
Towards Building Agreement Spaces Using

Consensus Networks⋆

M. Rebollo, A. Palomares, and C. Carrascosa

Universitat Politècnica de València,
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Abstract. If a set of agents tries to reach an agreement, there will exist
an Agreement Space that models the maximum valid space according
to the individual constraints of each agent, regarding the terms of the
agreement. Previous approaches to Agreement Spaces model them by
means of a Counsellor Agent that will help to agents trying to obtain
an agreement knowing all the possible terms in that agreement, and
monitoring such Agreement Space as it is being built. But, what happens
when there is no Counsellor Agent? Is there any way of modeling such
space in a distributed way by the different agents trying to achieve such
agreement? This paper presents a possible solution to that question using
a Consensus Network to build such Agreement Space, allowing to know
if there are possibilities to achieve an agreement or not.

1 Introduction

Nowadays, there is a growing interest in the Multi-Agent Systems (MAS) area
regarding concepts about cooperation such as Consensus, Commitments, Con-
tracts, or Agreements. All these concepts are related, but it is necessary to clarify
in some way such relation. A Consensus is the negotiation of a value in one term,
including the final decision where all the negotiation parts agree in the value.
A Commitment or, more concretely, a Social Commitment [3] is the relation
between at least two agents, where one agent is committed to do something to
other agents. An Agreement is the definition of a working context for two or more
entities [2], and as such, it is a wider and more complex process that subsumes
the previous concepts in a whole process that includes:

– The definition of a common ontology: it is necessary to assure that there
exists a common ontology to allow an agreement.

– Deciding the terms the negotiation is going to take place about: such terms
will be part of the common ontology.

– To reach an agreement, that can be formed by several related consensus in
different terms. The result of such can include a set of social commitments.
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When a set of agents try to reach an agreement, if such agreement is possible,
there will exist an Agreement Space [2] modeling the maximum valid space
according to the individual constraints of each agent, where each term of the
possible agreement is reflected in a different dimension of such space.

The internal structure of many biological, social and economic systems dis-
plays complex topological properties such as clustering, a scale-free degree dis-
tribution and the presence of degree correlations, which are not reproduced by
simple random graph models [5]. For instance, network properties of the global
economic system have been documented in many studies, which have revealed
scale-free weighted topology at various levels, increasing connectivity over time,
and implications for economic development [4, 12].

The objective of this paper is to present a way of modeling such space in a
distributed way by the different agents that are trying to achieve such agreement
by means of a Consensus Network, allowing them to know if there are possibilities
to achieve an agreement or not. Just to show the validity of the present approach,
a market-based case of study is presented, with some interesting results when
applying this proposal.

The rest of the paper is structured in the following way: the next section
presents some related work, regarding agreements and consensus networks. After
that, the modeling of Agreement Spaces by Consensus Networks is presented.
The following section presents a case of study regarding right–based markets.
Last, some conclusions are commented.

2 Related Work

Looking for a common space where agents can interact can be analyzed as a
constraint satisfaction problem. Different strategies to solve this kind of prob-
lems have been widely studied in the last years. Two of these techniques are
commented in the rest of this section.

2.1 DCOP

One of the most promising ones are Distributed Constraint Optimization Prob-
lems (DCOP) [7]. DCOPs are a model for representing multi-agent systems in
which agents cooperate to optimize a global objective. A DCOP is a formalism
that captures the rewards and costs of local interactions in a multiagent system
(MAS) where each agent chooses a set of individual actions. In a DCOP each
agent receives knowledge about all relations that involve its variable(s).

As [13] detail, there are two main types of complete algorithms to solve
DCOPs: search and dynamic programming. Search algorithms, like ADOPT (or
extensions such as IDB-ADOPT), require an exponential number of linear-size
messages. Dynamic programming algorithms, like the distributed pseudo-tree op-
timization procedure (DPOP) and its extensions, only require a linear number of
messages, but their complexity lies on the message size, which may be very large.
On the other hand, as [11] details, there are some limitation in the way DCOP



algorithms approaches the problem. Firstly, they assume that the environment is
deterministic and fully-observable, meaning that agents have complete informa-
tion about the utility of the outcomes of their possible decisions. Thus, agents’
utilities do not change while the problem is being solved. Moreover, agents’ ac-
tions are only applied once the problem is solved. Furthermore, the set of agents
in the system is constant, not allowing the entrance or exit of the system.

