
Competitive Voters vs. Collaborative Bidders:
Agreements in Dynamic Task Assignment?

Marin Lujak1 and Marija Slavkovik2

1 CETINIA, Universidad Rey Juan Carlos, Madrid, Spain
2 Dept of Computer Science, University of Liverpool, United Kingdom

Abstract. This paper is concerned with the problem of dynamic task-
assignment among multiple mobile agents. We study and experimentally
compare two approaches for achieving an agreement on how the tasks
are to be assigned: negotiation through auctions and aggregation of pref-
erences through voting. For the second approach, we formalize the task
assignment problem as a voting problem and present the corresponding
algorithm for mobile agents. Our experimentation is performed in a 2D-
environment applying both agreement methods and comparing them in
terms of their social welfare values.

1 Introduction

Multiple mobile-agent task and resource assignment is an important part of
decision-making processes in many areas, some of which are: industrial procure-
ment [4], manufacturing [8, 10, 18], network routing [7], airport traffic manage-
ment [11], crisis management [15], logistics [16], and public transport [6]. In all
of these fields, it is common for the system to be made up of heterogeneous
agents with different goals and preferences. Reaching a globally good solution
for the system in a multiple mobile-agent task assignment problem under such
circumstances can be a complex task. Since the problem of resource or task allo-
cation requires for each item to be allocated to one agent, and each agent to be
allocated to only one task (or resource), an auction is a straightforward method
of resolving this problem in a distributed way for self-interested agents. How-
ever, in human societies voting is also used for the purpose of fair distribution
of desired items [2].

The alignment of individual and global utilities is a big issue in heterogeneous
agents. Even when the agents are cooperative, the utilities of the individual may
not necessarily be aligned with the utilities of the group. Since the assignment
cost and utility function of a self-interested agent may or may not coincide with
the global system’s cost and utility, different notions of optimality may arise.
Optimality can be seen from the global and individual point of view. Looking
from the global standpoint, globally optimal solution searches for the minimum
cost and maximum utility of the group as a whole and it does not consider the
individual dynamics of assignment. However, in the globally optimal solution,
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individual assignments might be far from the optimal so that there might exist
some agents who are unsatisfied with their individual assignment. The question
is can we start from constructing a global solution from individual interactions
looking only to minimize the damage of the worst-off agents and how it behaves
in respect to the global solution.

Two allocations can be compared, in terms of individual utilities3 of partic-
ipating agents, by comparing their collective utility values. Assuming that any
given allocation yields some utility for each agent, a group utility function as-
signs a single utility, i.e., social welfare, to the agent group. Group utility values,
are natively studied in the theory of public choice and welfare economics [13,
Chapter 23]. The use of public choice methods and theories has recently also
gained the interest of computer scientists [5].

Examples of group utility functions include utilitarian and egalitarian col-
lective utility. The utilitarian group utility function is defined as the sum of all
the individual utilities. A high utilitarian social welfare is indicative of a ”glob-
ally” good allocation, but it does not reflect on how good, or fair, an allocation
is “locally”. For example, if one agent’s utility were increased while decreasing
the utility of another agent for the same amount, the utilitarian social welfare
would not be changed. In contrast, the egalitarian social welfare reflects the
fairness aspect of an allocation. The egalitarian collective utility function is the
lowest individual utility in the allocation. Thus a high egalitarian social welfare
is indicative of a “locally” fair allocation. Another common social welfare is the
elitist collective utility which coincides with the maximal individual utility in the
allocation. A high elitist social welfare is indicative of a society that maximizes
the “profit” of an individual disrespecting fairness and group optimality.

