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Abstract. The major task of a grid operator is perfectly balancing the demand of
all customers at any instant with supply. One of the facets of the Smart Grid vision
is tackling the problem of balancing demand with supply using strategies that act
on the demand side. With the deployment of intelligent ICT devices in domestic
environments, homes are becoming smarter and able to optimise the electricity
consumption to minimise costs and/or meet supply constraints. In this work, we
envision a scenario where smart homes actively participate in the balancing of
demand with supply by forming groups of electricity consumers that agree on
a joint demand profile to be contracted with a retail electricity provider. We put
forward a novel business model as well as an optimisation model for collaborative
load management, showing the economic benefits for the participants.

1 INTRODUCTION

A power system needs to perfectly balance at any instant the demand of all customers
with supply in order to keep voltage and frequency stable and guarantee a safe function-
ing of the system. This task is carried out by the grid operator. The traditional approach
is intervening from the supply side, by increasing or decreasing the supply to contin-
uously match demand. Base load demand (i.e., the amount of electricity required on a
continuous basis) is usually covered by power stations with low generation costs, but
long start-up times. These power stations are therefore not able to quickly adjust their
generation capacity to match unexpected peak load demand. Balancing power is there-
fore provided by expensive and carbon-intensive power plants, which are responsible
for most part of consumer electricity bill.

One of the facets of the Smart Grid vision is tackling the problem of balancing
demand with supply using strategies that act on the demand side [6][7]. For instance, the
grid operator may use demand dispatch schemes that remotely turn (industrial) intensive
loads off for a limited period of time in order to reduce demand. Also peak-shaving
strategies, such as real-time pricing, may be used to encourage off-peak consumption,
thus flattening demand [1].

All these strategies do not conceive an active and participatory role for the con-
sumers. With the deployment of intelligent ICT devices in domestic environments,
homes are becoming smarter and able to optimise the electricity consumption to min-
imise costs and/or meet supply constraints [8]. The participation of consumers into the
management of demand is quite a recent line of research. For instance, Vinyals et al.
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proposed the formation of coalitions among energy consumers with near-complementary
consumption restrictions [9]. In this work, a coalition of consumers can act in the mar-
ket as a single virtual energy consumer (VEC), buying electricity directly from the day-
ahead market and the future market. The experimental results show that the coalition
of consumers obtains noticeable gains if the (average) price of electricity in the future
market is half the (average) price of electricity in the day-ahead market, while using
realistic prices the gains account only for less than 2%. Nevertheless, there is a growing
consensus towards a more active role for the consumers.

In this work, we envision a business model where smart homes actively participate
in the balancing of demand with supply by forming groups of electricity consumers that
agree on a joint demand profile to be contracted with a retail electricity provider. By
doing so, the consumers are able to get better prices from the retail electricity provider,
since the management of balancing the demand with the contracted supply (and the
eventual penalties) is responsibility of the consumers.

This paper is structured as follows: Section 2 presents our optimisation model and
the computation of payments and penalties; Section 3 defines the scenario used for the
evaluation of the model; in Section 4 the experimental results are reported; finally we
conclude in Section 5.

2 COLLABORATIVE LOAD MANAGEMENT MODEL

This work envisions a scenario such as that depicted in Figure 1. LetH be a set of smart
homes, represented by an aggregator, which interacts with a retail electricity provider
(REP) to contract power on a daily basis. On a given day, each smart home is assumed to
estimate its power consumption for the next day. Provided with the data of each home,
the aggregator optimises the energy consumption of the whole group of smart homes
and purchases the power to be delivered the next day from the REP.

2.1 Consumer load

We classify loads into two categories: those that can be shifted in time and those that
cannot. The sum of the power consumption of the latter type of loads forms the base
load, while all the others loads are individually modelled as shiftable loads. Each con-
sumer has exactly one base load and several shiftable loads. Shiftable loads are further
classified in loads that can be interrupted and resumed (shiftable interruptible loads)
and loads that can be shifted but once they start they cannot be interrupted (shiftable
atomic loads)1. Let S = I ∪ A be the set of shiftable loads of a consumer, where I
is the set of shiftable loads that can be interrupted and resumed, while A is the set of
shiftable atomic loads.

