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Abstract. In abstract argumentation, the directionality principle con-
veys the intuition that, for an unattacked set, the choice of arguments
that are part of an extension should only depend on the restriction of
the framework to that set. Furthermore, having made such a choice, one
should be able to select arguments from the rest of the framework so as
to get an extension. In this paper we show how this idea can be gener-
alized and used for formulating SCC-recursiveness as a stronger version
of directionality.
We argue that such properties characterize the information that is needed
for computing the extensions of an argumentation semantics. We provide
a formal approach for describing and comparing directionality-like prop-
erties. Our model provides a clear distinction between SCC-recursive
semantics that use defense information and those that do not use it.

Keywords: argumentation frameworks, semantics, SCC-recursiveness,
directionality

1 Introduction

This work lies in the general setting of abstract argumentation frameworks,
as proposed by Dung [1] and deals with the characterization of argumentation
semantics with respect to the local computation of extensions.

Non-interference and directionality were proposed as desirable properties of
argumentation semantics, conveying the idea that for some sets of arguments
the selection of arguments for an extension should not depend on the rest of the
framework [2, 3].

SCC-recursiveness was introduced in [4] as a powerful schema for characteriz-
ing argumentation semantics with respect to the decomposition of the argumen-
tation framework into strongly connected components (SCC’s). The approach
relies on the idea that the arguments selected from an SCC may only depend on
arguments selected from ancestor SCC’s.
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In this paper we introduce strongly connected sets (SCS’s) as a generalization
of SCC’s and we provide a stronger characterization of SCC-recursiveness using
these sets. Furthermore, we propose SCC-directionality as a natural refinement
of directionality.

We also introduce general directionality as a very broad formal approach
for describing the behavior of argumentation semantics with respect to local
computation of extensions and the information that needs to be available from
the rest of the framework.

Section 2 introduces the argumentation concepts we are going to use, with
references to the literature. We generalize SCC-recursiveness and introduce SCC-
directionality, together with its properties, in Section 3. The general direction-
ality is presented in Section 4, with an example that outlines the added value of
our approach. The paper ends with conclusions and ideas for future research in
Section 5.

2 Background

In this section we aim to provide a minimal argumentation background, covering
three aspects that are relevant to our work: argumentation semantics, SCC-
recursiveness and properties of semantics. We start with a formal definition of
argumentation frameworks and the related terminology.

Definition 1. An argumentation framework is a pair F = (A,R), where
A is a set of arguments and R ⊆ A × A is a binary attack relation on A.
Whenever (a, b) ∈ R we say that argument a attacks argument b and we write
this as a→ b. We say that a set of arguments S ⊆ A defends an argument a iff
S attacks all arguments b that attack a. We extend the notion of attack to also
refer to sets of arguments, as follows:

a→ S ⇔ ∃b(b ∈ S ∧ a→ b)

S → a⇔ ∃b(b ∈ S ∧ b→ a)

S → T ⇔ ∃ab(a ∈ S ∧ b ∈ T ∧ a→ b)

(1)

For a given argumentation framework F = (A,R) and a set of arguments
S ⊆ A, the restriction of F to S is the argumentation framework

F↓S, (S,R∩ (S × S)) (2)

For example, the argumentation framework from Fig. 1 is given by A =
{a, b, c, d} and R = {(a, b), (b, c), (c, d), (d, c)}. The restriction of F to the set
{a, b, c} is F↓{a,b,c}= ({a, b, c}, {(a, b), (b, c)}).

2.1 Argumentation semantics

In the argumentation literature, semantics refer to approaches (algorithmic,
constraint-based or otherwise) for choosing sets of arguments (extensions) that
are acceptable. We first introduce the argumentation semantics defined in [1],
sometimes referred to as the traditional, or classical, semantics.
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Definition 2. Let F = (A,R) be an argumentation framework and let E ⊆ A
be a set of arguments.

– E is conflict-free iff there is no attack between arguments from E. The set
of all conflict-free sets of F is denoted by ECF (F ).

– E is admissible iff E is conflict-free and E defends all the arguments it
contains. The set of all admissible sets of F is denoted by EAS(F ).

