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Abstract. Open interaction systems play a crucial role in agreement
technologies because they are software devised for enabling autonomous
agents (software or human) to interact, negotiate, collaborate, and co-
ordinate their activities in order to establish agreements. In our view
those systems can be efficiently and effectively modeled as a set of phys-
ical and institutional spaces of interaction. In a distributed open system,
spaces are fundamental for modeling the fact that events, actions, and
social concepts (like norms and institutional objects) should be perceiv-
able only by the agents situated in the spaces where they happen or
where they are situated. Spaces are also crucial for their functional role
of keeping track of the state of the interaction, and for monitoring and
enforcing norms. Given that it is fundamental to be able to create and
destroy spaces of interaction at run-time in this paper we propose to
create them using Artificial Institutions (Als) specified at design time.
This dynamic creation is a complex task that deserves to be studied in
all details. For doing that, in this paper, we will first define the vari-
ous components of Als using Semantic Web Technologies. Then we will
describe the mechanisms for concretely using Als specification for con-
cretely realizes spaces of interaction. We will exemplify this process by
formalizing the components of the auction Al and of the spaces required
for running concrete auctions.

1 Introduction

Open interaction systems play a crucial role in agreement technologies because
they are software devised for enabling autonomous agents (software or human)
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to interact, negotiate, collaborate, and coordinate their activities in order to
establish agreements for achieving certain goals. These interactions may be fi-
nalized to the definition of contracts/agreements among multiple parties and to
their execution, monitoring, and enforcement. The most important aspect of this
type of systems is that it is not known in advance what agents may participate
in one of their enactment, therefore no assumption can be made on the internal
architecture of the participating agents or on their willing to satisfy the norms
and the rules that regulate the interaction [4]. Open interaction systems are cru-
cial for the design, development, and deploy of applications in different fields,
like e-commerce, e-government, supply-chain, management of virtual enterprise,
and collaborative-resource sharing systems.

Open interaction systems are dynamic distributed event based systems having
the following fundamental components:

— A state that evolves due to the events that happens and the actions (viewed
as events with an actor) performed by the interacting agents. Events and
actions are describes by means of their preconditions, which need to be sat-
isfied for the successful performance of the events or actions, and their effects
on the state of the system. Important events are due to the elapsing of time
or to the change of the value of some properties. Crucial actions are com-
municative acts performed by the agents to interact and negotiate.

— Given that no assumption can be made on the expected behavior of the
interacting agents, norms are a fundamental part of open systems. They
are used to express obligations, prohibitions, permissions, and institutional
powers, that regulate the interaction of the agents. At design time norms are
expressed using roles.

— Given that the interacting agents and the open interaction system itself
are software that are running on different platforms, it is required to define
standard mechanisms and rules for the agents for: (i) perceiving the state
of the system, and the events and actions that happen in the system; and
(ii) for acting within the system. Moreover due to performance, security,
privacy, and relevance reasons in a distributed system limited observability
of events and actions and a contextual relevance of norms has to be taken
into account [13].

In our past works we have proposed to use Artificial Institutions (Als) [8] for
the design of open interaction systems and recently we started to study how to
formalize some components of Als using Semantic Web Technologies [9, 6, 10]. In
parallel we started to study how to integrate the model of Als with the notion
of environment [?,14] and in particular with the notion of institutional space of
interaction [18]. Extending existing notions of environment is crucial for being
able to manage the effects and the perception of social and institutional inter-
actions among agents, and in particular the performance of institutional actions
[11]. A crucial advantage of using the notion of agent environment in modelling
open systems is the availability of environment frameworks like GOLEM [1] and
CArtAgO [15] that can become fundamental components in the concrete real-
ization of prototypes of open interaction systems.