1 Examples of shiftable interruptible loads are plug-in (hybrid) electric vehicles, or heating/air
conditioning (AC) devices, which can be switched on and off while maintaining the tempera-
ture between the desired limits. Examples of shiftable atomic loads are washing machines or
dryers.



Fig. 1. Collaborative load management scenario

Definition 1: base load
The base load is defined as:

wB = [wB
1 wB

2 . . . wB
N ]T

where T = {1, . . . , N} is the number of time slots in a day, and wB
t ∈ R+ is the base

load power (expressed in kW) for time slot t.

Definition 2: shiftable interruptible load
A shiftable interruptible load is defined as:

xSI = [xSI
1 xSI

2 . . . xSI
N ]T ,WSI , dSI , tSIs , tSIf

where xSI
t ∈ {0,WSI} is the load power for time slot t, WSI is the power rate (ex-

pressed in kW) of the load, dSI ∈ {1, . . . , |T |} is the duration of the load, tSIs ∈ T is
the earliest time slot for the load to start, and tSIf ∈ T is the latest time slot for the load
to finish,

subject to

tSIf − t
SI
s + 1 ≥ dSI (1)



∑
t∈T

xSI
t = dSIWSI (2)

∑
t<t

SI
s

t>t
SI
f

xSI
t = 0 (3)

Constraint (1) ensures that the number of available time slots between the earliest time
slot and the latest time slot is enough for the shiftable load to run for its entire duration
dSI . Constraint (2) ensures that the shiftable load runs for dSI time slots. Constraint
(3) prevents the shiftable load from running before the earliest time slot tSIs or after the
latest time slot tSIf .

Definition 3: shiftable atomic load
A shiftable atomic load is defined as:

xSA = [xSA
1 xSA

2 . . . xSA
N ]T ,WSA , dSA , tSAs , tSAf

where xSA
t ∈ {0,WSA} is the load power for time slot t, WSA is the power rate

(expressed in kW) of the load, dSA ∈ {1, . . . , |T |} is the duration of the load, tSAs ∈ T
is the earliest time slot for the load to start, and tSAf ∈ T is the latest time slot for the
load to finish,

subject to Constraints (1), (2), (3) and

xSA
t + xSA

t+n ≤WSA + xSA
t+1 (4)

∀n ∈ {2, . . . , N − 1}, ∀t ∈ {tSAs , . . . , tSAf − n}

Constraint 4 ensures that there exists a set of dSA consecutive slots when the load is
running2.

Definition 4: overall shiftable loads
We define the overall shiftable loads vector x as:

x = [x1 x2 . . . xN ]T = (5)

=
[( ∑

Sk∈S
xSk

1

) ( ∑
Sk∈S

xSk
2

)
. . .

( ∑
Sk∈S

xSk
N

)]T

2 Less formally, Constraint 4 ensures that if two slots are equal to WSA , then there is no slot in
between that is equal to 0.



2.2 Joint load optimisation

The economic model for participatory load management that we proposed is based
on two components: energy and power. The group of smart homes, represented by the
aggregator, must pay the REP for the purchased energy as well as for the power capacity
that is needed by the smart homes.

Let pe = [pe
1 p

e
2 . . . pe

N ]T be the price of electricity (expressed in e/kWh) defined
by the REP to supply energy over the N time slots. Let pc be the price that is charged
for the required capacity (expressed in e/kW). The goal of the aggregator is defining
the consumer load of each smart home so as to minimise the total cost. This goal is
defined by the following optimisation problem3:

minimise
x1,x2,...,xm,xc

:
∑
t∈T

pe
t∆t

∑
i∈H

(
wBi

t +
∑

Sik∈Si
x

Sik
t

)
+ pcxc (6)

subject to

xc ≥
∑
i∈H

(
wBi

t +
∑

Sik∈Si
x

Sik
t

)
, ∀t ∈ T (7)

where ∆t is the duration of a time slot. Constraint (7) sets the variable xc to the peak
power consumption of the group of smart home throughout the set of time steps, which
represents the required power capacity.