2.2 Consensus Networks

The theoretical framework for solving consensus problems in dynamic networks
of agents was formally introduced by Olfati-Saber and Murray [10] [9]. The inter-
action topology of the agents is represented using directed graphs and consensus
means to reach an agreement regarding a certain quantity of interest that de-
pends on the state of all agents in the network. This value represents the variable
of interest in our problem (agreement term), and might be for example a physical
quantity, a control parameter or a price among others.

Let G be a directed graph of order n with the set of entities E as nodes
and weighted adjacency matrix A = [aij ]. Let (G, X) be the state of a network
with value X and topology G, where X = (x1, . . . , xn)T ∈ R

n, where xi is a
real value associated with the node Ei. The value of a node might represent
physical quantities measured in a distributed network of sensors (temperatures,
voltages,. . . ), or also quantities of interest in a network of buyer’s and seller’s in
the market (prices, rights, quality,. . . ). A network is a dynamic system if (G, X)
evolves in time. A consensus algorithm is an interaction rule that specifies the
information exchange between the agents and all of its neighbors on the network
in order to reach the agreement. Consensus of complete network is reached if
and only if xi = xj∀i, j. Distributed solutions of consensus problems in which
no node is connected to all nodes are especially interesting. The most commonly
used consensus protocols are Average, Maximum and Minimum because the have
broad applications in distributed decision-making multi-agent systems.

These authors have demonstrated that a convergent and distributed consen-
sus algorithm in discrete-time can be written as follows:

xi(k + 1) = xi(k) + ε
∑

j∈Ni

(aij(xj(k) − xi(k))), (1)

where Ni denotes the set formed by all nodes connected to the node i (neighbors
of i). The collective dynamics of the network for this algorithm can be written
as

X(k + 1) = Px(k) (2)

where P is the Perron matrix of a graph with parameter ε, defined as P = I−ε L,
with I is the Identity matrix, ε is the step size, ε > 0, and L is the Laplacian
matrix, L = D − A, that is the difference of the degree matrix D and the
adjacency matrix A of the graph. The algorithm converges to the average of the
initial values of the state of each agent and allows computing the average for
very large networks via local communication with their neighbors on a graph.



Solving consensus is a cooperative task because if a single agent decides not
to cooperate and keep its state unchanged all others asymptotically agree with
them. However, if there are multiple non cooperative agents then no consensus
can be asymptotically reached. When an agent does not cooperate with the rest
its links in the network might be disconnected in order all others will asymptot-
ically agree. In this case it is impossible for all agents to reach an agreement but
is possible to reach an agreement for the rest of the agents.

3 Modeling Agreement Spaces With Consensus Networks

In this section, some definitions regarding Agreement Spaces and what is an
agreement process are presented, along with how can be used a consensus net-
work to quickly determine if it will be possible to arrive to an agreement. That
is, if there exist an agreement space between the agents involved.

3.1 Agreement Spaces

In order to deal with Agreements [2], some definitions are needed:
Definition 1 (Agreement): is defined as Agr = (E, Cx), where: (i) E =

{E1, E2, . . . En} is a set of entities participating in the agreement Agr, so that
∀Ei, i = 1, . . . n, ∃!Oi = {oij}, j = 1, . . .m, the ontology known by Ei; and
(ii) Cx = {(cxo, cx

I
o)|cxo ∈

⋃
i Oi, cx

I
o ⊆ Do}, where Do is the domain of the

ontology term cxo. Thus, this context is formed by a set of ontological terms cxo

with its corresponding set of valid instances cxI
o that have been agreed by E.