This paper is organized as follows. In Section 2 we introduce the notion of Ar-
tificial Institution (AI), of space of interaction, and their connections. In Section
3 the OWL model of Al of spaces of interaction, and the mechanisms for using
Als for dynamically creating at run-time spaces of interaction are presented. In
this section we will also discuss the need to define hierarchies of Als [2] and hier-
archies of the spaces realized using such Als. Finally in Section 4 the architecture
of the prototype that we are implementing for testing the proposed model, with
the final goal of realizing a complete marketplace, is briefly described.

2 Spaces of Interaction and Artificial Institutions

In our view, open interaction systems for autonomous heterogenous agents can
be modeled using Als, and enacted as a set of physical and institutional spaces
of interaction [18]. Spaces are introduced to model the fact that interactions
usually take place in a limited physical and/or institutional place, for example
in a classroom, in a meeting room, during a run of an auction, or inside a team
created for solving a specific problem. An environment for multi-agent systems
(MAS) is composed by multiple spaces where objects and agents are situated.
This abstract concept of space presents some interesting similarities with the
notion workspace introduced in some environments studies [1] and of scene used
in Electronic Institutions [4].

The notion of space is fundamental in the specification of open systems to
model limited observability. A space, in fact, represents for the interacting agents
the boundaries for the effects and for the perception of the events and actions
that happen in a space, which indeed may be perceived only by the agents inside
that space. A space has also functional roles, that is, it is in charge of mediating
the events and the actions that happen inside the space. This means that the
space has to register the fact that an event or action has happened, and it has
to notify it to the agents in the space that are registered for its template.

In this paper we will extend this notion of space in order to be able to for-
malize the components required for representing and managing the institutional
aspects of the interaction. In an agent environment objects are one of the build-
ing blocks. They are used to represent the various non-autonomous components
of the system, like physical entities external with respect to the system (like
databases or external files and web services), offering an abstraction, for the
agents, that hides the low level details. Objects are fundamental also for rep-
resenting institutional entities that are manipulated by the agents during their
institutional interaction. Institutional entities have one or more institutional at-
tribute whose value can be changed thanks to the performance of institutional ac-
tions and thanks to the common acceptance of the meaning of those actions from
the agents belonging to the space where the objects are situated. For example a
run of an auction that can be opened and closed, or an agreement/contract be-
tween agents whose attributes can be filled with specific values. Physical objects
can be considered institutional objects when they get institutional attributes
during the dynamic evolution of the state of the environment.



In order to manage the performance of institutional actions and the fact
that the interactions are regulated by norms (used to express obligations, pro-
hibitions, permissions) it is necessary to extend the functionalities of spaces. An
institutional space that contains institutional objects has to concretely realize
the mechanisms for:

— keeping track of the interactions among agents and computing the state of
spaces on the basis of the events, actions, and institutional actions performed
by the agents and on the basis of their pre-conditions and effects. For example
in the Dutch auction the auctioneer can only lower the current ask price.

— checking that the agent that performs an institutional action has the insti-
tutional power for doing such an action and that all the other preconditions
for the performance of the action are satisfied. For example an agent that
has not the institutional power of declaring open the auction can attempt
to do it but the effects of the action will not change the state of the state
where it is performed;

— monitoring the interactions and check if they are compliant with a given set
of norms used to express obligations, prohibitions, and permissions;

— enforcing the norms for example by applying sanctions [7] that change the
reputation values of the agents.

We assume that in the environment used for creating an open interaction
system there is always a root space that contains all the physical laws of the
system, this is also the space where the agents need to register for starting to
interact in a given open system. The agents situated in such a root space need to
realize complex interactions with the other agents, and in particular they need
to be able to dynamically create and destroy at run-time spaces of interaction.
Think for example to a market-place where the spaces for running specific type
of auctions or for negotiating different types of contracts are continuously cre-
ated and terminated. Given that defining all the rules, norms, and the context
of interactions at run-time is a complex task, in this paper we propose to create
such spaces of interaction using pre-defined pattern of interaction, defined at de-
sign time, which are modeled using the notion of Artificial Institution (AI) [11,
8]. This approach, from the software engineering point of view, has the enormous
advantage of making it possible to use many times existing specifications of Als,
for example the AI specification of a given type of auction for realizing an elec-
tronic market-place. As we will propose in next sections, the process of re-using
existing Al is encouraged and made easier if standard well-known technologies,
like the Semantic Web Technologies, are used for their formalization.