2.3 Computing day-ahead payments

The value of the objective function described in Eq. 6 is the total cost c(H) incurred
by the group of smart homes H. This cost must be shared among the participants. To
do that, we have to model what would be the cost that an individual home with the
same demand would pay if it did not participate in the group. In this case, we assume a
situation where electricity is paid for at a fixed per unit price pfix (expressed in e/kWh),
as it happens with the regulated tariffs currently used in most countries. In this case,
there is no need to defer loads, since the price of electricity is fixed.

Let ŵi = [ŵi
1 ŵ

i
2 . . . ŵ

i
N ]T be the consumer load vector such that:

ŵi
t =


wBi

t +
∑

Sik∈Si
WSik if t ∈ {tS

i
k

s , . . . , t
Sik
s + dSik − 1}

wBi

t otherwise
(8)

Constraint (8) ensures that each shiftable load of i is executed at the earliest time slot
without interruption. The load vector ŵi could then be considered as the preferred load
of a home that does not join the collaborative group. Let c({i}) be the cost incurred by
smart home i for demanding the load vector ŵi:

3 The problem described in Eq. 6 can be modelled as a standard mixed integer linear program-
ming problem, which has been solved with IBM ILOG CPLEX 11.0



c({i}) = pfix∆t
∑
t∈T

ŵi
t (9)

The task of the aggregator is therefore defining a vector of payments z = [z1 z2 . . . zm]T ,
such that: ∑

i∈H
zi = c(H) (10)

zi ≤ c({i}), ∀i ∈ H (11)

Constraint (10) ensures that the sum of the payments equal the total cost. Constraint
(11) is needed to satisfy the individual rationality condition (i.e., a smart home will not
join the group if the cost of doing that is greater than the cost of acting on its own).

In cooperative game theory, the set of all the vectors z that satisfy constraints (10)
and (11) is a solution concept called Core. We remark that in this model we assume
that there is no discomfort cost derived from running a shiftable load over any set of dS

time slots between tSs and tSf . In fact, if a consumer is sensitive to discomfort, they may
impose tSf = tSs + dS − 1, so that the load cannot be shifted at all.

2.4 Computing imbalance penalties

Once the aggregator has solved the optimisation problem described in Section 2.2, it
contracts with the retail electricity provider a certain power profile wbuy = [wbuy

1 wbuy
2 . . . wbuy

N ]T ,
where:

wbuy
t =

∑
i∈H

(
wBi

t +
∑

Sik∈Si
x

Sik
t

)
(12)

The group of smart homes is therefore committed to consume exactly the contracted
amount of power. However, on the day of the delivery of the contracted power, it
is possible that the real consumption differs from the contracted one. Let wreal =
[wBireal

1 w
Bireal
2 . . . w

Bireal
N ]T be the real base load of a smart home during the day of

the delivery. In this work we assume that only the base load may differ from the pre-
dicted one, since all the shiftable loads are scheduled automatically according to the
optimal plan. The power consumption mismatch is therefore defined as:

ε = [ε1 ε2 . . . εN ]T = (13)

=
[(
w

Bireal
1 − wBi

1

) (
w

Bireal
2 − wBi

2

)
. . .

(
w

Bireal
N − wBi

N

)]T
If εt > 0, the smart home is in a short position (i.e., it has been contracted less power
than what is needed), while if εt < 0, the smart home is in a long position (i.e., it has
been contracted more power than what is needed). In the first case, the aggregator may
be required to buy the missing power in the balancing market, while in the second case
the aggregator may be required to sell the excess power in the balancing market.