– E is a complete extension of F iff E is admissible and E contains all the
arguments it defends. The set of all complete extensions of F is denoted by
ECO(F ).

– E is a stable extension of F iff E is conflict-free and E attacks all argu-
ments that are not in E. The set of all stable extensions of F is denoted by
EST (F ).

– E is a preferred extension of F iff E is a maximal (with respect to set
inclusion) admissible set of F . The set of all preferred extensions of F is
denoted by EPR(F ).

– E is the grounded extension of F iff E is the (unique) minimal complete
extension (with respect to set inclusion). The (singleton) set of grounded
extensions is denoted by EGR(F ).

The name of the sets (or extensions) presented in Definition 2 corresponds to
the name of the argumentation semantics. Furthermore, whenever the extensions
of a particular semantics are denoted by ESem(F ), it means that Sem is used as
an abbreviation of the corresponding semantics. For example CO stands for the
complete semantics.

For the framework from Fig. 1, the semantics of Definition 2 give the following
extensions:

ECF (F ) = {∅, {a}, {a, c}, {a, d}, {b}, {b, d}, {c}, {d}}
EAS(F ) = {∅, {a}, {a, c}, {a, d}, {d}}
ECO(F ) = {{a}, {a, c}, {a, d}}
EST (F ) = {{a, c}, {a, d}}
EPR(F ) = {{a, c}, {a, d}}
EGR(F ) = {{a}}

(3)

a b c d

Fig. 1. Example argumentation framework.

Several other semantics have been proposed in the literature, such as ideal
[5], semi-stable [6], eager [7]. Due to space constraints, we will not cover them
here.
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2.2 SCC-recursiveness

The general idea behind SCC-recursiveness is to compute semantics taking ad-
vantage of the decomposition of the argumentation framework along its strongly
connected components (SCC’s). We will only provide here the minimal defini-
tions required for introducing the concept. For more details and the rationale
behind the idea, the reader may consult [4]. We start with a formal definition
for the strongly connected components.

Definition 3. Let F = (A,R) be an argumentation framework. We define the
path equivalence relation PEF ⊆ A×A as follows:

– (a, a) ∈ PEF for all arguments a ∈ A
– for any two arguments a and b, (a, b) ∈ PEF iff there is a path in R from a

to b and a path from b to a

PEF so defined is an equivalence relation and its equivalence classes are called
strongly connected components (SCC’s). We will use SCCSF to refer to the
set of strongly connected components of F . We will denote the strongly connected
component that contains an argument a with SCCF (a).

Given an argumentation framework F and an extension E, we can partition
the elements of any strongly connected component S into three different classes,
with respect to how the extension E interacts with them from outside S. These
classes are introduced in Definition 4.

Definition 4. Let F = (A,R) be an argumentation framework, E ⊆ A a set of
arguments and S ∈ SCCSF a strongly connected component of F . The elements
of S can be partitioned into three sets with respect to E:

1. DF (S,E) = {a ∈ S | (E \ S) → a} – the set of arguments attacked by E
from outside S

2. UF (S,E) = {a ∈ S | (E \ S) 6→ a ∧ ∀b(b ∈ A \ S ∧ b → a ⇒ (E \ S) → b)}
– the set of arguments not attacked by E from outside S and defended by E
against all attackers that are not in S.

3. PF (S,E) = S \ (DF (S,E)∪UF (S,E)) – arguments that are neither attacked
by E from outside of S, nor defended by E against attacks coming from
outside S.

With the use of these sets, SCC-recursive semantics can be defined. We will
use UPF (S,E) as an abbreviation for UF (S,E)∪PF (S,E), which is the same as
S \DF (S,E). Note that in the formulas from Definition 4 we have used ⇒ for
logical implication so that there is no confusion with the attack relation, denoted
by →.

Definition 5. An argumentation semantics Sem is said to be SCC-recursive
iff, for any argumentation framework F = (A,R), ESem(F ) = GF(F,A), where
the generic recursive function GF is defined as follows: for any argumentation
framework F = (A,R) and any two sets of arguments E,C ⊆ A it holds that
E ∈ GF(F,C) iff
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– in case |SCCSF | = 1, E ∈ BFSem(F,C)

– otherwise, for all strongly connected components S ∈ SCCSF , we have
(E ∩ S) ∈ GF(F↓UPF (S,E), C ∩ UF (S,E))

where BFSem is a base function that depends on Sem.

