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Abstract. Fundamental changes in the electrical energy sector are draw-
ing on serious implications. One key arising challenge regards current
energy markets, which are undergoing a transformation towards accom-
modating a more decentralized and sustainable provision of energy. As
the number of traders in the market is increasing steadily and the trading
activities are becoming more complex, the energy markets are becoming
more exposed to potential fraud. In this paper we address the problem
of detecting collusive behavior, where a group of individual traders act
together, inconsistently with the competitive model, to artificially ma-
nipulate the market and elicit illegal profits. We investigate collusion
attacks in the energy market and propose a novel mechanism, showing
the effectiveness and practical applicability of our method to real scenar-
ios.

1 Introduction

Market surveillance represents a serious challenge and it refers broadly to the
detection of abnormal market behaviors, which are known to be predominant
especially in the emerging markets. In practice, an efficient way for influencing
the market and gaining illegal profits is represented by the class of collusion-
based malpractices. Conceptually, collusive behavior represents an attempt of
a group of individual traders, that act together, to artificially manipulate the
market (e.g. through price or market share) for maximizing their gains, in a
manner inconsistent with a competitive model and in detriment to the other
participants in the market.

While collusion has been reported in various market domains, the damages
discovered were averaged at about a 25% increase in costs incurred by costumers
[6]. Unfortunately, most of the collusion cases that have been discovered thus far
came as a result of investigations triggered not through economic analysis, but
rather due to customers’ complaints or suspicious competition complaints (e.g.
stainless steel industry, graphite electrodes, facsimile paper).

Though there are many ways in which collusion could be discovered, we ad-
dress in this work collusion detection via the analysis of economic data, freely
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available in the market. The set of laws that regulate the market require con-
tinuous surveillance of trading activities. This can essentially be achieved either
through online or offline surveillance. The former is constrained to analysing
short-term data as well as being restricted to a limited time-window, thus being
prone to overlooking occurrences of more complex types of fraud. Alternatively,
offline techniques can encompass a wider spectrum of illegal trading strategies,
while having an anticipatory or retroactive character. Obviously though, both
approaches remain dependent on the amount of input data available.

In this paper, we propose an effective offline method to identify collusive
groups with respect to the domain of energy markets, which are being reoriented
towards replacing the traditional top-down energy supply with a decentralized,
market-oriented provision [10, 7, 8].

This paper is organized as follows: in Section 2 we provide a survey of some
related work. Section 3 introduces our novel mechanism and discusses how to
apply it to detect collusive behavior in the energy market. In Section 4 we
show the experimental results. Finally, Section 5 concludes the paper and points
directions for future work.

2 Related Work and Energy Markets

Emerging financial markets are inherently exposed to malpractices, whereas a
subset of traders collaborate tacitly to manipulate the market for maximizing
their individual gains. In the course of the last years, new challenges in the Elec-
tricity Market have come to the forefront, due to the transformations occurring
in the power supply infrastructure. As new distributed energy resources (DERs:
e.g. wind plants, photovoltaics, combined heat and power units) are pervading
the electricity grid, they provide for an increasing number of participants in the
market. This trend has driven the liberalization of electricity markets and the
creation of power exchanges with the emphasis on decentralized power provision.

More formally, the participants in the market, consumers and suppliers of
power, can be denoted by the market agent set A = {a1, . . . , an}, which exists
in a bijective relationship with the set of devices D = {d1, . . . , dn} connected to
the grid. The day-ahead market is discretized over a nonempty and finite set of
distinct and successive time periods T = {t1, . . . , tm}. Under this setting, a bid
of agent ai timestamped at tmpji is represented by the function bji : T → R×R,
specifying respectively, for time slot ti, the amount of electricity requested or
offered and the intended price per unit, as bji (ti) = (vj , pj). To summarize the

trading activity for agent ai at trading day tmpji we associate the time-series

Xj
i = {bji (t1), . . . , bji (tm)}, which captures the existing bids for each time-slot in
T , else being considered a null bid.