Let pbal−up = [pbal−up
1 pbal−up

2 . . . pbal−up
N ]T be the price of electricity for

“balancing-up” adjustments (i.e., when more power must be purchased in the balancing
market), and let pbal−down = [pbal−down

1 pbal−down
2 . . . pbal−down

N ]T be the price of
electricity for “balancing-down” adjustments (i.e., when excess power must be sold in
the balancing market). During the day of the delivery of electricity, each smart home
must pay the aggregator, as imbalance penalty, the following amount:

pbal
t ∆t

∑
t∈T
|εt| (14)

pbal
t =

{
pbal−up

t if εt ≥ 0
pbal−down

t if εt < 0

The imbalance penalty is intended to incentivise smart homes to adhere to their con-
tracted power, by better predicting the day-ahead consumption. We remark that the fact
that a smart home pays the aggregator for its short (or long) position does not auto-
matically imply that the aggregator on its turn will cover the position in the balancing
market. For example, it is possible that a short position of a smart homes is cancelled
out by a long position of another smart home, for the same amount of kW. Therefore,
although both smart homes pay the aggregator for their mismatches, the aggregator is
not required to buy or sell power in the balancing market. In this case, we assume that
the aggregator keeps the money that has been paid as imbalance penalty by the two
smart homes.

3 EVALUATION SCENARIO

We define the evaluation scenario as follows. The duration ∆t of a time slot is 10
minutes, and the number of smart homes in H is 10. For reasons of computational
complexity, we kept the number of homes relatively small in order to solve optimally
the problem described in Eq. 6. In this work, we assume that pe = (1 + α)pmkt,
where pmkt is the price of electricity in the day-ahead electricity market and α > 0 is
a parameter that ensures a profit margin for the retail electricity provider. The price of
electricity of the day-ahead (pmkt) and balancing (pbal−up and pbal−down) markets are
taken from the July 2012 and January 2012 bulletin of the Spanish market operator4.
The capacity price pc is set to 0.07e/kW, which is the capacity price in Spain for power
delivery greater than 15 kW.

Each smart home is equipped with a certain number of electric equipments, such as
heaters, washing machines, plug-in electric vehicles, etc. The probability that a smart
home has a particular electric equipment has been obtained from a study of the Institute
for Diversification and Energy Saving, in collaboration with Eurostat [5]. This study
analysed the electricity consumption of the residential sector in Spain. Table 1 resumes,
for each electric equipment, the associated probability of being present in a smart home.
The type of load can be base (B), shiftable interruptable (I) or shiftable atomic (A).
Although nowadays the penetration of the plug-in electric vehicle (EV) is negligible,

4 http://www.omie.es



we assume a scenario where 10% of households has a plug-in (hybrid) electric vehicle,
which is the projected penetration by 2020 that is reported by many studies [3, 4]. For
simplicity we also assume that the probability of an equipment of being present in a
smart home is statistically independent of the presence of other equipments5.

Once the electric equipments that are present in a smart home has been defined, it
is necessary to instantiate the predicted base load and shiftable loads for the next day,
used by the aggregator to define the optimal consumer load w, and the real base load
wreal during the day of the delivery. These instantiations are based on an elaboration
of the results of the INDEL project, carried out by the Spanish grid operator, which
assessed the electric demand of the residential sector in Spain [2].

Table 1. Loads and probability (p(load)) of being present in a smart home.

Type of load Load p(load)

B Water 0.2
B Lighting 1
B Kitchen 0.53
B Fridge 1
B Freezer 0.23
B Oven 0.77
B Microwave 0.9
B TV 1
B Desktop computer 0.52
B Laptop computer 0.41
I Heating 0.41
I AC 0.49
I EV 0.1
A Washing machine 0.93
A Dryer 0.28
A Dishwasher 0.53

3.1 Base load

Water The power demand of an electric water heater is characterised by high peaks
of power at regular intervals. The typical consumption cycle is turning the water heater
on for half an hour (or 3 time slots) every two hours between 0:00 and 18:00. Between
18:00 and 24:00 the interval between two consecutive half-hour of usage decreases
to one hour. The reason of this functioning is that the heat loss are negligible when the
consumer does not use hot water, while during intense usage (between 18:00 and 24:00)
the equipment needs to heat water more frequently. The water heater contribution to the
base load is modelled as follows. An initial time slot t is randomly selected from the
set {1,. . . ,6} (i.e., the first hour of the day). Starting from time slot t, the water heater is

5 In reality, this may not be the case. For example, usually the presence of a dryer is conditioned
to the presence of the washing machine.



turned on at regular intervals for 3 consecutive time slots, consuming 1.2 kW for every
time slot it is turned on. The regular interval is set to 12 time slots (i.e., 2 hours) between
0:00 and 18:00, and 6 time slots (i.e., 1 hour) between 18:00 and 24:00.

