
The Role of Argumentation on the Future
Internet: Reaching agreements on Clouds?

Stella Heras1, Fernando de la Prieta2, Sara Rodŕıguez2, Javier Bajo2, Vicente
Botti1, and Vicente Julián1

1 Departamento de Sistemas Informáticos y Computación
Universitat Politècnica de València

Camino de Vera s/n, 46022 Valencia (Spain)
{sheras,vbotti,vinglada}@dsic.upv.es

2 Department of Computer Science, University of Salamanca
Plaza de la Merced s/n, 37008, Salamanca (Spain)

{fer,srg,jbajope}@usal.es

Abstract. Recent research foresees the advent of a new discipline of
agent-based cloud computing systems on the Future Internet, which
would provide processing and memory resources for agents and intel-
ligent cloud services at unprecedented scale. In this paper we discuss the
role of argumentation on the next generation of agreement technologies
in cloud computing environments and provide an example application.

Keywords: Cloud Computing, Argumentation, Multi-Agent Systems

1 Introduction

Recent developments on argumentation-based agreement models have provided
the necessary technology to allow agents to engage in argumentation dialogues
and harmonize beliefs, negotiate, collaboratively solve problems, etc [1]. How-
ever, these models follow a client-server approach, where computing and storage
capacities depend on the static set of (possibly distributed) machines where
the system is deployed. Therefore, this approach raises critical shortcomings in
terms of performance, reliability, scalability or security. Fortunately, concurrent
research on the new area of cloud computing is putting an end on the ever-
lasting problem of limited availability of computing resources. Now, the cloud
computing paradigm has emerged as a key component of the Future Internet.

Once we have client-server systems where agents are able to argue and reach
agreements, now is time to put the new developments of the Future Internet into
the picture. Recent research foresees the advent of a new discipline of agent-based
cloud computing systems on the Future Internet, which would provide processing
and memory resources for agents and intelligent cloud services at unprecedented
scale [2]. In this context, the infrastructure resources will be managed following

? AT2012, 15-16 October 2012, Dubrovnik, Croatia. Copyright held by the author(s).

an elastic and intelligent way. In addition, conventional diagrams of the Inter-
net (and many computational models for reaching agreements) leave out the
most numerous and important routers of all - people [3]. Considering systems
of people and agents operating at a large scale offers an enormous potential for
tackling complex applications and new business models. Therefore, on the next
generation of agreement technologies humans and agents should have the ability
of establishing a series of relationships, forming what might be called human-
agent societies, and reach agreements by using the unlimited computational re-
sources provided by cloud computing systems. As part of these technologies,
argumentation-based agreement models would enable agents to argue and meet
their individual or collective goals within a social structure.

On the other side, an environment based on cloud computing must readjust
its resources taking into account the demand of its services. At the technological
level, the difficulties have been overcome thanks to the use of virtualization of
hardware resources [4]. However, how to assign the physical infrastructure among
the virtual machines is a current topic in some research fields [5]. In this sense,
there is a need for knowing what physical server hosts each virtual machine and
its level of resources (processor and memory). In order to make these decisions,
the hardware management components have a limited information based on the
observation of the environment and its own experience. Moreover, sometimes it
is necessary to readjust the hardware resources of several servers at the same
time. This raises the need for designing protocols that provide the individual
components of the cloud architecture with the ability of adapting itself and of
reaching agreements in order to deal with the changes in the service demand.

Mutual contributions in agreement technologies and cloud computing can
advance research in both areas to the final establishment of the Future Inter-
net. In this paper we introduce the potential role of argumentation on the next
generation of agreement technologies in cloud computing environments. Among
the potential applications of argumentation in this area, we focus here on the
concrete domain of resources re-distribution in cloud computing systems. Sec-
tion 2 develops our proposal. Then, Section 3 introduces related work and future
challenges and summarises the results of this work.