The creation at run-time of an institutional space by using Als defined at
design time is a complex task that deserves to be studied in all details. For
doing that, in this paper, we will first define the various application independent
components of Als using Semantic Web Technologies, in particular OWL 2 DL3
[12]. The model of Al that we propose in this paper is inspired from the model
presented in [8] where AT are formalized using Event Calculus. Obviously given

3 http://www.w3.org/TR/owl2-syntax/



that in this proposal we adopt other formal languages we will need to change
some parts of the model (for example an advantage of this model is that the
content of norms are classes of possible actions instead of being a specific fluent)
and to extend it to take into account its connections with the environment
components, that is with spaces and objects. Then as a second step we will
study and describe the mechanisms for concretely using the specification of a
generic Al for concretely realize and execute spaces of interaction. Finally we
will explain how we plan to use this model based on OWL Als and spaces for the
realization of a first prototype of a market-place. From the architectural point
of view an open interaction system is a particular type of distributed event-based
system, which is in charge of the complex task of distributing the perception
and notification of actions and events to the participating agents. Therefore for
the architecture of our prototype we decided to adopt and extend an already
existing environment framework: the GOLEM framework [1].

There are many advantages in using Semantic Web Languages for the specifi-
cation and realization of an open interaction systems with respect to the adoption
of other formal languages as proposed in other approaches [4]. The first advan-
tage is that Semantic Web languages are international standards, and therefore
it is possible to realize systems by reusing existing ontologies (for example the
Time Ontology) and the ontologies proposed in this work may be easily re-used
in other systems. Second it is possible to use some of the good existing tools and
libraries for programming and editing ontologies. Moreover given that OWL 2
DL is a decidable fragment of FOL there are several reasoners available* for rea-
soning on OWL specifications. Finally given that OWL 2 DL ontologies coming
from different sources can be easily merged by taking the union of their axioms
(or using ontology alignment mechanisms when the different ontologies are not
immediately compatible) it is possible for agents to interact with other agents
by using different open systems, even if they have different set of norms, rules,
and context of interaction.

3 Formal specification of Als and spaces using OWL

In this section we formalize, using Semantic Web Technologies, the concepts,
properties, and axioms required for the specification of artificial institutions at
design time. We also propose a formal specification of the concepts required for
the definition and dynamic evolution of institutional spaces at run-time and the
process for dynamically creating them using Al specifications. Those concepts,
properties, and axioms used for defining Als and spaces will be mainly defined
in the TBox (Terminological Box) of a set of OWL 2 DL ontologies introduced
for representing different components of the proposed model and created using
Protégé ontology editor®. The process for actually creating and destroying spaces
at run-time, is concretely realized by querying the content of the ontology where

4W3C list of reasoners, editors, development environments, APIs:
http://www.w3.org/2007/OWL/wiki/Implementations
® http:/ /protege.stanford.edu/



the model of Als is stored and by manipulating the content of the ontology (the
State Ontology) used for representing the state of the existing spaces of interac-
tion. Given that it is impossible to add individuals to ontologies using OWL 2
DL axioms this process is implemented with a program that uses OWL libraries,
like OWL-API, for accessing OWL 2 DL ontologies. The concepts introduced
will be exemplified by formalizing some of the components of the Dutch auction
AT and of the space generated from this Al.