In this paper we are interested in a decentralized multi-agent system in which
mobile agents move in an environment to reach their assigned tasks and com-
municate within a connected communication graph while doing so. We explore
two cases of self-interested agents: collaborative and competitive one. For each of
these cases, we apply a different method for assigning tasks and compare the re-
sulting solutions in terms of their collective utility values. For cooperative agents
we use a Bertsekas [3] modified dynamic auction algorithm with mobility [12],
while for competitive agents we use a voting-based algorithm, in particular us-
ing the Borda count method [14]. We compare the assignment solutions of those
two methods in a two-dimensional grid world, in terms of utilitarian, egalitarian
and elitist social welfare. Collaborative agents compete for tasks (resources) by
giving a bid with some value for the best-off task, while competitive agents try
to make other agents go to less desirable targets. As a corollary of the properties
of the modified auction algorithm, its solutions have superior average utilitar-
ian collective utility values. We observe that the collaborative agents using the
auction algorithm also get better solutions on average in terms of egalitarian,
utilitarian, and elitist social welfare than the voting competing agents. However,

3 In the case of task assignment we work with costs, which can be taken to be negative
utilities



somewhat surprisingly the difference in social welfare between solutions is not
too high.

This paper is organized as follows. In Section 2 we formulate the task as-
signment problem. Section 3 describes briefly the auction method used by the
collaborative agents. The voting method for the competitive agents is described
in Section 4. Section 5 contains simulation results comparing these negotiation
approaches. We discuss our results, draw conclusions and outline the directions
for future work in Section 6.

2 Target-assignment problem

We consider a set A = {1, . . . , n} of n collaborative mobile (vehicle) agents. The
agents are represented as points in a plane positioned in an environment E ⊂ R2.
The position of an agent a ∈ A at time t = 1, . . . , T is given by pa(t) ∈ E. We
also consider a set Θ = {1, . . . , n} of n targets (tasks), with qθ ∈ E being the
static position of task θ ∈ Θ.

Each agent, a ∈ A, is described by a tuple

a = {pa(t), ρ, v[a]
max, dista(t), } , (1)

where ρ ∈ R>0 is a fixed transmitting (communication) range of agent a’s wire-
less transceiver for limited range communication, v[a]

max is its maximum velocity
(maximum movement distance in each time period t), and dista(t) is the total
distance passed until period t. At any time t, each agent a knows its pa(t) and
the position qθ of each target θ ∈ Θ. Let caθ(t) be the (Euclidean) distance be-
tween the position of agent a and target θ. We consider the problem of dynamic
assignment of the set A of vehicle agents to the set Θ of target locations, under
the requirement that each agent is assigned to at most one target. The total
traveled distance by all agents moving towards their targets, calculated as∑

i

caθ(t) , t = 1, . . . , T , (2)

should be minimized. T is the upper time bound in which all the agents reach
their distinct assigned target locations.

In each period t, each agent a is able to communicate to a set of agents
Ca(t) ⊆ A (belonging to the same connected component) reachable in a multi-
hop fashion within the communication graph; at any time t, agents i and j
communicate if

‖pi(t)− pj(t)‖2 ≤ ρ . (3)

In this way, agents which are not within the communication range of each other
can, however, exchange information over other interconnected agents. We assume
that no global assignment information is available a priori and that the agents
only receive information through their local interaction with the environment
and with the connected agents in the communication graph.



3 Agreements via auction-based negotiation

The auction algorithm of Bertsekas [3] is a well-known algorithm for distributed
task assignment. It gives a globally optimal solution in the case of a complete
communication network. The negotiation among the agents is performed in two
steps: bidding and assignment. In the bidding step each agent bids for the target
which gives him the highest net value, starting from the momentary task prices
and the individual task values. For each task, in the assignment phase, there
must be one auctioneer agent that collects all the bids and assigns the task
to the highest bidding agent. This process is performed in iterations. In each
iteration, the prices of the tasks increase. The algorithm stops when there has
been at least one bid for each task and all the tasks are, therefore, assigned.

A modification of the Bertsekas algorithm for dynamic environments and
moving agents with incomplete local information is presented in [12]. This is the
algorithm we apply for cooperative agents in our experiments. The assignment
is performed in three phases: bidding, assignment and movement towards the
assigned targets. The details of the algorithm can be found in [12]. In this paper,
we compare the performance of this algorithm with the voting mechanism since
both can work in the environment with an incomplete communication network.
In the next section we present the voting-based approach.

4 Agreements via voting

Voting is a general group option-choosing method for societies of self-interested
agents [5]. Many voting rules have been proposed in the literature, e.g., plurality
(majority) rule and refinements, ranked pairs, and Borda count. For a general
overview of voting theory, see for example [14].