Definition 2 (Agreement Space of an agreement Agr –AS(Agr)–):
That is, this space will be defined by the features the different entities Ei making
the agreement are going to negotiate (Cx), each one of such features defining a
dimension in this space (∀i : di ∈ dim(Ei, Agr)).

In order to be possible an agreement Agr, for each entity Ei participating in
it there will exist at least one other participating entity Ej so that dim(Ei, Agr)∩
dim(Ej , Agr) 6= 0.

Definition 3 (Agreement Process): As it has been stated before, an
agreement has associated a wide and complex process comprising several differ-
ent phases:

1. Calculating the ADU(Agr): that is, to calculate the common ontology shared
by all the agents interested in the agreement. Associated to this ADU(Agr)
will exist the corresponding ADS(Agr).

2. Reaching an agreement (defining the agreement context Cx): It comprises
the negotiation process between two or more entities (belonging to E) to
reach an agreement. In fact, it is decided in three levels:

(a) Definition of the AS Dimensions: a decision must be taken about what
are the concepts around which such agreement is going to be related, that
is, Cx ⊆ ADU(Agr). Or, if the concepts are considered as dimensions,
decide the dimensions in which the agreement will be expressed, that



is, define the Agreement Space dimensions as a subset of the existing
ADS(Agr) dimensions.

(b) Definition of the own AS: it is checked if it is possible to reach an agree-
ment by calculating if there exists an AS, identifying both the concrete
boundaries of such space and the entities involved, because at this level,
entities may abandon the process if they disagree on the specific space
boundaries.

(c) Reaching the concrete agreement: the specific terms of such agreement
(the values or intervals for the concepts in Cx) must be fixed, that is,
the satisfying values or intervals for each one of the different dimensions
comprising the AS(Agr).

3. Agreement execution: In this phase each entity must fulfill the accomplished
agreement executing the needed actions or calculus according to the context
defined by such agreement. This execution could not even imply any kind of
additional coordination.

In this way, the outcome of the first phase of the agreement will be the
definition of this Agreement Space, fixing the satisfying values for each one of the
different dimensions comprising this space. The second phase of the agreement
will be to carry out the execution of the agreement taking into account that it
has to be carried out inside the previously defined Agreement Space.

3.2 Agreement Process

This section presents the application of consensus networks to assure, in a dis-
tributed fashion, that there are possibilities to reach an agreement between the
involved agents, that is, to assure that there is an Agreement Space. In this
way, following the Agreement Process presented in Definition 3, this Consensus
Network will be used to check that it is possible to carry out b and c levels of
the second phase of such process. That is, in the phase where the agreement
is reached, after the dimensions of the Agreement Space has been fixed, the
Consensus Network will calculate that there exists an Agreement Space, being
possible to reach an agreement calculating the specific terms of the different
dimensions (values or intervals).

The process of Agreement Space’s boundaries calculation may be defined in
two different ways:

1. Unlimited: it continues till the boundaries of the AS are defined or it is not
possible to define an AS between any two different entities. In this case, both
2.b and 2.c levels of the agreement process are carried out by the Consensus
Network.

2. Limited: it is possible to define different limitations to the process:
(a) A deadline.
(b) A minimum number of participant entities, so during the process when

too much entities abandon it, the process will end saying that it is not
possible to define an Agreement Space.



(c) A maximum number of interactions or messages.
(d) A minimum length of an AS dimension.

In this way, the Consensus Network is only in charge of the level 2.b of the
Agreement Process.

3.3 Consensus Network

Based on the basic model of consensus network of Section 2, a complete model
useful to define Agreement Spaces has been defined.