In order to be able to use already existing ontologies, like for example the
W3C OWL Time Ontology®, and in order to make the ontologies proposed in
this paper usable in other applications, we decide to create the following dif-
ferent ontologies for the formalization of our model: an application independent
ontology for describing events and actions (Fvent/Action Ontology); an applica-
tion independent ontology where the concepts required for describing artificial
institutions and spaces are formalized (Artificial Institution/Space Ontology);
an ontology for describing different type of auctions using the proposed model
of AT (Auction Ontology), and an ontology used for describing at run-time the
state of the spaces of interaction dynamically created (State Ontology). Those
ontologies are connected by an “import” relationship as depicted in Figure 1.

Event/Action Ontology |W| Time Ontology |

T'\mport

Artificial Institution/Space . |
Ontology Tmport Auction Ontology
T'\mport

| State Ontology |

Fig. 1. Import relationship among the proposed OWL 2 DL ontologies.

The Time Ontology is used to represent instants of time, intervals, and rela-
tionships among them. The Event/Action Ontology [6] is used to represent events
and actions (with the classes Event and Action) and it imports the Time Ontoloy.
An event is connected to the instant of time when it happens by the atTime:
Eventuality — TemporalEntity property. Every event has an atTime value: Event
= datTime.Instant. Actions are particular type of events having an actor: Action
C Event; Action= dhasActor.Agent. The class ChangeEvent C Event represents
the events due to the change of the value of a property. The class TimeEvent C
Event represents a special type of events whose characteristic is simply of being
associated to an instant of time. They are useful for expressing deadline in obli-
gations specification. In order to be able to represent that an instant of time is
elapsed we introduce the class Elapsed C Instant. If events/actions are associated
to an elapsed instant of time, they are actually happened, otherwise they are

5 http://www.w3.org/ TR /owl-time/



simply a description of those events/actions. The assignment of an instant of
time to the class Elapsed is realized by a the software in charge of representing
or simulating the time evolution of the interaction, this with the goal of being
able to monitor the behaviour of the agents.

3.1 Institutional actions

Institutional actions [11] (represented with the class InstAction T Action) are a
special type of actions whose effects change the value of institutional properties.
For example the action of opening or closing an auction, creating a space of in-
teraction, or assigning a role to an agent. An institutional action is successfully
performed if and only if the actor of the action has the institutional power to
perform such an action and if other application dependent contextual conditions
are satisfied [16], otherwise the effects of the action are empty. In our previ-
ous institutional models [11, 8] institutional actions were performed by means of
declarative communicative acts. This approach has the problem that the receiver
of those acts should be the set of all agents for which the institutional action is
relevant. Computing this set of agents is a complex task for one agent situated
in a distributed open system with limited observability of the state of the inter-
action. Differently in the model presented in [18] and in this paper, agents may
attempt to perform institutional actions in a specific space of the environment.
Then the environment is in charge of checking if the preconditions of the institu-
tional action (at least the ones related to institutional power) are satisfied. If the
preconditions are satisfied the action happens and its effects are represented in
the state of the space where the action is performed and become perceivable, at
least, by those agents situated in that space and for which the action is relevant
(the agents registered to a template of the institutional action).

3.2 Artificial Institutions and Institutional Spaces

Artificial institutions are defined at design-time and at run-time they can be
used for creating one or more institutional spaces. An Artificial Institution (AI)
is characterized by: (i) a set of concepts and properties introduced by the specific
AT; for example in an auction AT it is necessary to represent the products, the
reservation price, the various ask-prices, the value of the bids, the maximum
duration of the auction, and so on; (ii) a set of actions available for the agents
and defined by the AI; (iii) a set of roles, which are labels defined in a given
AT for abstracting from the specific agents that will take part at run-time to
an interaction; (iv) a set of norms for expressing at design time the obligations,
permissions, prohibitions, and institutional powers of the agents that will play
a given role.