The idea conveyed in Definition 5 is that the arguments chosen from a
strongly connected component S as elements of an extension E are selected
based on what has already been selected from other SCC’s, more precisely by
taking into account which arguments are defended (UF (S,E)) or at least not
defeated (UPF (S,E)) by the arguments selected for E from components that
attack S.

It is shown in [4] that all the classical semantics are SCC-recursive so this
approach proves to be an alternative to their original definitions.

We can use the definition of SCC-recursiveness in two ways for computing
extensions. We can consider all possible sets of arguments and check whether
the property specified in the definition holds or we can compute extensions it-
eratively, starting with unattacked SCC’s and considering components one by
one.

Definition 6. The CF2 semantics [4] is the SCC-recursive semantics given by
the following base function:

BFCF2(F,C) = EMCF (F ) (4)

where EMCF (F ) stands for the set of maximal (with respect to set inclusion)
conflict-free sets, also known as naive extensions.

For the framework from Fig. 1 we have EMCF (F ) = {{a, b}, {a, c}, {b, d}}.
Let us also discuss the extensions of CF2. The strongly connected components
of F are S1 = {a}, S2 = {b} and S3 = {c, d}. The extensions are ECF2(F ) =
{{a, c}, {a, d}}. Let us see that E = {a, c} is indeed a CF2 extension. We will
use CF2(F,C) instead of GF(F,C) for the recursive function. So we want to
show that E ∈ CF2(F,A). We have:

E ∩ S1 = {a} ∈ CF2(F↓UPF (S1,E),A ∩ UF (S1, E))

= CF2(F↓S1 , S1) = {{a}}
E ∩ S2 = ∅ ∈ CF2(F↓UPF (S2,E),A ∩ UF (S2, E))

= CF2(F↓∅,∅) = {∅}
E ∩ S3 = {c} ∈ CF2(F↓UPF (S3,E),A ∩ UF (S3, E))

= CF2(F↓S3 , S3) = {{c}, {d}}

(5)

So the requirement from Definition 5 is satisfied.
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2.3 Properties of Argumentation Semantics

A principle-based evaluation of argumentation semantics was proposed in [2] and
extended in [3]. We only provide formal definitions here for the properties that
are relevant for this work.

Definition 7. An argumentation semantics Sem is universally defined iff,
for any argumentation framework F , ESem(F ) 6= ∅.

In words, universally defined argumentation semantics provide at least one
extension for any argumentation framework. Of the semantics we have presented
here, only ST is not universally defined [2].

Definition 8. Let F = (A,R) be an argumentation framework. A set of argu-
ments S ⊆ A is isolated iff there are no attacks between S and the rest of the
framework:

R∩ ((S × (A \ S)) ∪ ((A \ S)× S)) = ∅ (6)

The set of all isolated sets of F is denoted by IS(F ).
An argumentation semantics Sem is said to satisfy the non-interference

principle iff, for any argumentation framework F = (A,R) and every isolated
set S ∈ IS(F ) it holds that:

AESem(F, S) = ESem(F↓S) (7)

where AESem(F, S) , {E ∩ S | E ∈ ESem(F )}

The intuition behind non-interference is that the elements chosen for an
extension E from an isolated set S can be computed locally in the restricted
framework F ↓S by using the same argumentation semantics. Furthermore, for
any such locally computed extension, it should be possible to select additional
arguments from the rest of the framework so as to get an extension of F . Again,
of the semantics we have formally introduced, only ST fails to satisfy non-
interference.

Definition 9. Let F = (A,R) be an argumentation framework. A set of ar-
guments S is unattacked iff S is not attacked by any argument that is not in
S:

A \ S 6→ S (8)

The set of all unattacked sets of F is denoted by US(F ).
An argumentation semantics Sem satisfies the directionality principle iff,

for any argumentation framework F = (A,R) and any unattacked set S ∈
US(F ), it holds that:

AESem(F, S) = ESem(F↓S) (9)

Note that directionality and non-interference impose the same constraint,
the only difference is the sets for which the relation must hold. Furthermore,
directionality implies non-interference [3]. The stable semantics does not satisfy
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directionality [2], nor does the naive semantics [8]. The other semantics discussed
in this paper do satisfy this property.