Let (G, X) be the basic model, where G is a network and X the values of the
nodes for the consensus variable x. Both, the network and the values, evolves
with time, so we define the consensus problem as (G(t), X(t)): a consensus net-
work with switching topology, meaning that the structure of the network change
along with the agreement process. In the general case, this switching can be
model through the adjacency matrix A = [aij ]. In out case, this matrix is di-
vided in two components: the first one refers to the existence of a link between
agents i and j (as usual). The other component is a weight that represents the
strength of the link between both agents. This weight can be use to model many
different things depending on the application domain: centrality measures, im-
portance, reputation, trust, and so on. Le W = [ωij ] this weight matrix. Then,the
component that can change with the time can be A, W or both.

xi(k + 1) = xi(k) + ε
∑

j∈Ni

((ωij(k)aij(k))(xj(k) − xi(k)), (3)

In the construction of the Agreement Space, only some changes in the topol-
ogy are allowed. Specifically, agents can leave the agreement process if it is out of
the agent’s bounds. No agent can be incorporate to an agreement in process. We
do not consider the possibility of creating new groups that evolve independently
of the original group either.1

Each agent has its own utility function to determine if it stays in the agree-
ment process or if it leaves it. Then, a permanence function can be defined as
ui(x) for each agent i.

aij(k + 1) =

{
1 if ui(xi(k)) ≥ 0
0 otherwise

(4)

So the switching nature of the network can be captured and included in the
model as a function of the current calculated value of the consensus dimension
and the expected utility value for the agent. Including this utility function ui,
the resulting consensus problem can be modeled as (G(t), X(t), U), where

– G(t) is a network with switching topology,

1 This case can be considered as two independent consensus problems and the same
model can be applied to each isolated group, without considering any kind of trans-
ference of agents or information among them.



– X(t) = {x1(t), . . . , xn(t)}T is the vector of values for the agreement dimen-
sion (consensus variable), and

– U = {u1(x), . . . , un(x)}T is a vector of the utility functions for each agent.

The dynamic of the agreement is defined by Equations 3 and 4.
If the network contains one connected component (see Figure 1) then the con-

vergence of the method is ensured. The result is an agreement about the value of
the negotiated parameter. But it is possible that, if one or more agents leave the
agreement process, the network is segregated in two (or possibly more) indepen-
dent networks, each one of them eventually reaching their own agreement. For
example, Figure 2 shows the effect of a node that leaves the agreement process
in a very early stage.

4 Case of Study: Right-Based Markets

4.1 Agreement-Based Markets

Networks allow to model interactions when certain agents are not aware of each
other by informational, regulatory or physical reasons. In particular this paper
is focused in some kind of markets in which price, supply and demand should
be previously balanced (agreement space) before negotiations begin. There exist
markets in which some regulations are required and also the topology of the
network induced by the internal relationships must be considered.

In order to verify that the proposed framework is adequate to generate the
required initial data sets different repetitions are randomly generated using the
previously specified probability distributions of agents, rights, optimal rights and
prices. This framework of data generation is more similar to Montecarlo models.

Suppose rights price must be fixed in the market (a constraint) and some
previous agreements, acceptable by the maximum number possible of agents,
are required in order to establish this value. The average of the prices Pi is
probably one the most acceptable agreement value for the price, and also can be
calculated asymptotically using consensus algorithms. Dynamics of agents are
defined by the following equations:

PS
i (k + 1) = PS

i (k) + ε
∑

j∈Ni

(Bj(P
B
j (k) − PS

i (k) + Ci(k))), (5)

PB
i (k + 1) = PB

i (k) + ε
∑

j∈Ni

(Sj(P
S
j (k) − PB

i (k) + Ci(k))) (6)

where k is the discrete time and the index S and B denotes seller and buyers
respectively. The added term Ci(k) is proportional to rights bought and sold by
agents in each iteration, and is calculated as follows:

Ci(k) = δ ·

∑
j∈Ni

Bj∑
j∈Ni

Sj

(7)

where δ > 0.
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Fig. 1. Agreement process when the complete group is connected. All the agents reach
a consensus about the value exchanging information with their neighbors. They do not
know the structure of the network nor any other global information.
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Agreement process with separate communities

Fig. 2. Agreement process when the group is divided into 3 independent communities.
Each group converges to a different value

Seller agents adapt iteratively prices in order to converge to the mean price of
the connected buyer agents and simultaneously buyer agents adapt their prices
in order to converge to the mean price of the connected seller agents. In this
iterative process non cooperative agents are disconnected of the network in order
all others agents to have the possibility of asymptotically agree. The algorithm
converges and stops when prices converge to the consensus value the mean prices
of buyers and sellers are approximately equal.