A specific institutional space is characterized by: (i) the AI or Als used to
create the space; if more than one Al is used for creating a space, the problem
of aligning different Als models and checking the consistency of the specification
obtained by using different Als arises; (ii) the set of sub-institutional spaces
dynamically created inside a given space; (iii) the list of agents that are inside



the space at a given instant of time; (iv) the list of roles defined in the space
that is generated from the list of roles of the Als used to create the space; (v)
the list of objects (i.e. the products sold in the auction, concrete obligations and
institutional powers) that the agents can manipulate in the space.

For representing those concepts we create the Artificial Institution/Space
Ontology that defines the Artificiallnst and InstSpace classes and the following
property used to connect a space with the AI used for its realization:

isRealizationOf: InstSpace — Artificiallnst.

For exemplifying those concepts we create the Auction Ontology used for
defining an artificial institution that can be used for realizing generic auctions.
In this ontology we create the individual auction that belongs to the Artificiallnst
class. In those ontologies agents are represented as individuals that belong to the
Agent class. The isIn: Agent — InstSpace property is used to connect an agent
with the spaces where it is situated.

We assume that at run-time every interaction system has a root-space that
belongs to the PhysicalSpace class. PhysicalSpace and InstSpace are both subclass
of the Space class. Every new space that should be created is a sub-space of an
existing space. For representing this relation among spaces we define the sub-
space: Space — Space property.

Institutional actions for creating new spaces can be represented in the ontol-
ogy as individuals belonging to the CreateSpace T InstAction class. This action
has various parameters, some of them are independent from the type of the Al
used for creating the space, they are: (i) the actor (a general properties of all
type of actions) represented with the hasActor: Action — Agent property; (ii) the
name of the space where the action is performed, which should be specified for
every type of action and it is represented with the performedin: Action — Space;
Fun(performedIn) property; (iii) the name of the new space that should be cre-
ated; and (iv) the name of the AI that should be used for creating the space.
Some other parameters of the create space action are strictly related to the Al
used for creating the space, for example if the auction Al is used, required values
are the date when the auction will start and the reservation price. The generic
create space action performed by agent Robert in the root-space at instant2 by
using the auction Al can be represented in the State Ontology with the following
assertions:

CreateSpace(act01); hasActor(act01,Robert); performedin(act01,root-space);

newSpace(act01,run01); usedAl(act01,auction);
Instant(instant2); atTime(act01,instant2);

The effects of this action are represented by the following assertions:

InstSpace(run01); sub-space(run01, root-space); isRealizationOf(run01, auction);

If the action is successful all those assertions are added to the ABox of the
State Ontology by the synchronization component described in Section 4. An
agent situated in a space can enter in all its sub-spaces and can be contemporarily
in two or more institutional spaces. The rules that regulate the action of entering
in the various sub-spaces are defined in the external space.



3.3 Hierarchy of Artificial Institutions and Spaces

The auction artificial institution defines the concepts and properties that are
common to every type of auction, like for example the ask-price, the reservation
price, the action of bidding, and the roles of auctioneer, participant, and winner.
Specific type of auctions, like the English auction or the Dutch auction defines
further properties, roles, and norms, specific for that type of auction. For example
they have different rules for determining the winner of one run of the auction.
The winner of the English auction is the participant who did the highest bid
once the run of the auction is closed. The winner of the Dutch auction is the
first participant who accepts the current ask price declared by the auctioneer.
In the Auction Ontology those different types of auctions can be modeled with
the following individuals belonging to the Artificiallnst class: Artificiallnst(eng-
auction), Artificiallnst(dutch-auction). Those different types of auctions creates a
hierarchy of Als that is crucial for the re-usability of AT models. Given that these
Als are represented in the ontology as individuals (not as classes) this hierarchy
should be explicitly represented by introducing the following transitive property:
specializes: Artificiallnst — Artificiallnst;  Tra(specializes);
specializes(eng-acution, auction);  specializes(dutch-acution, auction).