Formally, a voting problem is specified by a non-empty set of social options
O and a set A = {a1, . . . , an} of at least two agents. Each agent ai ∈ A reports
his/her preferences over elements in O, which are represented by a complete,
transitive preference relation4 %O

i . A profile P = {%O
i | i ∈ A} is the set of the

preference orders of the agents A.
Let R(O) denote the class of all preference orderings over O. The set of all

preference profiles is then given by R(O)n. An n−person voting rule is function
F : R(O)n → 2O \ {∅}, that assigns to each tuple of n preference orders from
R(O) a non-empty sub-set of options from O.

Which voting rule is used for a particular problem depends on the nature of
the problem. The goal of plurality (majority) rule is to ensure that the elected
option has the support of a majority. Ranked pairs [17], on the other hand, aim
at electing the candidate who would win each head-to-head option comparison
(Condorcet winner), while the Borda count rule chooses a consensus option,
looking at how strongly the agent dislike certain options as well. The Borda rule
4 A preference relation is transitive if and only if o1 %i o2 and o2 %i o3 implies
o1 %i o3. The preference relation is complete if for every o1, o2 ∈ O either o1 �i o2,
o2 �i o1 or o1 ∼i o2.



is one of the voting rules based on the principle of dissatisfaction minimization,
namely the winner is chosen to be such that the dissatisfaction of the individual
voters with the election solution is minimal.

One desirable feature of the Borda count rule is the low computational com-
plexity of the determining the winner. According to the Borda rule, each option
is assigned a score and the option with the highest score is elected a winner.
The computational complexity of determining the Borda score, and with that
the election winner, is very low compared to some other rules based on scores
such as, e.g., Dodgson and Kemeny [1, 9].

According to Borda count rule, each element o ∈ O is given a score based on
its position in the individual preference orders in P . The scores for the elements
o ∈ O are defined as

s(o) =
∑
i∈N

#{(o′)|o′ ∈ O and o %O
i o′}.

The number #{(o′)|o′ ∈ O and o %O
i o′} is effectively the position of the option

a in the agent i’s preference order. For example, in the order o1 �i o2 �i o3,
the top ranked option o1 is assigned a value 3 because it at least as good as 3
other options including itself. The Borda count rule returns the option with the
highest score as a winner of the election.

It is directly observable that the Borda score for each option can be calcu-
lated in linear time of the size of the profile of preferences and consequently
the respective linear order over the options can be generated in time O(m2×n),
where m is the number of options and n is the number of agents. Other low com-
plexity methods like the plurality rule are not adequate for the voting problem in
task assignment. Namely, in elections for task assignment, the number of options
(tasks) equals the number of voters (agents). The plurality rule returns as win-
ner the option that is most preferred by the largest number of agents. However,
when the number of options is greater or equal to the number of agents, it can
frequently happen that no option is supported by more than a few agents and
in this case no winner can be found.

The task-assignment problem can be formulated as a voting problem in the
following manner. Let A = {a1, . . . , an} be a set of n agents and Θ = {θ1, . . . θn}
a set of n target locations. Each agent i ∈ A submits his (cardinal) preference
order %O

i over a set of social options O = {(i, θ) | θ ∈ Θ}. The preference order
%O
i is a complete strict order over O corresponding to the values ui(j, θ)|j ∈ A,

where the utility ui(j, θ) expresses the utility that agent i has if task θ is assigned
to agent j ∈ A. The utility ui(j, θ) in a task-assignment is connected with the
minimization of the assignment cost ciθ. The individual preferences ui(i, θ) are
ordered in ascending way such that ui(i, θ) = min ciθ is ordered first; i.e., each
agent prefers to be assigned to a task closer to him. For i 6= j there are different
ways in which ui(j, θ) can be ordered, the simplest being ui(j, θ) = max(ciθ) for
all j expressing that an agent prefers his most distant targets to be assigned to
other agents.

We present the detailed description of our task-assignment algorithm based
on the Borda count voting rule. Let us assume that the set of unassigned agents



is au ∈ U , and a set of unassigned targets θu ∈ T . Then each unassigned agent
au ∈ U does the following steps:

• it keeps in its memory a set of unassigned agents au ∈ U and a set of
unassigned targets θu ∈ T .