In order to include the topology of the networks, the scale-free network mod-
els (SFN) have been considered [1] [6]. A SFN is a network whose degree distri-



bution (fraction of nodes having k connections to other nodes) follows a power
law: P (k) = k−γ .

The scaling exponent γ is a constant whose value is typically in the range
2 < γ < 3. A framework which enables generate scale-free networks of buyer and
seller agents has been developed in Matlab. The purpose of this framework is not
simulating real and complex markets but only analyze the possible application
of consensus algorithms in these problems. The Lev Muchnik’s package [8] has
been used to generate the random scale-free graphs in the experiments.

The number of agents N (number of nodes in the network) and the scaling

exponent γ are input parameters in the experiments. In some experiments the
networks considered are “all connected” and then γ = 0.

The networks generated for this paper are undirected (edges have no orienta-
tion) and adjacency matrix is symmetric. Once this network has been generated
the rights must be generated and distributed between the agents. The Number

of Rights R is an input parameter of experiments:

R =
∑

i=1,...,N

Ri (8)

where Ri are the number of rights of agent i. Rights are randomly generated
and distributed between the N agents. Uniform distribution of rights is used in
the simulations.

In order to simulate the roles of the agents in the market (buyers, seller and

agents not interested in the market) the “optimal rights” of an agent R̃i are
defined as the number of rights this agent would have. The comparison between
R̃i and Ri allows to establish the role of agent i in the market:

– If R̃i = Ri then the agent i is not interested in the market.
– If R̃i > Ri then the agent i would buy (R̃i − Ri) rights (Buyer).
– If R̃i < Ri then the agent i would sell (Ri − R̃i) rights (Seller).

The Number of Optimal Rights R̃ is an input parameter of experiments:

R̃ =
∑

i=1,...,N

R̃i (9)

The optimal rights R̃ are also randomly generated and uniformly distributed
among the N agents. Similar values of Rights and Optimal Rights represents
markets where supply and demand is in equilibrium. In this paper only these
“equilibrated markets” (R ≃ R̃) are considered in the experiments. Once the
agent roles have been established only buyers and sellers are considered in order
to estimate the agreement space. Agents not interested in the market are deleted
of the network. For this reason some buyers and sellers could be disconnected of
the network when an agent is deleted. Disconnected agents are also deleted of
the network iteratively until all agents are connected with others. The result is
a bipartite, undirected graph, where buyers are connected with sellers.2

2 The general case where agents of any type are connected each other has no effect
on the behavior of the algorithm and barely affects to the convergence time of the
method.



The next step is generate the initial prices each agent would pay (if is a buyer)
PB

i or receive (if is a seller) PS
i in order to buy or sell rights in this market.

These prices are randomly generated using normal distributions. The mean and

standard deviation of the buyer and seller prices distributions are input
parameters in experiments.

In our framework agents are allowed to leave the network when the consensus
price is out of their acceptable boundaries. In order to simulate price boundaries
an additional parameter is included in the model, the limit price for agent i

(LPi):
LPi = Pi ∗ (1 ± Fi) (10)

Where Fi values are randomly generated in the interval [0, 0.5] using an uniform
distribution and the sign (+ or -) depends if the agent is a buyer or a seller.
Boundaries prices for agents are included in the interval [Pi, LPi].

Once initial data sets are generated then the consensus protocol (see Eq. 6)
can be computed in order to obtain when the consensus price is possible. An
additional restriction of the proposed simulation framework must be clarified:
agents must necessarily adapt their prices in each iteration of the consensus
algorithm because this algorithm only converges when all agents collaborate in
the process.