This hierarchy of Als influences the mechanisms by which the properties, the
roles and the norms of an Al are inherited by more specific type of Als, as we
will discuss in the following sub-sections. This hierarchy of Als is reflected in an
equivalent hierarchy of the classes created by the spaces that realize a given Al.
This is expressed in the following axioms:

isRealizationOf>eng-auction C isRealizationOf>auction;

isRealizationOf>dutch-auction C isRealizationOf>auction

This is an important aspect, because the properties having as domain the
more generic class of spaces can be used also for the more specific class of spaces.
For example the property that associates to an auction space the price that the
winner has to pay for the auctioned product is a generic property defined for
every type of auction. A consequence of these axioms is that a space that realizes
a given Al realizes also all its more generic Als. For example if the space run01-
dutch-auction realizes the dutch-auction Al it realizes also the auction Al

3.4 Roles

An Al may define different roles, for example in the auction AI we have the
roles of auctioneer and participant, in a company we have the roles of boss and
employee. In our model a role is a label defined in a given AI. We introduce
the class RoleName to represent the set of possible role labels and the following
property that associates a role label to the AI where it is defined:

isRoleOf: RoleName — Artificiallnst.

For example auctioneer is a role defined by the auction Al as stated by the
following assertions: RoleName(auctioneer); isRoleOf(auctioneer, auction);

At runtime agents situated in a given space may play the roles defined in
the Als used to create such a space. For example agent Robert may play the



role auctioneer in the institutional space run01 that realizes the auction AI. This
is a ternary predicates that cannot be expressed in OWL: the fact that Robert
belongs to the institutional space run01 is not enough to know that he is playing
the role of auctioneer in this space. This because Robert can belongs also to
another institutional space, for example run02 that is a realization of the same
AT used to create run01, but where Robert is not playing the role of auctioneer.
This is a very common problem in OWL ontologies, to solve it, similarly to what
is proposed in the W3C Organization Ontology” (where the Membership class
is defined, but where there is not the idea of defining reusable AI models), we
introduce the Role class used to collect the roles defined in a specific institutional
space. These roles are connected with their corresponding role names in the Als
and with the space where are defined by the following properties:

hasRoleName: Role — RoleName;  Fun(hasRoleName);
isDefinedIn: Role — InstSpace;  Fun(isDefinedIn);

When a new space is created it is necessary to add to the Role class the
individuals used for representing its roles. For example when the space run01 is
created using the auction Al, the role auctioneer01 has to be created in the space
and it has to be connected to the role auctioneer defined in the auction Al by
means of the following assertions:

Role(auctioneer01); isDefined(auctioneer01,run01);
hasRoleName(auctioneer01, auctioneer).

The property: hasRole: Agent — Role allows to represent the fact an agent
plays a give role. For example when agent Robert is in the space run01 and starts
to play the role auctioneer01l we have to add to the ontology the assertion has-
Role(Robert,auctioneer01). All those classes, properties, and individuals related
to the notion of role are represented for more clarity in Figure 2.

The institutional actions for assigning a role to an agent are represented with
the class AssignRole T InstAction. These actions have as parameter the actor
(like all type of actions), the agent that will play the new role, and the role.
For this type of actions, the space where the action is performed is univocally
determined by the name of the role. When an action of this type is successfully
performed it is registered in the OWL ontology, and its specific parameters are
represented by means of the following properties: hasAssignedAgent: AssignRole
— Agent and hasAssignedRole: AssignRole — Role. Similarly the DismissRole C
InstAction action is used to dismiss an agent from a given role.

In general the more specific type of Al, for instance the dutch-auction Al,
inherits from the more generic Al, for example the auction AI, the list of its roles.
This is expressed by the following axiom: isRoleOf o specializes™ L isRoleOf.

