clauses, each representing a mutation by its position
and the amino acid replacing the wildtype residue.
The set of mutations generated by the model is
ranked according to a scoring function Sy, before
being returned by the algorithm. We defined Sy as
the number of clauses in H that a candidate muta-
tion m satisfies.

Referring to the model in Figure 2, for instance,

the generated candidate mutations that satify the
first two clauses are all the mutations changing the
glycine in position 190 in a polar amino acid: 190Y,
190W, 190T, 190S, 190R, 190Q, 190N, 190K, 190H,
190E, 190D, 190C where for example the notation
190Y indicates a change of the wild type amino acid,
located in position 190, into a tyrosine (Y). For in-
stance, 190S and 190E in this list are already part of
the known NNRTI surveillance mutations (see [19]).

Learning from mutations

We first learn general rules characterizing known re-
sistance mutations (from Dataset 1) to be used for
predicting novel candidate ones.

We divided the dataset of mutations into a train-
ing and a test set (70/30) in a stratified way, which
means by preserving, both in the train and test set,
the proportion of examples belonging to one of the
two drug classes. The resulting training set is com-
posed of a total of 106 mutations while the test set
is composed of 45 mutations.

We trained the ILP learner on the training set
and we evaluated on the test set the set of mutations
generated using the learned model. The evaluation
procedure takes the set of generated mutations and
computes its enrichment in test mutations. We com-
pare the recall of the approach, i.e. the fraction of
test mutations generated by the model, with the re-
call of a baseline algorithm that chooses at random
a set (of the same cardinality) of possible mutations
among all legal ones.

Results averaged on 30 random splits of the
dataset are reported in Table 2. On each split we
performed 30 runs of our algorithm (Aleph has a
random component generating the seed for the hy-
pothesis search) and of the random generation al-
gorithm in each one of the different learning tasks
(NNRTTI, NRTT). In this setting, the average sizes of
the learned hypotheses for NNRTT and NRTT are 8
and 7 rules respectively. For each task we also report
in column 3 and 4 of Table 2 the mean number of
generated mutations over the 30 splits and the num-
ber of test set mutations for reference. In both cases,
improvements are statistically significant according
to a paired Wilcoxon test («=0.01). Figure 3 gives
further details about these results by showing how
the mean recall on the test set varies if we com-
pute it on the generated mutations satisfying only
one clause, two clauses, three clauses and so on (x
axis). The mean recall trend is shown in orange for



the proposed generative approach and in green for
a random generator of mutations for both classes of
inhibitors.

We finally learned a model on the whole dataset
in order to generate a single set of mutations for fur-
ther inspection. We report five examples of novel
mutations with the highest score for each one of the
tasks: 901, 98I, 1031, 106P, 1791 for NNRTT and 60A,
153M, 212L, 229F, 2391 for NRTI.

In [20], the authors found a set of novel muta-
tions conferring resistance to efavirenz and nevirap-
ine, which are NNRTT. Our mutation generation al-
gorithm partially confirmed their findings. Mutation
90I was scored high (getting the maximum score of
5 satisfied clauses), mutation 101H was generated
with a score of 3 out of 5, mutations 196R and 138Q
with score 1 out of 5, while mutation 28K was not
generated at all by our system as a candidate for
conferring resistance to NNRTL.

An example of learned hypothesis is reported in
Figure 4. For instance, according to the model,
among the features a mutation should have for con-
ferring resistance to a NNRTI, there is the change of
a basic (magenta) residue of the wild type, e.g. lysine
or arginine, into a residue with completely different
phisico-chemical characteristics (rule 16).

Another example for the resistance to NNRTT is
that a non conserved mutation is present in positions
between 98 and 106 of the wild type sequence (rule
8).

Learning from mutants

The next set of experiments is focused on learning
mutations from mutant data (Dataset 2). Learned
models are still limited to single amino acid muta-
tions, and so are novel mutants generated by the
system.