4.2 Experimental Design

The initial parameters of all experiments presented in this paper, except the
scaling exponent γ, are the same those discussed previously (see Table 1). These
experiments show that in general, the number of initial buyers and sellers, and
the corresponding selling and buying rights are similar (supply and demand is in
equilibrium) and also that initial prices are distributed around the initial mean
values (parameters of the simulation). A more detailed analysis of these results
shows that seller and buyer price distributions are not normal but this factor
is not important in our experiments, the only one important is to be able to
generate data sets adequate for our experiments.

Different conditions and parameters (see tables 2 and 3) are combined and
analyzed in the proposed experiments:

– ε and δ (learning parameters) of consensus algorithm used as λ = δ ∗ ε.
– Epoch: number of iterations: 50, 100 and 200.
– The scaling exponent γ of the network distribution: γ = 0.0 (complete net-

work) and γ = 2.0 (scale free network).
– β: agents are allowed to leave the network when β = 1.

Experiments Set 1 The results obtained in these experiments (1A and 1B) are
summarized in Table 4. When β = 0 agents are not allowed to leave the network
and therefore the number of consensus agents and rights are the initial ones (if
a consensus is reached, it has to be by all the agents beginning the process), and
the “consensus price” is the mean of all initial prices. When β = 1 agents are



Parameter Value

agents N 1000

rights R 2000

optimal rights eR 2000

buyer price P B
mean 10

buyer price σB
mean 2

seller price P S
mean 10

seller price σS
mean 2

Table 1. Initial conditions

γ 0;2

ε(10−2) 0; 1; 2; 3

λ = δ ∗ ε 0;2;,4;6;8;10

Epochs 50; 100; 200

β 0; 1

Table 2. Experiment Parameters (exp. 1 & 2)

EXPERIMENT #Runs γ β λ

Init. Cond. (t = 0) 60 0 0 0
Exp. 1-A 450*2 0.0 (0,1) (0; 2; 4; 6; 8; 10)
Exp. 1-B 90*2 0.0 1 (0, 10)
Exp. 2-A 450*2 2.0 (0,1) (0; 2; 4; 6; 8; 10)
Exp. 2-B 90*2 2.0 1 (0, 10)

Table 3. Experiment design

allowed to leave the network if price (k) is out of their boundaries, and therefore
the number of “consensus agents and rights” may be lower than the ones that
initiated the process. Particular consensus value depends of initial simulation
parameters.

When λ = 0, the additional term in the equation of consensus (see Eq. 7) is
not considered, and simulations show that final supply and demand rights are
unbalanced. The lowest value of rights limits the “possible agreement space”.
However when λ > 0 this additional term tends to balance supply and demand
rights, and the obtained equilibrium value is higher than the lowest value ob-
tained when λ = 0. Therefore the “possible agreement space” is better.

Experiments Set 2 The basic difference with experiment 1 is that the input
scaling exponent γ 6= 0 and, therefore, scale free networks are considered. The
results obtained in these experiments (2A and 2B) are summarized in Table 4.
The proposed framework excludes explicitly not connected agents before consen-
sus algorithm starts, and for this reason the initial date set (number of agents
with the roles of seller or buyer and their corresponding rights) is minor than
previous experiment (all connected network). These results are very similar to
previously obtained when γ = 0 (all connected networks) except for the slightly
higher variances see Table 5). However a detailed analyses of this experiments
show than the simultaneous combination of scale free networks (γ > 0) with the



Experiment P B
mean P S

mean RB
mean RB

mean B S

Init. MEAN 10.0 12.0 691 692 392 392
Cond. STD 0.1 0.1 17 21 11 10

1-A MEAN 10.9 11.1 686 688 390 391
β = 0 STD 0.4 0.4 20 22 9 10

1-A MEAN 10.7 10.7 524 543 298 309
β = 1 STD 0.2 0.3 31 39 17 22

1-B MEAN 11.1 11.2 492 577 278 328
λ = 0 STD 0.1 0.1 44 34 23 16

1-B MEAN 10.6 10.7 528 538 298 306
λ = 10 STD 0.2 0.2 32 41 18 21

2-B MEAN 10.6 11.1 443 489 251 277
λ = 0 STD 0.3 0.2 42 63 24 35

2-B MEAN 10.4 10.8 476 480 272 273
λ = 10 STD 0.7 0.4 39 42 21 23

Table 4. Experiment configuration for the different cases

Variance (%) RB Variance (%) RS Variance (%)