• after constructing n preference orders as described above, it keeps its pref-
erence order ui(i, θ) and sends ui(j, θ)|j 6= i to other agents aj ∈ U, j 6= u.

• it receives preference orders from other communicating unassigned agents
j ∈ U, j 6= i and constructs a preference profile also considering his own
preferences. For aggregation, the Borda count voting rule is applied.

• In the cases when the Borda voting rule produces a tie, i.e., the voting points
are the same for multiple remaining targets, the agent i selects the winning
option to be the one with the lowest utility value ui(i, θ) and informs the
other communicating agents of the same.

• Once a target θ ∈ T is assigned to agent j ∈ U , both are removed from
unassigned agents U and targets Θ respectively. An election is now held for
the next agent in U . The agents who have already gotten a task do not vote.

Example 1. Consider a set of five agents A = {a, b, c, d, e} and a set of five targets
Θ = {θ1, θ2, θ3, θ4, θ5} distributed (at moment t) like in Figure 1.

Fig. 1. An example distribution.



The Euclidean distances at t5 are as follows:

ca1 = 3.6 ca2 = 8.06 ca3 = 13.34 ca4 = 16.97 ca5 = 23.26
cb1 = 3.6 cb2 = 5 cb3 = 13.04 cb4 = 14.03 cb5 = 21.84
cc1 = 11.31 cc2 = 7.61 cc3 = 7.28 cc4 = 2.23 cc5 = 10
cd1 = 12.37 cd2 = 13.6 cd3 = 4.47 cd4 = 13.34 cd5 = 12.53
ce1 = 23.26 ce2 = 20.61 ce3 = 14.26 ce4 = 12 ce5 = 3.6

Let us consider the following election sequence N = (a, b, c, d, e).
Election 1 A = {a, b, c, d, e}, O = {(a, θ1), (a, θ2), (a, θ3), (a, θ4), (a, θ5)}. The

profile of preferences regarding which target should be assigned to agent a is
Profile 1 on Figure 2. The Borda scores are: s(a, θ1) = 18, s(a, θ2) = 18, s(a, θ3) =
12, s(a, θ4) = 13 and s(a, θ5) = 14. The winners are (a, θ1) and (a, θ2). Agent a
is assigned to target a because ca1 < ca2.

Agent Preferences

a (a, θ1) � (a, θ2) � (a, θ3) � (a, θ4) � (a, θ5)
b (a, θ5) � (a, θ4) � (a, θ3) � (a, θ2) � (a, θ1)
c (a, θ1) � (a, θ5) � (a, θ2) � (a, θ3) � (a, θ4)
d (a, θ2) � (a, θ4) � (a, θ5) � (a, θ1) � (a, θ3)
e (a, θ1) � (a, θ2) � (a, θ3) � (a, θ4) � (a, θ5)

Profile 1

Agent Preferences

b (b, θ2) � (b, θ3) � (b, θ4) � (b, θ5)
c (b, θ5) � (b, θ2) � (b, θ3) � (b, θ4)
d (b, θ2) � (b, θ4) � (b, θ5) � (b, θ3)
e (b, θ2) � (b, θ3) � (b, θ4) � (b, θ5)

Profile 2

Fig. 2. Profiles from the first two elections.

Election 2 A = {b, c, d, e}, O = {(b, θ2), (b, θ3), (b, θ4), (b, θ5)}. The profile of
preferences regarding which target should be assigned to agent b is Profile 2 on
Figure 2. The Borda scores are: s(b, θ2) = 16, s(b, θ3) = 9, s(b, θ4) = 8 and
s(b, θ5) = 8. The winner is (θ2).

Election 3 A = {c, d, e}, O = {(c, θ3), (c, θ4), (c, θ5)}. The profile of pref-
erences regarding which target should be assigned to agent c is Profile 3 on
Figure 3. The Borda scores are: s(c, θ3) = 6, s(c, θ4) = 8 and s(c, θ5) = 4. The
winner is (c, θ3).

Election 4 A = {d, e}, O = {(d, θ3), (d, θ5)}. The profile of preferences re-
garding which target should be assigned to agent d is Profile 4 on Figure 3.