If we think of SCC-recursiveness as a property as well, we have already
mentioned that all classical semantics satisfy it. Furthermore, CF2 satisfies it by
definition. On the other hand, it is shown in [2] that all SCC-recursive semantics
that are universally defined satisfy directionality. Since MCF does not satisfy
directionality, it follows that it is not SCC-recursive either. On the other hand,
ideal semantics satisfies directionality [2], but is not SCC-recursive [9], so the two
properties are indeed distinct. Table 1 summarizes the results we have mentioned
in this section.

Semantics CF AS CO ST PR GR MCF CF2

Universally defined Yes Yes Yes No Yes Yes Yes Yes

Non-interference Yes Yes Yes No Yes Yes Yes Yes

Directionality Yes Yes Yes No Yes Yes No Yes

SCC-recursiveness Yes Yes Yes Yes Yes Yes No Yes
Table 1. Satisfaction of the evaluation principles.

In our work, we were inspired by the similarities that exist between non-
interference, directionality and SCC-recursiveness with respect to what they de-
scribe as reasonable for the intersection of an extension with a set of arguments.

3 SCC-directionality

We have seen that non-interference and directionality require that the intersec-
tion of an extension with an isolated (or unattacked) set S can be computed as
an extension of the restricted framework F↓S . In this section we wish to define
a new type of sets, one that includes unattacked and isolated sets but also gen-
eralizes strongly connected components, then formulate a principle about the
intersection of extensions with such sets.

Definition 10. Let F = (A,R) be an argumentation framework and let S ⊆ A
be a set of arguments. S is a strongly connected set iff, for all arguments
a ∈ A, if a indirectly attacks S and S indirectly attacks a, then a is in S. We
will use SCS(F ) to refer to all strongly connected sets of F .

SCS(F ) = {S ⊆ A | ∀a(a→∗ S ∧ S →∗ a⇒ a ∈ S)} (10)

where →∗ stands for a path of attacks (one or more).

Proposition 1. Let F = (A,R) be an argumentation framework. Every strongly
connected set S ∈ SCS(F ) can be written as the union of zero or more strongly
connected components of F .
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Proof. Given an argument a ∈ S, for all arguments b ∈ SCSF (a) we have that
a →∗ b and b →∗ a, which leads to b ∈ S and, thus, SCCF (a) ⊆ S. It follows
that S =

⋃
a∈S SCCF (a). ut

Next, we introduce several notations and concepts that will help provide an-
other characterization for strongly connected sets, one that gives a better intu-
ition about the actual property of SCC’s that is preserved for strongly connected
sets.

Definition 11. Let F = (A,R) be an argumentation framework and let S ⊆ A
be a set of arguments. We introduce the following notations:

LA1(F, S) = {T ∈ SCCSF | T 6⊆ S ∧ S → T}
LB1(F, S) = {T ∈ SCCSF | T 6⊆ S ∧ T → S}
LAn+1(F, S) = LA1(F, S ∪

⋃n
i=1 LAi(F, S))

LBn+1(F, S) = LB1(F, S ∪
⋃n

i=1 LBi(F, S))
LA∗(F, S) =

⋃
n≥1 LAn(F, S)

LB∗(F, S) =
⋃

n≥1 LBn(F, S)

(11)

These notations correspond to the following concepts:

– LAn – level n look-ahead of S in F
– LBn – level n look-back of S in F
– LA∗ – total look-ahead of S in F
– LB∗ – total look-back of S in F

Note that for arbitrary sets it is possible that S ∩ LA1(F, S) 6= ∅ and S ∩
LA∗(F, S) 6= ∅. On the other hand, whenever S is the union of zero or more
strongly connected components, S ∩ LA1(F, S) = ∅ follows from the definition,
since T 6⊆ S and T is a strongly connected component. Similar considerations
apply to the look-back.