Exp 2-A 6.1% 7.5%
Exp 2-B 8.2% 8.7%

Table 5. Variances

possibility agents can leave the network when the price is out of their boundaries
(β = 1) sometimes does not converge.

4.3 Results

Some simulations have been chosen to show the behavior of the network to
achieve a decision. The algorithm converges and stops when the mean prices of
buyers and sellers are approximately equal.

– The simplest case (Figure 3, row 1) is a complete graph where all the agents
are forced to stay and reach a consensus value. This experiment shows that
the number of exchanged rights remains constant (because no agents leave
the system), but there is a difference between the desired rights and the
offered rights. The modification of the basic algorithm solves this problem
by introducing a second factor, represented by the Ci(k) term and analyzed
in the λ parameter.

– In the experiments 1A and 1B (Figure 3, row 2), besides the adjustment
between the involved rights, agents are allowed to leave the system if the
terms of the negotiation (the consensus value for the price of the rights)
is out of its bounds. In this case, the number of rights decreases while the
consensus evolves. Nevertheless, the offer and the demand are biased (see
how the lower lines matches in the upper graphic).

– Finally, in the experiments 2A and 2B (Figure 3, row 3) a scale free network
is used instead of the full connected graph. Furthermore, the initial price



distribution is different too. In this case, the network does not converge to
one unique value. The topology just affect to the speed of the convergence.
But when an agent leaves the consensus it can split the network apart. This
fact prevents the hole group to reach a common consensus value, because
each isolated group converges to their own consensus value and they never
receive the values agreed by the other group. The result is that, instead a
unique consensus value, there are as many as isolated groups. This can be
seen in Figure 3, where the prices do not converge. Anyway, the values of the
prices stabilizes. In this case, instead of a final agreed value, a range is found.
This fact allows to identify which agents are interested in the agreement and
the range of prices. After this process, some other techniques can be used
to find an agreement. Then, the consensus network can be used at least to
identify the subset of participants interested in reaching and agreement and
the boundaries of such an agreement.

5 Conclusions

This paper shows the application of consensus networks to model agreement
spaces for virtual organizations in a distributed and self-organized fashion. The
results obtained show that this approach seems to be valid and it has been
applied to a rights-based markets (such as water, electrical or stocks) in order
to check its viability in real-world problems.

Consensus networks are used to check the existence of an Agreement Space
among a network of agents. If such space exists, then an agreement is possible
and the involved agents can obtain the concrete terms of such agreement using
different approaches that are out of the scope of this paper.

The topology of the networks has been introduced in the consensus and its
influence has been tested.

When scale-free networks are combined with the possibility of agents to leave
the system provokes that the convergence is not guaranteed, as some experiments
have shown. This will be object of a more deep study in the future.

An experimental framework has been created in order to simulate the be-
havior of the consensus algorithm varying fundamental parameters such as the
number of agents, the topology of the network, some learning adaptive param-
eters and the effects that the kind of Agreement Space boundaries calculation
process has in the performance of the system.

As additional future works, we want to apply this approach to a real envi-
ronment, where topological, dynamics and multidimensional factors have to be
taken into account.
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Fig. 3. Consensus evolution. First column shows the evolution of the interchanged
rights. Second column shows the evolution of the average price (for sellers and buyers).
In rows, top-down, full connected graph, fixed topology and unbiased rights // full
connected, switching topology, biased rights // scale free topology (γ = 2.0) switching
topology, biased rights. This last one is a sample of not convergence of the consensus
algorithm
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