2 Argumentation-based Approach for Resource
re-Distribution in a Cloud System

A current open issue in a cloud computing system is how to efficiently re-
distribute resources among a variable set of virtual machines, considering the
demand for the services offered by the system. In this section we propose an
argumentation-based approach to deal with the problem of resource re-distribution
during a peak service demand in a cloud computing platform. To illustrate our
proposal, we provide an example where a set of agents in charge of managing
virtual machines and physical resources in the platform engage in an argumen-
tation dialogue to reach an agreement about the best solution to make when a
service is failing due to an overload in the virtual machines that provide this ser-

vice. First, the platform and the argumentation framework used are presented.
Then, an example argumentation dialogue in this domain is provided.

2.1 bCloud Architecture

bCloud is a platform based on the cloud computing paradigm. This platform
allows to offer services at the PaaS (Platform as a Service) and SaaS (Software
as a Service) levels. On the one hand, the SaaS services are offered to the final
users in terms of web applications. On the other hand, PaaS services are offered
as web services. The IaaS (Infrastructure as a Service) layer is composed by
an physical environment which allows the abstraction of resources shaped as
virtual machines. The virtual and physical resources are managed dynamically.
To this end, a virtual organization of intelligent agents that monitor and manage
the platform resources is used. This organization implements an argumentation-
based agreement technology in order to achieve the distribution of resources
depending on the needs of the whole system.

The system has a layered structure that covers the main parts of cloud com-
puting. Both PaaS and SaaS layers are deployed using an IaaS layer, which
provides a virtual hosting service with automatic scaling and functions for bal-
ancing workload. The SaaS layer is composed of the management applications for
the environment (control of users, installed applications, etc.), and other more
general third party applications that use the services from the PaaS layer. At
this level, each user has a personalized virtual desktop from which he has access
to his applications in the cloud environment, and to a personally configurable
area as well. The PaaS layer provides services through REST web services in an
API format. One of the more notable services among the APIs is the identifi-
cation of users and applications, a simple non-relational database service and a
file storage area that controls versions and simulates a directory structure.

SaaS Layer. This layer hosts a wide set of cloud applications. All of them
make use of the services provides by the PaaS lower layer. bCloud as environment
offers a set of native applications to manage the complete cloud environment:
virtual desktop, user control panel, and administration panel.

PaaS Layer. The PaaS layer is oriented to offer services to the upper layer,
and it is supported by the lower IaaS layer. The components of this layer are: the
IdentityManager, which is the module of bCloud in charge of offering authenti-
cation services to clients and applications; the File Storage Service (FSS), which
provides an interface for a container of files, emulating a directory structure
in which the files are stored with a set of metadata, thus facilitating retrieval,
indexing, search, etc; and the Object Storage Service (OSS), which provides a
simple and flexible schemaless data base service oriented towards documents.

IaaS Layer. The objective of this layer is not to offer infrastructure service
as usual cloud platforms do. However, it has to offer this infrastructure service
to upper layers of bCloud (SaaS and PaaS). The key characteristic on a cloud
environment is that the hardware layer includes the physical infrastructure layer
and the virtual one (in terms of virtual machines). The virtual resources (num-
ber and performance of the processors, memory, disk space, etc.) are shown as

. . .Physical Resource 1 Physical Resource NLocal
Manager

Local
Manager

Migration
Manager

Migration
Manager

Resource
Monitor

Resource
Monitor

Demand
Monitor

VM
VM

VM

VM
VM

Demand
Monitor

VM VM

VMDemand
Monitor

Fig. 1. Virtual Organizations for Elastic Management of Resources

unlimited, but they are supported by a limited number of physical resources,
although the final user has the view of unlimited resources.

bCloud MAS. In bCloud, the elastic management of the available resources
has been done by a MAS based on Virtual Organizations (VO). In the bCloud
VO there is a set of agents that are especially involved in the adaptation of the
system resources in view of the changing demand of the offered services. Figure 1
presents the different roles that bCloud agents can play. These are the following:

– Demand Monitor: in charge of monitoring each demand service which is
offered by bCloud (FSS, OSS, Applications of the SaaS layer, etc.). There is
one agent of this type per each kind of service. This agents will be able to
offer information about not only the instant demand, but also the historical
of the demand.