Several approaches have attempted to automate the process of collusion de-
tection based on economic data. A common method would be to apply supervised
learning techniques, given that proven fraudulent activities, previously detected,
could be obtained. Of course such datasets for training are not usually available
in significant amount. Thus, some work has looked into unsupervised learning,



namely using graph clustering algorithms. In [4], the collusive marker that the
authors base their detection mechanism on, addresses circular trading, where a
group of market agents are trading heavily among themselves aiming to raise the
price of their shares. A Markov clustering algorithm is introduced and applied to
the stock flow graph, which summarizes a trading database. In [9], the authors
have adopted cross trading as a collusive marker and compared the performance
of different off-the-shelf clustering algorithms. A similar approach is introduced
in [2], by means of employing a spectral clustering method.

In this paper we address the phenomenon of collusion in the emerging en-
ergy markets where the collusive markers identified above do not hold, as novel
domain driven markers need to be derived.

3 Collusion Detection Methodology

Fig. 1. Mechanism flow-chart

To start with, for discovering collusion in a market we need to be specific
as to what behavioral patterns, that might be indicative of collusion, we will be
looking for.

Our goal is to detect the presence of colluders that are coordinating their
behavior at the expense of the rest of the market participants, by adopting a
behavior inconsistent with what a competitive environment might entail. In this
work, the collusive marker that we investigate in order to provide evidence of



economic collusion consists of detecting colluders in the energy market based on
the similar trading behaviors of agents. Colluders can generally be differentiated
by similar trading patterns (which also depart from competition), as opposed to
those outside their coalition. Thus, within a coalition of colluders their trading
behavior should exhibit correlations when they should normally be independent.

Consequently, we design our collusion detection method as a two-stage pro-
cess: a screening phase and a verification phase, as depicted in the diagram of
Fig 1. The screening phase has the role of performing a triage through the order
record of the market and identifying a set of market agents that are worthy of
closer scrutiny. Due to the combinatorial explosion of possible colluder subsets
and the data-intensive analysis, this phase is ought to output a set of candidates
that will be further addressed during the verification phase.

Specifically, the screening phase is testing each market agent, looking for
structural breaks in its behavior. Such behavioral breakpoint could be associ-
ated with the formation of a coalition of colluders (or with its dissolution). We
approach this by running a change-point analysis (CPA) over the discretized
order record of each market agent. If any behavioral breakpoints, which may be
conductive to colluding coalitions, have been identified, they will represent the
input for the second phase. Obviously such behavioral changes could be expected
even when no collusion takes place. During verification we are essentially looking
at two aspects: i) whether there is a price or volume correlation between the can-
didates’ breakpoint and ii) if there appears inconsistencies with the competitive
model.

While this methodology preserves a broad outlook into the realm of collusion
detection in financial markets in general, further approaches can be directly de-
rived for different contexts based upon the available data of the specific markets
and agents. Additional domain-specific insights (see case study in Section 4.2),
such as inferring estimates of costs, may ease the distinction between collusion
and competition.

3.1 CPA based Behavioral Screening Phase

This section demonstrates the potential usefulness of change-point analysis tech-
niques for detection of colluding behavior in Energy markets. The approach
undertaken in this paper falls under the class of nonparametric change point
detection methods [1], that do not rely on pre-specified parametric models and
thus avoid strong model assumptions.

Change-point detection is the problem of discovering time points at which
properties of time-series data change. Suppose that X = {x1, . . . , xn} is a
sequence of independent random variables, such that the first r observations
XA = {xA1 , . . . , xAr } are distributed as FA and the remaining observations XB =
{xB1 , . . . , xBn−r} come from another unknown distribution FB , where FA 6= FB .
Hence, integer r is called change point. Representing the trading activity of each
market agent ai ∈ A in terms of time-series enables us to perform a change-point
analysis (Algorithm 1).



So, when a behavioral breakpoint occurs this corresponds to a step change
of the mean value of X at r from α to α + δ, where δ represents the minimum
increase of the mean value of X. Then, the deviation from the average may
indicate that a collusion attack is being launched, if the cumulative deviation is
noticeably higher than the random fluctuations, lower-bounded by δ.

A popular method based on a recursive nonparametric change point detection
scheme uses a combination of cumulative sum charts (CUSUM) and bootstrap-
ping to detect the changes [5]. The analysis begins with the construction of
the CUSUM chart by calculating and plotting a cumulative sum, based on the
timeseries data X.