We randomly assigned the mutants in Dataset 2
to 30 training and a test set splits, by avoiding hav-
ing mutants containing the same resistance mutation
(according to the labelling used in Dataset 1) in both
training and test sets. For each of the 30 splits, we
evaluated the recall of the generated mutations on
the known resistance mutations (from Dataset 1),
by first removing all the mutations that were also
present in the training set. Comparison is again
made on a baseline algorithm generating random le-
gal mutations.

Results averaged on the 30 random splits are re-
ported in Table 3. In this setting, the average sizes

of the learned hypotheses for NNRTT and NRTT are
5 and 3 rules respectively. The small size of the mod-
els allows to substantially reduce the space of possi-
ble mutations to be generated. Our approach shows
an average recall of 17% and 7% on the test muta-
tions, which is statistically significantly higher than
the recall obtained by randomly generating muta-
tions (paired Wilcoxon test, «=0.01). Figure 5 gives
further details about these results by showing the
mean recall trend by varying the number of satisfied
clauses of the generated mutations.

Figure 6 shows the hypothesis learned by the
system when trained on the whole set of mutants
in Dataset 2. It is easy to see that the hypothe-
sis for the resistance to NNRTT identifies many (10
out of 19) of the known resistance survaillance mu-
tations reported in [19]: 103N, 1064, 181C, 1811,
181V, 188C, 188H, 190A, 190E and 190S. In partic-
ular, mutation 181C has the highest predicted score
as it satisfies four clauses of the learned model. In-
terestingly, other not previously reported mutations
are suggested with a high score (3 out of 4 satisifed
clauses) by the generative algorithm. These muta-
tions may be novel mutations conferring resistance
to NNRTI. For example, 181N, 181D, 318C and
232C.

29% of the mutations labeled as conferring re-
sistance to NNRTT in Dataset 1 are also identified.
Apart from the survaillance mutations those include
also: 98G, 227C, 190C, 190Q, 190T and 190V. Key
positions for the resistance to NNRTI, like 181 and
190 can be easily identified from the model in Fig-
ure 6, thanks to rules 15 and 23 that anchor the
mutation to the specific position without restricting
the change to a specific group of amino acids. A
quite uncommon NNRTI-selected mutation, 238N,
appears among the generated ones. Indeed, as re-
ported in the summaries of the Stanford HIV Resis-
tance Database, this mutations in combination with
103N, causes high-level resistance to nevirapine and
efavirenz.

Also in the case of NRTI the generative algo-
rithm suggests a few known survaillance mutations
reported in [19]: 67E, 67G, 67N, 116Y, 184V, 1841
(6 out of 34). 18% of the mutations labeled as
conferring resistance to NRTT in Dataset 1 are also
identified. Apart from known survaillance mutation
those include also: 44D, 62V, 67A, 67S, 69R, 184T.
Key positions for the resistance to NRTI as pre-
dicted by our model in Figure 6 are: 33, 67, 184,
194, 218. Of them, the effects of mutations in posi-



tion 67 and especially in 184 have been well studied,
while positions 33, 194, 218 seem to be novel. We
found also that the predicted mutation 219H, which
does not appear neither among the know survail-
lance mutations or among the resistance mutations
in Dataset 1, is indeed reported in the Stanford HIV
Database as a quite uncommon NRTI-selected mu-
tation. Note that this uncommon mutation requires
two nucleotide changes to emerge.