– Resource Monitor: in charge of knowing the usage level of the virtual re-
sources of each virtual machine. There is one in each physical server.

– Local Manager: in charge of allocating the resources of a single physical
machine among its virtual machines. There is one in each physical server.

– Migration Manager: in charge of negotiating with their peers the sharing of
global resources in terms of 1) Migration of virtual machines between phys-
ical servers; and 2) Creation/Destruction of physical resources (switch on
and off physical servers), as well as virtual resources (instantiating/stopping
virtual machines). There is one in each physical server.

In this system, a peak in the demand of a specific service can give rise to an
overload of one or more of the virtual machines that provide this service. There-
fore, the system has to re-distribute its virtual and physical resources to cope
with this problem. In this situation, several potential agreement processes can be
identified, let us call them intra-machine or inter-machine. On the one hand, at
the intra-machine level, the local manager could start an agreement process with
the migration manager to decide the best option among re-distributing physical
resources between existing virtual machines, instantiating new virtual machines

or switching on new physical resources (extra physical machines). On the other
hand, at the inter-machine level, if the outcome of the former process entails
the migration of a virtual machine or the switching on of a new physical server,
several migration managers could start an agreement process to decide which
machine(s) (already running or not) should host the migrated virtual machine
and with which distribution of resources. Summarizing, we can identify several
types of solutions as potential outcomes of the agreement processes established:

– Basic Solution: consists of redistributing the physical resources of the ma-
chine among its virtual machines

– Halfway Solution: consist of instantiating a new virtual machine in the same
physical machine.

– Complex Solution: consist of migrating a virtual machine to a new physical
machine that can host it (already running or not).

Any of these solutions entails an underlaying negotiation process to allocate
virtual and physical resources among services to solve the overload problem.
However, it is not our aim in this work to discuss the best negotiation mecha-
nism to implement the solution itself, but to provide the agents of the system
with the ability of engaging in an argumentation dialogue to collaboratively de-
cide which would be the best solution to make before starting the negotiation.
Our hypothesis is that agents may make the most of their experience and help
each other to avoid complex negotiation processes that have a lower probabil-
ity of ending in a successful allocation of resources in view of similar previous
experiences. In this sense, our approach can be viewed as a model to guide the
negotiation process and maximise its success.

2.2 Argumentation Framework

In [1, Chapter 3] we presented a computational case-based argumentation frame-
work that agents can use to manage argumentation processes. In this work, we
apply this framework to model the argumentation dialogue among agents in the
bCloud platform. Concretely, let us propose a running example where several
migration managers try to reach an agreement about the best solution to apply
for the resource re-distribution problem during a service peak of demand. The
solution that an agent proposes defines its position. We assume that a problem
can be characterised by a set of features that describe it. Also, in our example
domain, we assume that all agents are collaborative and all follow the common
objective of providing the best solution by making the most of their individual
experiences. An agent that proposes a position, let us say a proponent agent,
tries to persuade any potential opponent that has proposed a different position
to change its mind. Thus, the proponent engages in a two-party argumentation
process with the opponent, trying to justify its reasons to believe that its so-
lution is most suitable. This section summarises the main components of the
framework and illustrates them in this example. The full explanation about the
reasoning process that agents use to manage their positions and arguments is

out of the scope of this paper and can be found at [6]. Our case-based argumen-
tation framework defines two types of knowledge resources that the agents can
use to generate, select and evaluate arguments:

A case-base with domain-cases: that represent previous problems and their
solutions. Agents can use this knowledge resource to generate their positions
in a dialogue and arguments to support them as reusing the solutions applied
to previous similar problems. Therefore, the position of an agent represents
the solution that this agent proposes. Also, the acquisition of new domain-
cases increases the knowledge of agents about the domain under discussion.
In our example, each migration manager has an individual domain-cases
case-base that can query to generate its positions.

A case-base with argument-cases: that store previous argumentation expe-
riences and their final outcome. Argument-cases have three main objectives:
they can be used by agents 1) to generate new arguments; 2) to select the best
position to put forward in view of past argumentation experiences; and 3) to
store the new argumentation knowledge gained in each agreement process,
improving the agents’ argumentation skills. In our example, each migration
manager has an individual argument-cases case-base that can query to select
the most suitable argument in each step of the process.