Proposition 2. Let F = (A,R) be an argumentation framework and let S ⊆ A
be a set of arguments. The following relations hold:

(a) S ∈ IS(F )⇔ LA∗(F, S) = LB∗(F, S) = ∅
(b) S ∈ US(F )⇔ LB∗(F, S) = ∅
(c) S ∈ SCS(F )⇔ LA∗(F, S) ∩ LB∗(F, S) = ∅

The alternative characterizations from Proposition 2 follow from the corre-
sponding definitions. The advantage of using look-back and look-ahead consists
in clustering the attackers of S and the arguments attacked by S into strongly
connected components and distinguishing between the ones that are closer to S
and those that are farther away.

Note that only one-way attacks are possible between a strongly connected set
and a strongly connected component. On the other hand, this is not necessarily
the case for two SCS’s. Indeed, suppose we have four SCC’s: S1, S2, S3 and S4

and the attacks between them are S1 → S2 and S3 → S4. Then the strongly
connected sets S1 ∪ S4 and S2 ∪ S3 attack each other.
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Corollary 1. Let F = (A,R) be an argumentation framework. All isolated sets
of F are also unattacked and all unattacked sets of F are also strongly connected
sets in F

IS(F ) ⊆ US(F ) ⊆ SCS(F ) (12)

Furthermore, let us see that, for any set S, the set S ∪ LB∗(F, S) is an
unattacked set (it can be shown that it is the minimal unattacked set that
contains S). Similarly, S ∪ LA∗(F, S) ∪ LB∗(F, S) is the minimal isolated set
that contains S.

We are now ready to prove one of the main results of this paper, the gener-
alization of SCC-recursiveness.

Theorem 1. Let GF be the generic function of an SCC-recursive argumentation
semantics. Then, for any argumentation framework F = (A,R) and for any
partition of A into disjoint strongly connected sets Part = {S1, S2, . . . , Sn}, the
following holds:

E ∈ GF(F,C)⇔ ∀S(S ∈ Part⇒ (E ∩ S) ∈ GF(F↓UPF (S,E), C ∩ UF (S,E)))
(13)

Proof. We know that the result holds if the partition consists of all the SCC’s
of F . What we need to show is that it holds for other partitions as well. We
proceed by induction on the size of F . For frameworks with a single argument
there will be a single SCC and a single partition into strongly connected sets, so
the result holds trivially.

For the induction step, we assume that the claim is true for all frameworks
that have fewer arguments than F and we prove it for F . We start with the
converse. Let us see that if Part = {A} the claim trivially holds. In what follows
we focus on partitions containing at least two distinct strongly connected sets.
We must prove that if E ∩ S ∈ GF(F↓UPF (S,E), C ∩UF (S,E)) for all S ∈ Part,
then E ∈ GF(F,C).

Let S ∈ Part be an arbitrary SCS. Then E ∩ S ∈ GF(F ↓UPF (S,E), C ∩
UF (S,E)). We know from Proposition 1 that S is the union of one or more
SCC’s of F . For any such component T , we have that T ∩UPF (S,E) is a strongly
connected set in F↓UPF (S,E), so we can apply the induction hypothesis for F ′ =
F ↓UPF (S,E) and the extension E ∩ S. We get (E ∩ S) ∩ (T ∩ UPF (S,E)) ∈
GF(F ′↓UPF ′ (T∩UPF (S,E),E∩S), C ∩ UF (S,E) ∩ UF ′(T ∩ UPF (S,E), E ∩ S)).

Since E∩S ⊆ UPF (S,E) and T ⊆ S, we can write (E∩S)∩(T∩UPF (S,E)) =
E ∩ T . Furthermore, let us see that UPF ′(T ∩UPF (S,E), E ∩ S) = UPF (T,E).
Indeed, for any argument a ∈ A, we have a ∈ UPF ′(T ∩ UPF (S,E), E ∩ S) ⇔
a ∈ T ∧ a ∈ UPF (S,E)∧ ((E ∩S) \ (T ∩UPF (S,E))) 6→ a⇔ a ∈ T ∧ (E \S) 6→
a ∧ ((E ∩ S) \ T ) 6→ a⇔ a ∈ T ∧ (E \ T ) 6→ a⇔ a ∈ UPF (T,E).