Discussion and Future Work

The results shown in the previous section are a
promising starting point to generalize our approach
to more complex settings. We showed that the ap-
proach scales from few hundreds of mutations as
learning examples to almost a thousand of complete
mutants. Moreover the learned hypotheses signif-
icantly constraint the space of all possible single
amino acid mutations to be considered, paving the
way to the expansion of the method to multi-site
mutant generation. This represents a clear advan-
tage over alternative existing machine learning ap-
proaches, which would require the preliminary gen-
eration of all possible mutants for their evaluation.
Restricting to RT mutants with two mutated amino
acids, this would imply testing more than a hun-
dred million candidate mutants. At the same time
this simple ILP approach cannot attain the same
accuracy levels of a pure statistical approach. We
are currently investigating more sophisticated sta-
tistical relational learning approaches for improving
the accuracy of the learned models and for assign-
ing weights to the clauses to be used for selecting
the most relevant generated mutations. These can
be used as a pre-filtering stage, producing candi-
date mutants to be further analysed by complex sta-
tistical approaches, and additional tools evaluating,
for instance, their stability. An additional direction
to refine our predictions consists of jointly learning
models of resistance to different drugs (e.g. NNRTI
and NRTT), possibly further refining the joint mod-
els on a per-class basis. On a predictive (rather than
generative) task, this was shown [21] to provide im-
provements over learning distinct per-drug models.

The approach is not restricted to learning drug-
resistance mutations in viruses. More generally, it
can be applied to learn mutants having certain prop-
erties of interest, e.g. improved or more specific ac-
tivity of an enzyme with respect to a substrate, in a

full protein engineering fashion.

Conclusions

In this work we proposed a simple relational learn-
ing approach applicable to evolution prediction and
protein engineering. The algorithm relies on a train-
ing set of mutation data annotated with drug resis-
tance information, builds a relational model charac-
terizing resistant mutations, and uses it to generate
novel potentially resistant ones. Encouraging pre-
liminary results on HIV RT data indicate a statisti-
cally significant enrichment in resistance conferring
mutations among those generated by the system, on
both mutation-based and mutant-based learning set-
tings. Albeit preliminary, our results suggest that
the proposed approach for learning mutations has a
potential in guiding mutant engineering, as well as in
predicting virus evolution in order to try and devise
appropriate countermeasures. A more detailed back-
ground knowledge, possibly including 3D informa-
tion whenever available, is necessary in order to fur-
ther focus the set of generated mutations, and pos-
sibly post-processing stages involving mutant evalu-
ation by statistical machine learning approaches [5].
In the next future we also plan to generalize the pro-
posed approach to jointly generate sets of related
mutations shifting the focus from the generation of
single amino acid mutations to mutants with multi-
ple mutations.
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Algorithms
Algorithm 1 - Mutation generation algorithm.
Algorithm for novel relevant mutations discovery.

Algorithm 1 Mutation generation algorithm.

1: input: background knowledge B, learned model H
2: output: rank of the most relevant mutations R
3: procedure GENERATEMUTATIONS(B3, H)

4: Initialize Dpag < 0

5 A + find all assignments a that satisfy at least one clause ¢; € H

6 for a € A do

7 m < mutation corresponding to the assignments a € A

8 score < Spr(m) > number of clauses ¢; satisfied by a
9 Dap Dy U{(m, score)}

10: end for

11: R <~ RANKMUTATIONS(Dp, B, H) > rank relevant mutations
12: return R

13: end procedure

Figures
Figure 1 - Mutation engineering algorithm.
Schema of the mutation engineering algorithm.
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Figure 2 - Model for the resistance to NNRTI learned from Dataset 2

An example of learned hypothesis for the NNRTT task with highlighted examples covered by the hypothesis
clauses.
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mut (A,B,C,D) AND position(C,190)
[ mut (A,B,C,D) AND position(C,190) AND typeaa(polar,D)
[1mut(A,y,C,D) AND typeaa(aliphatic,D)

mut (A,B,C,a) AND position(C,106)

Figure 3 - Mean recall trend by number of satisfied clauses (Dataset 1)

Mean recall of the generated mutations on the resistance test set mutations from Dataset 1 by varying the
number of satisfied clauses. The mean recall values in orange refer to the proposed generative algorithm.
The mean recal values in green refer to a random generator of mutations.
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Figure 4 - Example of model learned from Dataset 1
Model learned for NRTI and NNRTI on the dataset mutations Dataset 1. Note that in this case A is a
variable that identifies a single amino acid mutation.