Arguments. In our proposal, arguments that agents interchange are tuples
of the form Arg = {φ, v,< S >}, where φ is the conclusion of the argument,
v is the value that the agent wants to promote and < S > is a set of elements
that justify the argument (the support set). Therefore, we follow the approach
of value-based argumentation frameworks [7], which assume that arguments pro-
mote values and those values are the reason that an agent may have to prefer
one type of argument to another. For instance, values in our example could
be considered as types of solutions. Then, an agent could prefer to promote
”ComplexSolutions” over ”BasicSolutions”, since it knows by experience that
the former type of solutions achieve more successful results in re-distributing
resources for an overload service.

The support set S can consist of different elements, depending on the argu-
ment purpose. On one hand, if the argument justifies a potential solution for a
problem, the support set is the set of features (premises) that match the prob-
lem to solve and other extra premises that do not appear in the description of
this problem but that have been also considered to draw the conclusion of the
argument and optionally, any knowledge resource used by the proponent to gen-
erate the argument (domain-cases and argument-cases). This type of argument
is called a support argument. On the other hand, if the argument attacks the
argument of an opponent, the support set can also include any of the allowed
attack elements of our framework. These are distinguishing premises or counter-
examples, as proposed in [7]. A distinguishing premise is a premise that does
not appear in the description of the problem to solve and has different values
for two cases or a premise that appears in the problem description and does
not appear in one of the cases. A counter-example for a case is a previous case

Domain
Cases

POSM1

M1 Domain-Case - DC1

PROBLEM

Service FSS

Demand SR1

VMs VM1, VM2, VM3

Resources VM1, VM2, VM3

Resources
Usage

VM1RU, VM2RU,
VM3RU

SOLUTION

Description Migrate to ServerN

Solution
Type

ComplexSolution

PROBLEM

Service FSS

Demand SR

VMs VM1, VM2

Resources VM1R, VM2R

Resources Usage VM1RU, VM2RU

Fig. 2. Example Structure of a Domain-Case

(i.e. a domain-case or an argument-case), where the problem description of the
counter-example matches the current problem to solve and also subsumes the
problem description of the case, but proposing a different solution. This other
type of argument is called an attack argument.

Domain-cases. The structure of domain-cases that an argumentation sys-
tem that implements our framework has depends on the application domain. As
example, Figure 2 presents a potential domain-case that the migration manager
M1 could retrieve to generate its recommended solution ”Migrate to ServerN”
(since it has deemed it as similar enough to the current problem), which proposes
to migrate the most overloaded virtual machine to another server with more
available resources and promotes ”ComplexSolution” type of solution. Note that
in this example we assume that domain-cases also store the type of solution that
they represent. The premise ”VM3” would be a distinguishing premise between
the domain-case shown in Figure 2 and another domain-case, say DC2, that has
exactly the same problem description than DC1, but that stores different data
for this premise (a different set of virtual machines that provide the service).
Also, let us assume that the domain-case DC2, which has the same problem
description than DC1, proposes an alternative solution (e.g ”Instantiate a new
VM”) that promotes the type of solution ”HalfWaySolution”. Therefore, DC2
could be used to generate a counter-example attack to DC1 and vice-versa.

Argument-cases. Argument-cases store the information about a previous
argument that an agent posed in certain step of a dialogue with other agents.
Their structure is generic and domain-independent. To illustrate the components
of an argument-case, let us show the following example. The migration manager
M1 has generated a support argument SA1 to persuade another migration man-
ager M2 to accept his position. The position of M1 (POSM1) was generated by
using the domain-case DC1 and consist of a migration of the most overloaded
virtual machine to another physical sever, which promotes the same type of so-
lution than DC promotes, say ”ComplexSolution”. If p1 = {”Service” = FSS},
p2 = {”Demand” = SR1}, p3 = {”VMs” = {VM1, V M2, V M3}}, p4 =