Lighting The average power consumption of lighting in a working day is taken from [2],
using for every time slot a normal distribution with mean equal to the average consump-
tion and variance equal to 5% of the average.

Kitchen The average power consumption of an electric kitchen in a working day is
taken from [2]. The electric kitchen is not used at all until 6 in the morning. A normal
distribution with mean equal to the average consumption and variance equal to 5% of
the average is used to stochastically generate different power consumptions.

Fridge and freezer The fridge and the freezer are two appliances that are always
running at a constant power rate. For these two loads, we use a fixed power rate of 0.08
kW and 0.07 kW respectively.

Oven According to the surveys collected in [2], when the electric oven is used it runs
between 20 minutes and 1 hour, around 14:00 ± 1h (lunch time) and/or around 21:00
± 1h (dinner time). The probability of using the oven at lunch time is 0.8, while the
probability of using it at dinner time is 0.2. The oven is used on average 2 times a week,
and its power rate is 1.2 kW.

Microwave The microwave is used repeatedly throughout a day for short periods of
time (10 minutes). Analysing the data of [2], the microwave is mainly used around 9:00
± 1h, 11:00 ± 1h, 15:00 ± 1h and 22:00 ± 1h, with probability 0.12, 0.2, 0.25 and
0.43 respectively. The microwave is used every day, and its power rate is 1.3 kW.

TV, desktop computer and laptop computer The study carried out in [2] did not
analyse the usage of TVs, desktop computers or laptop computers. In this works we
assume that each device is used twice a day, at 14:00 ± 1h and at 20:00 ± 1h, and each
usage takes between 1 and 3 hours. The power rate of the TV, the desktop computer and
the laptop computer is set to 0.01, 0.1 and 0.02 kW respectively.

3.2 Shiftable interruptible loads

Heating The power demand of an electric heating system with a thermostat is charac-
terised by high peaks of active power. A typical heater is usually off before 8:00 in the
morning and after 23:00 in the night. Between 8:00 and 23:00 the heater is turned on for
a total of 3.5 hours. Although the functioning of the heater depends on the number of
people inside the home, the external weather conditions and the thermal leakage of the
home, in this work we rely on the typical power consumption reported in [2]. A heater
must be on for 10 minutes in every hour (1 time slot out of 6) between 8:00 and 20:00,



and for 30 minutes in every hour (3 time slot out of 6) between 20:00 and 23:00. Thus
between 8:00 and 20:00 a heater is on for 2 hours of the total usage of 3.5 hours, and the
remaining 1.5 hours is placed between 20:00 and 23:00. Each smart home is equipped
with 1 to 3 heaters, each of them with a power consumption of 1 kW.

On the basis of the aforementioned assumption, we instantiated in our model the
load of each heater as follows. For each heater we define 15 shiftable loads, representing
each hour τ between 8:00 and 22:00 inclusive. Each load wSHτ is characterised by a
power rate of WSHτ = 1kW, a earliest time slot tSHτs = 6τ + 1, a latest time slot
t
SHτ
f = 6τ + 6, and a duration equal to:

dSHτ =
{

1 if 8:00 ≤ τ ≤ 20:00
3 if 20:00 < τ ≤ 22:00 (15)