The cumulative sums can be recursively defined using a new sequence {Sn}:{
Sn = Sn−1 + (xj − X̄)
S0 = 0

(1)

where by X̄ we denote the mean of the sample:

X̄ =

∑n
i=1 xi
n

(2)

Thus, the cumulative sum series can be obtained iteratively by adding to the
previous sum the difference between a current value and the sample mean. This
means that the sequence {Sn} always ends at zero ( Sn = 0), as the differences
computed at each iteration sum to zero. Based on these remarks a CUSUM chart
can be interpreted as follows. An upward slope of the chart indicates that the
corresponding values tend to be above the overall mean of the sample, while a
downward slope indicates a period of time where the values tend to be below.
When a sudden turn occurs this indicates that around this time, the mean has
shifted, which represents a potential changepoint. Likewise, a relatively straight
CUSUM represents a period where the average did not change.

In order to associate a confidence level with a changepoint occurrence, a boot-
strap analysis can be performed. To start with, a number of bootstrap samples
are generated by sampling without replacement, which essentially is a random
reordering of the original sample values. Thus, considering the initial sample
X of size n, a bootstrapping sample at iteration i will be obtained by permut-
ing without replacing k elements, generating Xi

k = {xi1, xi2, . . . , xin}. For each
of these samples, the bootstrap CUSUM is computed similarly. Moreover, for
each sample we need to determine the maximum, minimum and difference of the
bootstrap CUSUM denoted respectively as Si

max = max
j=0,1,...,n

Sj , S
i
min min

j=0,1,...,n
Sj

and Si
diff = Si

max − Si
min. A bootstrap analysis consists of performing a large

number of bootstraps and counting the number of bootstraps for which Si
diff is

less than Sdiff of the initial sample. Let N be the number of bootstrap samples
performed. Then, the probability of a changepoint occurrence for a fixed point
r is given by:

Pr =
#{j : Si

diff ≤ Sdiff}
N

100[%] (3)



The bootstrapping technique basically compares the Sdiff value of the orig-
inal data with the Si

diff values from a number of bootstrap samples, which es-
timate how much Sdiff would vary if no change took place and checks whether
these results are consistent. It is clear that a better estimate can be obtained
by increasing the number of bootstrap samples, however statistically significant
result can typically be obtained for a reasonable number of generations.

Now, if a changepoint has been detected, in order to determine when the
change has occurred, different estimators can be employed. A straightforward
approach would be to determine the changepoint r as the point furthest from
zero in the CUSUM chart:

| Sr |= argmax
i=0,1,...,n

| Si | (4)

The point r estimates last point before the change occurred, while the point
r + 1 estimates the first point after the change.

Alternatively, the changepoint occurrence can be estimated by applying the
mean square error estimator (MSE). The idea behind this estimator is that of
partitioning the data in two sequencesX1 = {x1, . . . , xr} andX2 = {xr+1, . . . , xn}
and estimating the mean of each sequence and compare this against the initial
data:

MSE(r) =

r∑
i=1

(xi − X̄1)2 +

n∑
i=r+1

(xi − X̄2)2 (5)

where X̄1 =
∑r

i=1 xi

r and X̄2 =
∑n

i=r+1 xi

n−r .



Algorithm 1: Change point analysis

Data: Xn, N , k, δ
Result: changepoint r (if any)
S0 ← 0;

for i← 1 to n do
Si ← Si−1 + (xi − X̄) ;

end
for j ← 1 to N do

generate bootstrap sample Xj
k, Sj

0 ← 0;
for i← 1 to n do

Sj
i ← Sj

i−1 + (xji − X̄j);

end

end
for j ← 1 to N do

Sj
diff = Sj

max − S
j
min, cnt← 0;

if Sj
diff ≤ Sdiff then

cnt← cnt+ 1;
else

end

end
P = cnt

N
if P ≥ 1− δ then

apply estimator to determine changepoint r
else

end

3.2 Verification Phase for Collusive Coalitions

Now, having identified a candidate set of potential colluders, which allows to
narrow our search space, we proceed to the second phase. Here, the focus is on
detecting correlations between any members of the candidate set, resulting in a
coalition structure1. Considering two timeseries X = {x1, x2, . . . xn} and Y =
{y1, y2, . . . yn} representing the trading activities of agents ax and ay respectively,
we are interested to capture linear dependencies between the two variables: X
and Y . As a measure of similarity, we evaluate the covariance, which determines
how X and Y vary together:

Cov(X,Y ) =
1

n

n∑
i=1

(x(i)− x̄)(y(i)− ȳ) (6)

where x̄ is the sample mean of the X values and ȳ is the sample mean of the
Y values. The covariance measure ranges from 1 for perfectly correlated results,

1 If all members of the candidate set show correlations we refer to this as the grand
colluding coalition, while no correlations corresponds to the empty set.



through 0 when there is no relation between X and Y , to -1 when the results
are perfectly correlated negatively.