Similarly, we show that UF (S,E) ∩ UF ′(T ∩ UPF (S,E), E ∩ S) = UF (T,E).
Here, we actually need to prove the double inclusion. We start with ⊆. Let a be
an argument from UF (S,E)∩UF ′(T ∩UPF (S,E), E∩S) and let b be an attacker
of a, with b ∈ A \ T . If b 6∈ S, then (E \ S)→ b, because a ∈ UF (S,E). If b ∈ S,
we have either b ∈ DF (S,E), in which case (E \ S)→ b, or b ∈ UPF (S,E) and
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then (E ∩S) \ (T ∩UPF (S,E))→ b because a ∈ UF ′(T ∩UPF (S,E), E ∩S). In
all three cases we can infer (E \ T )→ b. Thus, we conclude that a ∈ UF (T,E).

For the other inclusion, let us consider a ∈ UF (T,E) and b an attacker of a. If
b ∈ UPF (S,E)\T . Since a ∈ UF (T,E), we have (E \T )→ b. But b 6∈ DF (S,E),
so (E\S) 6→ b, which leads to ((E∩S)\T )→ b, so a ∈ UF ′(T∩UPF (S,E), E∩S).
If b ∈ A \ S we still have (E \ T ) → b, but what we need for a ∈ UF (S,E) is
(E \ S) → b. Suppose that this is not the case, i.e. there exists c ∈ (E ∩ S) \ T
such that c→ b. Since both c and a are in S, we have S →∗ b and b→∗ S so we
must have b ∈ S because S is strongly connected. However, this contradicts the
assumption that b ∈ A \ S.

Putting it all together, we got E ∩ T ∈ GF(F↓UPF (T,E), C ∩UF (T,E)). And
this holds for every SCS S ∈ Part and every SCC T ⊆ S. Since Part is a
partition, this covers all possible SCC’s of F so, based on the SCC-recursiveness
of Sem, we can conclude that E ∈ GF(F,C), as desired.

We now discuss the direct implication. So we have E ∈ GF(F,C). Just as
before, we consider S ∈ Part and T ∈ SCCSF such that T ⊆ S. From SCC-
recursiveness we have E ∩ T ∈ GF(F ↓UPF (T,E), C ∩ UF (T,E)). We now use
the same equalities as above in order to obtain (E ∩ S) ∩ (T ∩ UPF (S,E)) ∈
GF(F↓UF ′ (T∩UPF (S,E),E∩S), C ∩ UF (S,E) ∩ UF ′(T ∩ UPF (S,E), E ∩ S)). Since
F ′ has fewer arguments than F , we use the induction hypothesis and we get
E ∩ S ∈ GF(F↓UPF (S,E), C ∩ UF (S,E)). This completes our proof. ut

The very strong result covered by Theorem 1 reveals that we don’t need
to split a framework along its SCC’s, it is enough to choose any partition into
strongly connected sets in order to get the same property as that required by
SCC-recursiveness. On a more practical note, this also means that whenever we
put two frameworks together and only add attacks from one of them towards
the other, we can compute the extensions of the union framework using the
SCC-recursive approach. The theorem also has two immediate corollaries.

Corollary 2. Let F = (A,R) be an argumentation framework and let GF be
the generic function of an SCC-recursive argumentation semantics. For every
E,C ⊆ A, the following relation holds:

E ∈ GF(F,C)⇔ ∀S(S ∈ SCS(F )⇒ (E ∩ S) ∈ GF(F↓UPF (S,E), C ∩UF (S,E)))
(14)

Corollary 3. Let F = (A,R) be an argumentation framework and let Sem be
an SCC-recursive argumentation semantics whose generic function does not use
its second argument. Then, for every set of arguments E, we have:

E ∈ ESem(F )⇔ ∀S(S ∈ SCS(F )⇒ (E ∩ S) ∈ ESem(F↓UPF (S,E))) (15)

Let us see that the result in Corollary 3 is somewhat similar to the condition
that characterizes both non-interference and directionality, in the sense that the
same semantics is applied for a restricted framework. Based on this similarity,
we formalize the idea of SCC-directionality.
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Note however that, while both non-interference and directionality state that
the local computation of an extension (its intersection with an isolated or un-
attacked set) should be computable independently of the rest of the framework,
the core intuition behind SCC-recursiveness is quite different. What we need
to say for strongly connected sets is that the local computation is reasonably
influenced by the computation performed for some other set of arguments.