AC A typical AC system is turned on for a certain amount of time between 13:00
and 18:00, consuming an amount of energy that varies between 1.6 and 5.6 kWh per
day. Similarly to a heating system, the power consumption of an AC system depends
on environmental conditions. However, for simplicity we define the load wSAC of an
AC system as follows. The earliest time slot is set to tSACs = 6 · 13 + 1, while the
latest time slot is set to tSACf = 6 · 18 + 6. We then draw the amount of energy e that is
consumed from a uniform distribution over the interval [1.6, 5.6] kWh. Given the power
rate WSAC = 1.5 kW, the number of time slots when the AC is running is therefore
defined as:

dSAC =
e

WSAC∆t
(16)

EV In this work we assume that a plug-in electric vehicle uses Level 1 charging, with a
power rate ofWSEV = 1.92 kW. We assume that the EV owner arrives at home at 19:00
± 1h, and needs the EV charged at 8:00 ± 1h of the next day. We assume a battery size
of 24kWh (such as that of the Nissan Leaf), and state of charge SOC at the time the EV
is plugged-in uniformly distributed between [0.3, 0.8]. Since the charging is spread over
two consecutive days, for every EV we instantiate two shiftable interruptible loads: one
for the charging between the arrival time and 24:00 (wSEV1 ) and one for the charging
between 24:00 and the departure time (wSEV2 ). For wSEV1 , the earliest time slot tSEV1

s

is equal to the time slot corresponding to the arrival time, while the latest time slot tSEV1
f

is equal to N (i.e., the last time slot in T ). For wSEV2 , the earliest time slot tSEV2
s is

equal to 1, while tSEV2
f is equal to the time slot corresponding to the departure time. For

the definition of the two durations, dSEV1 and dSEV2 , we use the following heuristic. Let
k1 = 144− tSEV1

s + 1 be the number of time slots between the arrival time and 24:00,
and let k2 = t

SEV2
f be the number of time slots between the 0:00 of the next day and the

departure time. Given that the amount of energy needed by the EV is e = 24(1−SOC)
kWh, the EV tries to charge e1 = ek1/(k1 + k2) kWh between the arrival time and
24:00, and the remaining e2 = ek2/(k1 +k2) between 0:00 and the departure time. The
durations of the two loads are therefore:



dSEV1 =
e1

WSEV∆t
dSEV2 =

e2

WSEV∆t
(17)

3.3 Shiftable atomic loads

Washing machine According to the study we use as a reference [2], the washing ma-
chine is run on average 3 times a week. The earliest time slot tSWM

s is set at 11:00± 1h
(with probability 0.78) or at 19:00± 1h (with probability 0.22). In this work we assume
that the latest time slot tSWM

f is set at 15:00 ± 1h (if the washing machine is run in the
morning), or at 23:00 ± 1h (if the washing machine is run in the evening). A typical
washing machine operates for one to two hours at a power rate WSWM of 0.19 kW.
The duration dSWM (in time slots) is therefore drawn uniformly from the set {6. . . ,12}
(from 1 to 2 hours).

Dryer The smart homes that have a dryer installed are assumed to run this device 3
times a week on average. The earliest time slot tSDs is set at 17:00± 1h, while the latest
time slot tSDf is set at 21:00± 1h. A typical dryer operates at a power rate WSD of 1.24
kW, while the duration dSD (in time slots) is drawn uniformly from the set {6. . . ,9} (1
to 1.5 hours).

Dishwasher A dishwasher is run on average 4 times per week, either at 15:00 ± 1h
(with probability 0.5) or at 19:00 ± 1h (with probability 0.5). Here we assume that the
latest time slot tSDWf is set at 19:00 ± 1h (if the dishwasher is run in the afternoon), or
at 23:00 ± 1h (if the dishwasher is run in the night). A typical dishwasher operates at a
power rate WSDW of 0.66 kW. The duration dSDW (in time slots) is drawn uniformly
from the set {6. . . ,12} (from 1 to 2 hours).