3.5 Norms

Norms in MAS have the following main characteristics [3]: (i) they are used to
define at design time the obligations, prohibitions, permissions, and institutional

" http://www.w3.org/TR/vocab-org/



isRealizationOf

TBox 7| InstSpace + ------------------------- >{ Artificiallnst

~isin isDefinedin isRoleOf

————————————————— >| Role % ——————————————————————————— >{ RoleName
hasRole hasRoleName

Fig. 2. Classes, properties, and individuals related to the notion of role.

powers, and they are all defined in terms of roles; (ii) they regulate the per-
formance of actions and they are active during a period of time that can be
expressed through activation and deactivation events. When they express obli-
gations a deadline should be specified; (iii) norms specify sanctions for norms
violations, rewards for norm fulfillment, or sanctions for the attempt to perform
an institutional action without having the right institutional power or when
specific preconditions are not satisfied.

A norm is an individual that belongs to the Norm class, which is the domain
of a set of properties. First we define the properties for connecting the norm to
the AI where it is defined, for specifying its type, and for expressing its debtor:

isNormOf: Norm — Atrtificiallnst; hasNormDebtor: Norm — RoleName;

hasNormType: Norm — {obl,perm,prohib,power}

Like for roles, in general the more specific type of Al inherits from the more
generic Al the list of its norms. This is expressed by the following axiom:

isNormOf o specializes™ C isNormOf.

Norms have activation and deactivation events that are represented using
classes of events, and they have a content that is a class of actions whose perfor-
mance is regulated by the norm. The advantage of expressing them using classes
is that the debtor agent at run-time will be able to exploit its autonomy and
the possibility to perform automated reasoning on OWL ontologies for planning
its action. If the norm is an obligation it should have also a duration that will
be used for computing the deadline within which the obliged action has to be
performed. Given that a norm is an individual and its activation, content, and
deactivation components are classes, we need to use OWL 2 punning process®
Class < Individual (which allows to use the same term for both a class and an
individual) for connecting a norm to its components, this by using the following
properties:

hasNormActivation: Norm — Event; hasNormContent: Norm — Action;

hasNormEnd: Norm — Event; hasDuration: Norm — Integer.

8 http://www.w3.org/ TR /owl2-new-features/#F12: Punning



At design time we have less information about the value of certain norm
properties with respect to the information available at run-time. For example,
the actual agents that will take part to the interaction on which the norms
should be applied and the value of some parameters (i.e. the current ask-price of
an auction) will become known only at run-time, when a space for running the
auction is created. Every norm, defined at design time, will generate at run-time
many specific obligations, prohibitions, permissions, and institutional powers,
one for every agent that will start to play the role of debtor of a norm. We
will model this aspect by having norms defined at design time and associated
to specific Als, which generate at run-time different types of objects belonging
to specific institutional spaces. For modeling those concepts in the Artificial
Institution/Space Ontology we create the Object class, which contains the classes
Obligation, Prohibition, Permission, and InstPower. An object is connected to its
space by means of the property belongsTo: Object — Space; Fun(belongsTo). In
the definition of some components of norms we will use the special individual
InstSpace(new-space) for being able to refer at design time to the specific space
that will be generated by the Al where the norm belongs. When a norm generates
a specific object in a specific space such a special individual has to be substituted
with the individual used for representing the specific space.

In case the norm represents an obligation, following the approach presented
in [6], we will represent the specific obligations generated by the norm as individ-
uals belonging to the class Obligation C Event. A specific obligation is treated as
an event because it has associated the instant of time when it is created. This is
fundamental for writing the axioms for deducing the state of obligations where
we need to check that the event that activates it and the action that fulfills it
are subsequent to its creation. In a similar way we model prohibitions that are
used to express that an action belonging to its content should not be performed,
obviously the axioms for deducing their fulfillment or violation are different with
respect to the axioms of obligations. Specific institutional power objects can be
created when an agent start to play a given role and they may become active
when some conditions are satisfied. Differently from obligations and prohibi-
tions institutional powers are never fulfilled or violated but they are used by
the environment component for mediating the attempts to perform institutional
actions.