More generally, if we consider k variables we can construct the covariance
matrix (k×k), where an element (i, j) represents the covariance between the ith
and jth variables. Removing the dependence of the covariance on the ranges of
the variables can be done by standardization, dividing the result by the standard
deviations of X and Y . The result is the correlation coefficient between X and
Y :

ρ(X,Y ) =

∑n
i=1(x(i)− x̄)(y(i)− ȳ)(∑n

i=1(x(i)− x̄)2
∑n

i=1(x(i)− x̄)2
)1/2 (7)

Algorithm 2 summarizes the verification phase according to the computations
previously detailed.

Algorithm 2: Collusion detection

Data: order record set O from one trading day discretize over a fixed
time slot sequence τ = {t1, . . . , tk}; set of market agents
A = {a1, . . . , an}

Result: collusion candidate set C = {S1, . . . , Sl}
C ←− ∅;
for each market agent ai do

extract order record Xi associated to agents ai from O
run change point analysis for given Xi

if probability of change point occurrence ≥ 95% then
C ← C ∪ ai;
determine change point r with estimator ;

else

end
generating covariance matrix for elements ai ∈ C , l = 1;
for i← 1 to sizeof(C) do

for j ← i to sizeof(C) do
M(i, j)← Cov(Xi, Yi);
if M(i, j) ≥ 1− δ then

Sl ← {ai, aj};
if ai ⊂ Sk or aj ⊂ Sk then

append Sl to Sk;
else

l← l + 1;
append Sl to C;

end

else

end

end

end



4 Experimental results

4.1 Data preparation

Prior to running our collusion detection mechanism, the dataset needs to undergo
a pre-processing phase. As discussed in Section 2, we retain from the order record
of the Energy Market, for every agent, a time-series for each day consisting of
their bids, with respect to the predefined time-slots T of the day-ahead market.
Therefore, agent ai is characterized at day j by Xj

i = {bji (t1), . . . , bji (tm)}.
Now, in order to run a meaningful change-point analysis over this data, de-

tecting relevant behavioral breakpoints, we need to span the investigation over
a time-window of several days. Moreover, we need to relate the agents’ trading
patterns to the temporal organization of the day-ahead market, T . Specifically,
let’s assume a time-window of length l days and a fixed discretization of the
day-ahead market T = {t1, . . . , tm}. This requires constructing for each agent ai
the set of time-series Xi

k = {b1(tk), . . . , bl(tk)}, k = 1,m. Next, recall that a bid,

bji (ti) = (vj , pj), from an energy supplier consists of the amount of electricity of-
fered and the intended price per unit. This further implies that for each Xi

k there
corresponds a time-series denoting price P i

k = {p1(tk), . . . , pl(tk)} and another
for the intended trading volume V i

k = {v1(tk), . . . , vl(tk)}. This representation
of the data is used during the screening phase for generating the collusion can-
didate set, as well as during the verification phase for detecting price or volume
correlations.

4.2 Case study

In this section we report on results2 obtained from applying our model to
real datasets, collected from the Philippine Wholesale Electricity Spot Market
(WESM) [3]. We ran the analysis on the Market Bids submitted by the trading
participants over a one month time-window (January 2012), for the Luzon re-
gion. The list of registered WESM market participants consists of 60 members;
prices are listed in Pesos per MWh; the nominated energy quantity is given in
MW.

We proceed with the screening phase by conducting an exhaustive change-
point analysis over the bid records of each market participant. Table 1 summa-
rizes the results obtained at this stage, outlining the colluding candidate set as
input for the following phase. For the given scenario we have generated 1000
bootstrap samples for each run of the algorithm. The results indicate that out of
the total number of market agents, behavioral breakpoints have been detected
for 10 agents, some of which exhibiting multiple ones. An illustration of this
process is given in Figure 2 for market agent a6. Figure 2a is a representation

2 We remind the reader that the analysis of economic data only, has the role of dis-
covering suspicious behavior and is not meant to provide conclusive evidence of
collusion, nor substitute antitrust authorities, but rather to provide supporting evi-
dence and triggers for deciding whether antitrust authorities should actively engage
and further pursue such an investigation.