1-res_against (A,nrti) <— mut(A,B,C,D) AND color(red,D)

2-res_against(A,nrti) <— mut(A,B,C,D) AND color(red,D) AND color(red,B)

3-res_against (A,nrti) <— mut(A,B,C,D) AND location(7.0,C) AND mutated-residue_cp(C,medium,medium)
4-res_against(A,nrti) <— mut(A,B,C,D) AND location(7.0,C)

5-res_against(A,nrti) <— same_color_typemut(A,B)

6-res_against (A,nrti) <— mut(4,B,C,D) AND mutated-residue_cp(C,medium,high)

7-res_against (A,nrti) <— mut(A,B,C,D) AND mutated_residue_cp(C,medium,small)

8-res_against (A,nnrti) <— different_color_typemut(A,B) AND location(11.0,B)

9-res_against (A,nnrti) <— mut(4,B,C,D) AND mutated_residue_cp(C,small,small)
10-res_against(A,nnrti) <— same_color_typemut(A,B)

11-res_against(A,nnrti) <— mut(A,v,C,D)

12-res_against (A,nnrti) <— mut(A,B,C,D) AND location(15.0,C)

13-res_against(A,nnrti) <— mut(A,B,C,i)

14-res_against (A,nnrti) <— mut(A,B,C,D) AND location(11.0,C)

15-res_against (A,nnrti) <— mut(A,B,C,D) AND color(red,D)

16-res_against (A,nnrti) <— mut(A,B,C,D) AND color(magenta,B) AND different_color_type mut(A,C)
17-res_against (A,nnrti) <— mut(A,B,C,D) AND location(21.0,C)

Figure 5 - Mean recall trend by number of satisfied clauses (Dataset 2)

Mean recall of the generated mutations on the resistance test set mutations from Dataset 2 by varying the
number of satisfied clauses. The mean recall values in orange refer to the proposed generative algorithm.
The mean recal values in green refer to a random generator of mutations.
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Figure 6 - Model learned from the whole Dataset 2
Model learned for NRTI and NNRTI on the whole dataset of mutants Dataset 2. Note that in this case A
is a variable that identifies a mutant.

1-res_against (A,nrti) <— mut(A,B,C,D) AND position(C,67)

2-res_against(A,nrti) <— mut(A,B,C,g) AND color(red,B)

3-res_against(A,nrti) <— mut(a,B,C,D) AND typeaa(nonpolar,D)

4-res_against(A,nrti) <— mut(A,B,C,D) AND position(C,33)

5-res_against(A,nrti) <— mut(A,B,C,D) AND position(C,218)

6-res_against (A,nrti) <— mut(A,B,C,h) AND catalytic_propensity(B,high)

7-res_against (A,nnrti) <— mut(A,B,C,D) AND position(C,194)

8-res_against (A,nnrti) <— mut(A,B,C,D) AND position(C,184)

9-res_against (A,nnrti) — mut (A,B,C,D) AND catalytic_propensity(D,high) AND typeaa(neutral,D) AND
typeaa(nonpolar,B)

10-res_against (A,nrti) <— mut(A,B,C,d) AND position(C,44)

11-res_against(A,nrti) <— mut(A,B,C,r) AND typeaa(tiny,B) AND typeaa(polar,B)

12-res_against (A,nrti) <— mut(A,d,C,D) AND catalytic_propensity(D,medium)
13-res_against(A,nrti) <— mut(A,d,C,D) AND catalytic_propensity(D,medium) AND typeaa(polar,D)
14-res_against(A,nrti) <— mut(A,B,C,k) AND position(C,203)

15-res_against (A,nnrti) <— mut(A,B,C,D) AND position(C,190)

16-res_against (A,nnrti) <— mut(A,B,C,a) AND position(C,106)