Definition 12. Let F = (A,R) be an argumentation framework. An argumen-
tation semantics Sem satisfies the SCC-directionality principle iff, for any
strongly connected set S ∈ SCS(F ) and any T ∈ AESem(F,LB∗(F, S)), we have

BESem(F, S,LB∗(F, S), T ) = ESem(F↓UPF (S,T )) (16)

where, for any sets of arguments S, D, T , we define

BESem(F, S,D, T ) , {E ∩ S | E ∈ ESem(F ) ∧ E ∩D = T} (17)

The meaning of SCC-directionality is that, given a strongly connected set
S, the arguments we can choose from S for an extension E are determined by
what we have chosen in E from the total look-back of S and, furthermore, for
any meaningful choice that we can make in LB∗(F, S), the choices from S can
be computed using the same semantics, but applied to a restricted framework
that accounts for the selection T .

Note that the significant novelty of SCC-directionality lies more in the use of
strongly connected sets and the actual formalization using BE than in the total
look-back, which is in fact equivalent to the union of all ancestor SCC’s that are
mentioned in [4].

Proposition 3. Every universally defined SCC-recursive semantics Sem whose
generic function does not use its second argument satisfies SCC-directionality.

Proof. Let F = (A,R) be an argumentation framework and let S ∈ SCS(F )
be an arbitrary strongly connected set. Also, let T ∈ AESem(F,LB∗(F, S)).
Given U ∈ BESem(F, S,LB∗(F, S), T ), we have that there exists E ∈ ESem(F )
such that E ∩ LB∗(F, S) = T and E ∩ S = U . Furthermore, from Corollary
3 we have that E ∩ S ∈ ESem(F ↓UPF (S,E)). However, let us see that, in fact,
UPF (S,E) = UPF (S,E ∩ LB∗(F, S)), which leads to UPF (S,E) = UPF (S, T ).
Thus, we have proved that BESem(F, S,LB∗(F, S), T ) ⊆ ESem(F↓UPF (S,T )).

For the other inclusion, let us consider U ∈ ESem(F ↓UPF (S,T )). We denote
S1 = S ∪ LB∗(F, S) and S2 = A \ S1 and take the partition Part = {S1, S2}.
Both elements are strongly connected sets and, since Sem is universally defined,
we have ESem(F↓UPF (S2,T∪U)) 6= ∅ so we can choose an extension V from this
set. but then T ∪ U ∪ V satisfies the conditions of Theorem 1, which leads to
T ∪ U ∪ V ∈ ESem(F ).

The previous result covers the CF and CF2 semantics. For the other se-
mantics, let us consider the argumentation framework from Fig. 2 and see that
SCC-directionality is violated forAS. We consider S = {c, d}. Then LB∗(F, S) =
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{a, b, e}. Since {a, c} is admissible, we have that {a} ∈ AEAS(F,LB∗(F, S)), so
we can choose T = {a}. But then EAS(F ↓UPF (S,T )) = {∅, {c}, {d}}. However,
there is no admissible set that contains d. The proof for the other semantics
based on admissibility (CO, ST , GR and PR) is similar.

a b c d e

Fig. 2. Argumentation framework showing that several semantics do not satisfy SCC-
directionality.

Furthermore, let us see that, for universally defined semantics, the non-
interference and directionality principles are just special cases of the newly intro-
duced SCC-directionality, where the relation is required to hold only for isolated
(respectively unattacked) sets. The proof relies on the fact that, for unattacked
sets, BESem(F, S,LB∗(F, S)) = AE(F, S) and UPF (S, T ) = S.

4 General directionality

In this section we introduce general directionality, based on the intuition that, for
certain sets of arguments S, the intersection of an extension E with S depends
on some set of arguments D in the sense that this intersection can be computed
locally, using a generic function that works with information compiled from the
intersection of E with D. We formalize this in Def. 13.