5 we do not write the parameter t below to ease the readability



Agent Preferences

c (c, θ4) � (c, θ3) � (c, θ5)
d (c, θ4) � (c, θ5) � (c, θ3)
e (c, θ3) � (c, θ4) � (c, θ5)

Profile 3

Agent Preferences

d (d, θ3) � (d, θ5)
e (d, θ3) � (d, θ5)

Profile 4

Fig. 3. Profiles from the last two elections.

The Borda scores are: s(d, θ3) = 4 and s(d, θ5) = 2. The winner is (d, θ3), and
the last assignment is (e, θ5). The complete pairing of agents with targets is
α = {(a, θ1), (b, θ2), (c, θ4), (d, θ3), (e, θ5)}.

The collective utilitarian value of α can be calculated as u(α) = −(ca1 +cb2 +
cc4 + cd3 + ce5) = −18.9. The collective egalitarian value of α can be calculated
as e(α) = max(ca1, cb2, cc4, cd3, ce5) = 5. The collective elitist value of α can be
calculated as el(α) = min(ca1, cb2, cc4, cd3, ce5) = 2.23.

As it can be observed directly in the example, the order in which the elections
are held determines which target is assigned to which agent. If instead of the
sequence N = (a, b, c, d, e) we used the sequence N = (b, a, c, d, e) the alloca-
tion reached would be α′ = {(b, 1), (a, 2), (c, 4), (d, 3), (e, 5)} which is a worse
allocation than α because u(α′) = −21.96 and e(α′) = 8.06.

Example 2. Consider a set of five agents A = {a, b, c, d, e} and a set of five targets
Θ = {θ1, θ2, θ3, θ4, θ5} distributed (at moment t) like in Figure 2.

Fig. 4. An example distribution.



The Euclidean distances at t are as follows:

ca1 = 21.38 ca2 = 20.02 ca3 = 11.4 ca4 = 16 ca5 = 5
cb1 = 17.08 cb2 = 15.03 cb3 = 7.81 cb4 = 11.18 cb5 = 2.83
cc1 = 14.31 cc2 = 11.7 cc3 = 8.24 cc4 = 8.6 cc5 = 6.08
cd1 = 21.21 cd2 = 22.45 cd3 = 11.7 cd4 = 17.46 cd5 = 11.04
ce1 = 23.26 ce2 = 7.07 ce3 = 14.21 ce4 = 17.09 ce5 = 3.16

Let us consider the following election sequence N = (a, b, c, d, e). We reach the
following assignment α = {(a, θ1), (b, θ4), (c, θ3), (d, θ5), (e, θ2)}. The utilitarian
welfare is u(α) = −58.91, the egalitarian welfare is e(α) = 21.38, while the elitist
welfare is el(α) = 7.07.

5 Simulation setup and results

We simulate a multi-agent system with mobile agents applying the Bertsekas
modified iterative auction algorithm and the voting-based algorithm in Mat-
Lab. The dynamic modified auction algorithm as well as the presented voting
algorithm were experimented with complete assignment information exchange,
i.e., the communication graph among the agents is connected and every two
agents in the group can communicate, if not directly, then at least in a multi-
hop fashion through other connected agents.

Without loss of generality and for simplicity, we model the agents as points
in a plane, which move on a straight line towards their assigned targets. The
experiments were performed for up to 10 agents in environment [0, 50]2 ⊂ R2

where the initial agent and target positions were generated uniformly randomly.
We considered 30 different instances for the problem with 10 agents and 10

targets. We measured the total distance traveled
∑T
t=1 distai(t) by agents ai ∈ A

and calculated utilitarian, egalitarian, and elitist social welfare as a negative
value of the passed distances of individual agents and the agent group as a whole.
We chose this approach since every agent is better off if its assigned target is
closer to it. Moreover, the cost of assignment is proportional to the traveled
distance. Therefore, the elitist welfare is measured as the utility of the agent
that is currently best off as negative distance cost −mini

∑T
t=1 distai(t). The

utilitarian social welfare is the sum of individual utilities −
∑n
i=1

∑T
t=1 distai(t),

while the egalitarian social welfare is given by the utility of the agent that is
currently worst off −maxi

∑T
t=1 distai(t).