Table 2. Experimental results

w/o load mgmt. (e) REP margin with load mgmt. (e) gain (e)

Winter 50.65 ± 1.39

α = 0.1 32.04 ± 1.79 18.60
α = 0.3 35.97 ± 2.51 14.68
α = 0.5 43.91 ± 2.28 6.74
α = 0.7 45.18 ± 2.76 5.46

Summer 43.02 ± 3.46

α = 0.1 16.37 ± 1.16 26.63
α = 0.3 32.31 ± 2.55 10.69
α = 0.5 40.88 ± 2.86 2.11
α = 0.7 42.56 ± 2.68 0.44

4 EXPERIMENTAL RESULTS

We compute the average monthly payment that an individual home will pay if it does not
participate in a load management collaborative group. Then, depending on the REP’s



Fig. 2. Load profile with (bottom) and without (top) load management

profit margin (α), we compute the average monthly payment of an individual home
that participates in a load management collaborative group. The difference between
the payments without and with load management gives us the monthly monetary gain
of a individual home. Table 2 shows the results of the experimental simulations. In
winter, the average monthly payment without load management is about 50e. With
participatory load management, an individual home is able to save 18e per month,
when REP’s margin over the spot price of electricity is 10% (α = 0.1). For bigger
profit margins, of course the advantages of a load management scheme decrease, and
the gain falls to 5e per month, when REP’s profit margin is 70% (α = 0.7). In summer,
the average monthly payment without load management is 43e, slightly lower than
winter’s payment. The gain obtained from participating in a load management group
spans from about 26e per month (α = 0.1) to about 0e when REP’s profit margin very
high (α = 0.7).

We are also interested in computing the gains that the aggregator obtains. We define
the daily gain of the aggregator as the difference between the imbalance penalties paid
by the smart homes to the aggregator during the day of delivery and the net financial
position of the aggregator after covering short and long positions of the group of smart
homes in the balancing markets (see Eq. 18).



G =

home→aggregator︷ ︸︸ ︷∑
t∈T

pbal
t ∆t

∑
i∈H
|εit| −

aggregator→
balancing mar-
ket︷ ︸︸ ︷∑

t∈T
pbal

t ∆t
∑
i∈H

εit (18)

The monthly net financial position of the aggregator after after covering short and long
positions in the balancing markets is on average negative, accounting for a loss of
−5.79e ±0.52. Nevertheless, since smart homes pay the aggregator for their imbal-
ances, even if they may cancel out and therefore do not require any buying or selling
the balancing market, the average monthly gain of the aggregator is 38.12e±6.4. Since
the aggregator could be a mere coordinating entity with no profit maximising interests,
this gain could be shared among the smart homes and therefore increase the benefit of
each participant.

Figure 2 plots the winter load profile when the smart homes are organised in a col-
laborative group (bottom), compared to the same set of homes that do not participate in
the load management (top). It is possible to appreciate how load management smooths
the evening power peak, since power capacity is part of the cost function to be min-
imised (see Eq. 6). This fact does not only translate into lower costs for the consumers,
but also lower installation costs for the grid operator, since less capacity is needed to
serve the set of homes involved in the participatory load management scheme.

5 CONCLUSIONS

In this work, we put forward a model for participatory load management, where smart
homes actively participate in the balancing of demand with supply by forming groups of
electricity consumers that agree on a joint demand profile to be contracted with a REP.
We defined an economic model where electricity is priced by the REP above the spot
market price but below the fixed per unit price paid by conventional consumers. In this
way the REP obtain a profit margin and it does not have to take care of balancing the
demand of its consumers with supply, since it is direct responsibility of the collaborative
group of smart homes. These homes, represented by an aggregator, optimise electricity
consumption and power capacity, while trying to sticking to the contracted supply on
the day of the delivery. The experimental evaluation shows that an individual smart
home may gain up to 18e per month (in winter) and up to 26e per month (in summer).
At the same time, by putting a price on the needed power capacity, the group of smart
homes is able to shave the peak power consumption, thus reducing installation costs.

As future work, the complexity of the optimisation model must be tackled in order
to increase scalability, either by distributing the optimisation or by means of meta-
heuristics methods. Furthermore, more sophisticate techniques to model the stochastic-
ity of the problem can be employed, such as agent-based simulations.
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