Example: the winner norm. In the specification of various types of auc-
tions there is a norm that obliges the agent playing the role of auctioneer to
assign the role of winner to a participant with certain characteristics. In the
dutch-auction Al the winner is the agent that accepts the current auctioneer’s
ask-price. In the English auction the winner is the agent that did the highest bid
during the run of the auction. This norm for the dutch-auction Al is formalized
with the following assertions:

Norm(norm-winner-du);  isNormOf(norm-winner-du,dutch-auction);
hasNormType(norm-winner-du, obl); hasNormDebtor(norm-winner-du,auctioneer);

The event that activates the obligation represented by this norm is the action
of accepting the current ask-price performed by one of the participants. This is



an application dependent institutional action that only an agent playing the role
participant in one specific run generated by the dutch-auction Al has the institu-
tional power to perform. The effects of this action are to create an obligation,
for the accepting agent, to pay to the auction house the value of the ask-price.
The class of institutional actions used for accepting the ask-price of a run of this
type of auction is represented with the class AcceptAskPrice C InstAction. The
activation event of the norm-winner-du is a class defined as follows:
StartEvent-winner-du = AcceptAskPrice M performedInSnew-space M
JhasActor.(3hasRole.(hasRoleName>participant MM isDefinedInsnew-space));

hasNormActivation(norm—win ner-du, StartEvent-winner-d u);

The content class of norm-winner is defined as:
Content-winner-du = AssignRole M hasAssignedRole.(hasRoleName>winner)M
JhasAssignedAgent.(JhasActor~.(AcceptAskPrice M performedin.Snew-space));

hasNormContent(norm-winner-du, Content-winner-du);

At run-time the debtor of this norm becomes known as soon as an agent
starts to play in a specific space a role having as role name auctioneer. When
this happens a specific obligation, used to model a specific realization of the
norm norm-winner-du in the specific space, has to be created. The start event
class and the content class of the new obligation are obtained substituting the
individual new-space with the real name of the space. In order to express the
fact that the auctioneer has n instant of time for declaring the winner, we assert
hasNormDuration(norm-winner-du,n). At run-time this value will be used to set
the interval of the generated obligations (see [6] for more details on the Obligation
Ontology).

4 Architecture of the prototype

We plan to use the presented OWL model of artificial institutions and spaces
for realizing a first prototype of a market-place. The architecture of this proto-
type consists of three main building blocks (depicted in Figure 3): (i) the OWL
2 DL ontologies used to represent Als and spaces; (ii) the agent environment
whose core is based on GOLEM platform [1]; (iii) the synchronization compo-
nent among them.

GOLEM is an agent environment that can be used to create multi-agent
applications where cognitive agents may interact. We have extended GOLEM
in order to specify declaratively the agent environment as a logic-based theory
(First-Order Logic based on Prolog) [18]. GOLEM is used in our prototype for
realizing inside the agent environment the spaces of interaction for the partici-
pating agents. Given that, for the advantages previously explained, we decided
to formalize Als and spaces using OWL ontologies, in the architecture of our
prototype we need to introduce a synchronization component (implemented in
Java using OWL-API?) in charge of: (i) updating the OWL 2 DL ontologies with

9 http://owlapi.sourceforge.net/
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Fig. 3. Architecture of the prototype.

actions and events that happen in the environment and with the effects of agents’
interactions; (ii) querying the OWL 2 DL ontologies on behalf of the agent envi-
ronment for getting information contained in the ontologies. When information
from OWL ontologies is retrieved into the agent environment, its are represented
as first-class objects and spaces that can be perceived and manipulated by the
software agents situated in a specific space. To the best of our knowledge there
are not other works where Semantic Web Technologies are used for modeling Al
specifications and where Als specifications are used at run-time for dynamically
creating spaces of interactions situated in agent environments. An interesting
proposal that is correlated to this work is the OWL-POLAR framework [17]
whose focus is more on OWL policy representation and reasoning than on com-
plete artificial institutions specification and use at run-time.
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