From Figures 5 and 6, it can be seen that the egalitarian and the utilitar-
ian welfare in the case of the iterative auction algorithm are better off in all
the experimented instances in respect to the voting algorithm while the elitist
welfare (Figure 7) is better in 25, equal in 4 and worse in 1 out of 30 instances.
Performance of the iterative auction in respect to the voting method is evaluated
measuring the gap (in percentage) g = [(SWVM −SWIA)/SWIA]∗100, between
(elitist, egalitarian and utilitarian) social welfare obtained by voting mechanism
SWVM and iterative auction SWIA respectively. The gap provides an estimation



of the relative extra-cost incurred in the competitive scenario (voting mechanism)
in respect to the collaborative one (iterative auction) for not having at disposal
all the system information to optimally assign the available targets.

Fig. 5. Egalitarian welfare.

From Figure 8 and Table 1, it can be seen that the gap between those two
scenarios for the egalitarian and utilitarian welfare is significantly lower and more
uniformly distributed than the elitist welfare gap which in average is almost 3
times higher than the other two.

Utilitarian welfare Elitist welfare Egalitarian welfare

(Auction-Voting)/Auction[%] 121,8 281,2 99,5

Table 1. Average gap values between voting mechanism and iterative auction for
utilitarian, elitist, and egalitarian welfare [%]

The reason for the lower performance of the voting mechanism lies in the fact
that although the communication graph among agents is connected, the voting
mechanism obscures the information necessary for a good global solution. This
can be explained by the strong influence of greedy policy in ordering prefer-
ences sent from one agent to others to direct them to less preferred targets, thus



Fig. 6. Utilitarian welfare.

Fig. 7. Elitist welfare.



Fig. 8. Difference in egalitarian, utilitarian, and elitist welfare between negotiation
through iterative auction and voting mechanism for instances with 10 agents and 10
targets.

minimizing individual cost and, on average, worsening the global and other in-
dividual solutions. The individual assignment process of the voting mechanism
doesn’t take into consideration individual agent bias and is performed taking
into consideration all the information at disposal with the same weight. Fur-
thermore, since a random factor is introduced through lexicographic ordering of
equivalently valued targets, the distribution of the quality of the solution on the
best-case and worst-case agent cannot be achieved.

6 Conclusions and future work

In this work we compared two approaches for solving the multiagent task al-
location problem: negotiation through auctions and preference aggregation via
a voting rule. The voting-based method is applicable both to competitive and
to collaborative environments, though it is structured such that the assignment
information exchanged is minimal and the communicated preferences are only
ordinal. The auction-based method is a broadly used method for task assignment
of collaborative agents that results in an optimal allocation solution. Our results
show that cooperative agents that use the auction method to agree on how the
tasks should be assigned on average reach solutions that are cost optimal for the
system as a whole and sufficiently good for the agents individually. Moreover,
the worst-off and best-off agent in the system have a significantly better local



assignment solution in this case than when the voting approach is used. When we
evaluated the deviation of the voting mechanism in respect to Bertsekas auction
algorithm, the elitist welfare resulted in the lower, while the egalitarian welfare
in the higher difference in respect to the (optimal) auction solution.

We formulated the problem as a dynamic task assignment problem to allow
for the case when not all agents are connected in the communication graph
and voting is done only among communicating agents. The voting algorithm
presented in this paper assumes a connected communication graph which allows
for a dynamic update of assignment information within all of the agents present
in the system. We intend to consider the disconnected communication graph
case in our future work.

In our experiments with the voting method, we modelled the suggested util-
ity values of each agent for the assignment of other agents assuming a negative
influence of similar assignments one to another. However, we can foresee sce-
narios in which the relations between the agents in the grid are more complex,
e.g., when the agents cooperate with some group of other agents but compete
with others. It would be interesting to compare the results from auction-based
methods and those from voting in such scenarios, as well.

A great disadvantage of our voting approach stems from its sequentially,
namely the tasks are allocated to the agents following a sequence of one agent
at a time. The solution directly depends on the sequence in which the agents are
considered. In our experiments we use a lexicographic sequence, however there
might exist a heuristic that helps us generate the sequences in such a manner
that the desired social welfare of the assignment solution is increased. We intend
to explore such heuristics in our future work.
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