Definition 13. An argumentation semantics Sem is said to satisfy general
directionality with signature ∆(Sets,Det,Local, Info) iff, for any argu-
mentation framework F = (A,R), any set S ∈ Sets(F ) and any set T ∈
AESem(F,Det(F, S)), the following holds:

BESem(F, S,Det(F, S), T ) =
GFSem(F↓Local(F,S), Info(F↓Det(F,S)∪Local(F,S), S, T ))

(18)

where:

– GFSem is a function that depends on Sem (and on the signature of the
general directionality)

– Sets(F ) returns the sets of arguments S for which the relation holds. For
example, Sets ∈ {IS,US,SCS}

– Det(F, S) returns the set of arguments that reasonably influences the inter-
section of extensions with S; it must satisfy Det(F, S)∩S 6= ∅. For example,
Det ∈ {LBn,LB∗,LAn,LA∗,LB1 ∪ LA1}

– Local(F, S) gives the set that can be used for restricting the framework that
is available to GF ; by convention, we use LS(F, S) = S and All(F, S) = A.
For example Local ∈ {LS,LS ∪ LB1}
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– Info(F, S, T ) encodes the knowledge of T into information that is included
in Local(F, S); based on the way we used it in the definition, this informa-
tion should be computable in the restriction of F to Local(F, S)∪Det(F, S).
Furthermore, we define the following D(F, S, T ) = DF (S, T ), U(F, S, T ) =
UF (S, T ), S(F, S, T ) = S and T (F, S, T ) = T .

Proposition 4. Any argumentation semantics Sem satisfies ∆(Sets,Det,All,
(S, T ,Det))-directionality, for any Sets and Det.

Proof. We can take GFSem(F, (S, T,Det(F, S))) = BESem(F, S,Det(F, S), T ).
ut

Proposition 5. For universally defined semantics, SCC-directionality is equiv-
alent to ∆(SCS,LB∗,LS, (S,D))-directionality.

Proof. The result follows from the following relation UPF (S, T ) = S\DF (S, T ) =
S \DF↓S∪LB∗(F,S)

(S, T ). ut

Furthermore, it is easy to see that we can get the equivalent characterization
of non-interference and directionality in the general directionality setting by
replacing SCS with IS, respectively US in the signature.

We also provide the following result, without proof:

Proposition 6. Any SCC-recursive argumentation semantics that is univer-
sally defined satisfies ∆(SCS,LB∗,LS, (D,U))-directionality.

If we note that the actual computation of DF and UF only depends on the
parent SCC’s of S, we can refine the results in Proposition 5 and Proposition 6
by replacing LB∗ with LB1.

If we compare SCC-recursiveness with respect to the use of the second ar-
gument (the defense information), we can see that our model for describing
directionality properties clearly shows the distinction between the two classes
of SCC-recursiveness, namely the defense information U . Furthermore, the de-
feat information, which is somewhat hidden in the original definition of SCC-
recursiveness, is present in our model.

All the results presented so far were based on the look-back information. A
simple example that uses forward information can be given for conflict-free sets:

Proposition 7. CF satisfies ∆(SCS,LA1,LS, (D′)), where D′(F, S, T ) = {a ∈
S | a→ (T \ S)}.

Proof. Conflict-free sets are independent of the direction of the attacks. If all
attacks are reversed, the meaning of forward and backward information inter-
changes, while the defeat information D becomes D′.
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5 Conclusions and Future Work

The first contribution of this paper is the generalization of strongly connected
components as strongly connected sets and their use for a stronger version of
SCC-recursiveness. We have also turned the simple SCC-recursiveness (without
defense information) into a directionality-like property that refines plain direc-
tionality.

Based on the similarities and differences between non-interference, direction-
ality and SCC-recursiveness, we have provided in this paper a unifying model
that can capture these properties and at the same time provide the means for
comparing such properties with respect to various aspects.

The fact that all argumentation semantics satisfy some (trivial) form of gen-
eral directionality suggests the possibility of searching for “minimal” kinds of
directionality that are satisfied by each semantics. For SCC-recursiveness we
have seen already that ancestor information can be replaced with just parent
information.

Future work will explore the relations between various kinds of general direc-
tionality. We will also give more attention to the look-ahead information, since
it might be relevant for argumentation semantics such as stage or semi-stable.
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