Fig. 2. a) Plot of the trading activity P 6
1 corresponding to market agent a6 for January

2012. b) The associated CUSUM chart for the time-series of market agent a6.

of a6’s trading activity during the specified time-window. The result of perform-
ing the screening analysis over this data, using the MSE estimator, detects the
occurrence of one change-point timestamped at day 24. The confidence level
associated, indicates a 100% accuracy. In Figure 2b we plot the corresponding
CUSUM chart, highlighting a sudden shift in the average, associated with the
change-point detection. Generally, it is not the case that change-points can be
readily detected visually from the time series plot. A CUSUM chart however,
can facilitate pinpointing shifts in the mean of the data, by identifying slope
changes at the points where a change has occurred.

Next, the mechanism proceeds with the verification phase. As previously
detailed, for the designated candidate set, generated during screening, we in-
vestigate further correlations between the market agents’ trading patterns. This
phase yields the covariance matrix, a representation of which is given in Figure 3.
Here, we perform an exhaustive pairwise comparison of the candidate set. White
squares denote a perfect correlation between the respective market agents, while
black stands for no similarities. The color shading inbetween is indicative of the



Table 1. Results of the Change-Point Analysis with MSE Estimates for market agents
with confidence level above or equal to 95%, representing the collusion candidate set.

Market Agent Change-Point Confidence Level

a1 3 95%
a2 7 97%
a3 6 98%
a3 20 100%
a4 9 96%
a4 12 99%
a5 2 99%
a5 22 100%
a6 24 100%
a7 17 100%
a7 26 95%
a8 12 100%
a9 10 100%
a9 15 100%
a9 28 98%
a10 24 100%

Fig. 3. Plot of the covariance matrix for the collusion candidate set of market agents
using a grayscale range of colors. Correlations of 1.0 are plotted in white, while no
correlation are plotted in black. The diagonal elements of the matrix represent self-
correlations and are thus all 1.



correlation strength. Finally, according to Algorithm 2 the coalition structure of
colluders is determined. For the considered scenario, the coalition structure of
potential colluders consists of solely one group: CS = {{a1, a5, a6, a7, a10}}. For
privacy concerns, we omit other direct reference to the suspected colluders. Note
that the particular choice of the value of the correlation coefficient threshold
δ is ought to impact the number of resulting colluders. One one hand, higher
thresholds imply a higher level of confidence for the collusion detection process,
but on the other hand it may as well reduce the number of possible suspects,
disregarding certain abnormal trading behaviors. Alternatively, lower thresholds
may result in including false colluders to the coalition structure and therefore
reducing the accuracy of the mechanism. In this context, selecting a reliable cor-
relation coefficient threshold is an important issue for the overall performance
of the mechanism, which we plan to address in future work. Specifically, we
intend to calibrate the system based on already proven cases of collusion and
use such scenarios as training data. In addition to this, we plan to extend the
model to integrate details regarding the devices D, which are controlled by the
market agents A, such as DER type and geographical location. Adding this
domain-dependent dimension is ought to provide further insight into differenti-
ating between correlations that may come as a result of external conditions (e.g.
weather conditions) and those that are irrespective to this regard.

5 Conclusions

In this paper we have addressed the challenge of detecting collusive traders
that collaborate illegally to increase their benefits at the expense of the other
market participants. We have pose this question in the domain of the emerging
energy markets, that are adapting to the integration of a diversity of distributed
energy generators. Such contexts are especially susceptible to various trading
malpractices.

The proposed method for discovering colluders consists of two phases. Firstly
we apply a screening phase that performs a change-point analysis in order to
detect behavioral breakpoint in the traders’ activities, proposing a reduced can-
didate set of possible colluders. Secondly, for the denominated group we run
a verification phase aimed at revealing behavioral correlations. The procedure
determines a potential coalition structure of colluders. We evaluate our mecha-
nism on real datasets and show the effectiveness and practical applicability of our
method, even for scenarios that are exploiting a minimal amount of data, that
is freely available on the market. Continuing along these lines, future work will
further investigate and exploit other collusive markers that may expose potential
vulnerabilities in the energy market.
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