17-res_against (A,nnrti) <— mut(A,B,C,D) AND same_typeaa(D,B,tiny) AND same_typeaa(D,B,nonpolar)
18-res_against (A,nnrti) — mut (A,B,C,D) AND catalytic_propensity(D,high) AND typeaa(aromatic,B) AND
same_typeaa(D,B,neutral)

19-res_against (A,nnrti) <— mut(A,B,C,n) AND position(C,103)

20-res_against (A,nnrti) «— mut (A,B,C,D) AND catalytic_propensity(B,high) AND typeaa(neutral,B) AND
same_typeaa(D,B,polar)

21-res_against (A,nnrti) — mut (A,B,C,D) AND position(C,177) AND catalytic_propensity(D,medium) AND
same_type_mut_t (A,C,polar)

22-res_against (A,nnrti) <— mut(A,B,C,n) AND position(C,238)

23-res_against (A,nnrti) <— mut(A,B,C,D) AND position(C,181)

24-res_against(A,nnrti) <— mut(A,y,C,D) AND typeaa(small,D)
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Tables

Table 1 - Background knowledge predicates

Summary of the background knowledge facts and rules. MutID is a mutation or a mutant identifier depending
on the type of the learning problem.

Background Knowledge Predicates

aa(Pos,AA) indicates a residue in the wild type sequence

mut (MutID,AA,Pos,AAl) indicates a mutation: mutation or mutant identifier, position and
amino acids involved, before and after the substitution

res_against (MutID,Drug) indicates whether a mutation or mutant is resistant to a certain
drug

color(Color,AR) indicates the coloring group of a natural amino acid

typeaa(T,AA) indicates the type (e.g. aliphafatic, charged, aromatic, polar) of
a natural amino acid

same_color_type (R1,R2) indicates whether two residues belong to the same coloring group

same_typeaa(R1,R2,T) indicates whether two residues are of the same type T

same_color_typemut (MutID, Pos) indicates a mutation to a residue of the same coloring group

different_color_typemut (MutID, Pos) indicates a mutation changing the coloring group of the residue

same_type_mut_t (MutID, Pos, T) indicates a mutation to a residue of the same type T

different_type mut_t (MutID, Pos) indicates a mutation changing the type of the residue

close_to_site(Pos) indicates whether a specific position is close to a binding or active
site if any

location(L,Pos) indicates in which fragment of the primary sequence the amino
acid is located

catalytic,propensity(AA,CP) indicates whether an amino acid has a high, medium or low cat-

alytic propensity
mutated residue_cp(Rw,Pos,Rm,CPold,CPnew) indicates how, in a mutated position, the catalytic propensity has
changed (e.g. from low to high)

Table 2 - Results (Dataset 1)

Statistical comparisons of the performance of the proposed algorithm with an algorithm generating mutations
at random. The average recall has been computed for each one of the learning tasks over the 30 splits by
averaging recall over 30 repeated runs of the two algorithms. Results of a paired Wilcoxon test (v = 0.01)
on the statistical significance of the performance differences are also reported. A black bullet indicates a
statistical significant improvement of our algorithm over a random generator. The mean number of generated
mutations over the 30 splits and the number of test mutations is reported on the side.

Mean recall % on 30 splits
Algorithm Random Generator Mean n. generated mutations n. test mutations
NNRTI 86 o 58 5201 17
NRTI 55 e 46 5548 28

Table 3 - Results (Dataset 2)

Statistical comparisons of the performance of the proposed algorithm with an algorithm generating mutations
at random. The average recall has been computed for each one of the learning tasks over the 30 splits. Results
of a paired Wilcoxon test (o« = 0.01) on the statistical significance of the performance differences are also
reported. A black bullet indicates a statistical significant improvement of our algorithm over a random
generator. The mean number of generated mutations and the mean number of test mutations over the 30
splits is reported on the side.

mean recall %
Algorithm Random Gen. mean n. generated mutations mean n. of test mutations
NNRTI 17 o 1 236 26
NRTI 7Te 3 420 40

13