PROBLEM

Domain Context Premises = {p1,, p5}

Social Context

Proponent
ID = M1
Role = Migration Manager
ValPref = B<HW<C

Opponent
ID = M2
Role = Migration Manager
ValPref = C<B<HW

Group
ID = G
Role = DPC
ValPref = -

Dependency Relation = Charity

SOLUTION

Conclusion = ”Migrate to ServerN”
Value = C
Acceptability Status = Accepted

Received Attacks Distinguishing Premises = ∅
Counter Examples = DC2

JUSTIFICATION
Cases = DC1
DG1

Table 1. Argument-case representing SA1

{”Resources” = {VM1R, VM2R, VM3R}}, and p5 = {”ResourcesUsage” =
{VM1RU, VM2RU, VM3RU}} then SA1 = {”MigratetoServerN”, C, < {p1,
p2, p3, p4, p5}, {DC1}, -, -, -, -, - >}.

Table 1 presents an example of an argument-case that stores the informa-
tion of the support argument SA1 in tour running example. In the table, ”B”
stands for ”BasicSolution”, ”HW” for ”HalfWaySolution” and ”C” for ”Com-
plexSolution”. Argument-cases have the three possible types of components that
usual cases of CBR systems have: the description of the state of the world when
the case was stored (Problem); the solution of the case (Conclusion); and the
explanation of the process that gave rise to this conclusion (Justification).

The problem description has a domain context that consists of the premises
that characterise the argument. In addition, if we want to store an argument and
use it to generate a persuasive argument in the future, the features that charac-
terise its social context must also be kept. The social context of the argument-
case includes information about the proponent and the opponent of the argument
and about their group. Although we have this distinction between proponent and
opponent of an argument (and of its underlying defended or attacked position),
in our running example all agents are willing to collaborate and share the com-
mon objective to propose the best solution for the overloaded service problem.

Moreover, we also store the preferences (ValPref) of each agent or group
over the set of values pre-defined in the system. Finally, the dependency relation
between the proponent’s and the opponent’s roles is also stored. In this work, we
consider two types of dependency relations (inherited from [8]): Power, when an
agent has to accept a request from other agent because of some pre-defined dom-
ination relationship between them (a hierarchy defined over roles, for instace);
and Charity, when an agent is willing to answer a request from other agent
without being obliged to do so. For instance, in the argument-case of Table 1
proponent and opponent play the same role (migration managers) and hence,
we have set a charity dependency relation between them. Also, both managers
belong to the same group DPC, which represents a ”Data Processing Center”
where the bCloud platform is installed and does not impose any specific value
preference order over its members.

In the solution part, the conclusion of the case, the value promoted, and the
acceptability status of the argument at the end of the dialogue are stored. The last
feature shows if the argument was deemed acceptable, unacceptable or undecided
in view of the other arguments that were put forward in the agreement process.
Thus, the conclusion of the argument-case in Table 1 presents the solution pro-
posed by M1 to solve the service overload problem. In addition, the conclusion
part includes information about the possible attacks that the argument received
during the process. These attacks could represent the justification for an argu-
ment to be deemed unacceptable or else reinforce the persuasive power of an
argument that, despite being attacked, was finally accepted.

In the example shown in Table 1 we can see that the opponent, say migration
manager M2, attacked the argument represented by this argument-case with the
counter-example DC2. Therefore, M2 generated an attack argument AA2 with
this counter-example in the support set: AA2 = {”Instantiate a new VM”, HW ,
< {p1, p2, p3, p4, p5}, -, -, -, -, -, {DC2} >}. However, as shown in Table 1,
M1 ’s support argument remained acceptable at the end of the dialogue (when
the argument-case that represents it was retained in the argument-cases case-
base). Attacked arguments remain acceptable if the proponent of the argument is
able to rebut the attack received, or if the opponent that put forward the attack
withdraws it. This feature is used in the argument management process of our
argumentation framework to represent the potentially high persuasive power of
current arguments that are similar to previous arguments that were attacked
and still remained acceptable at the end of the agreement process (see [6] for a
detailed explanation of this reasoning process).

The justification part of an argument-case stores the information about the
knowledge resources that were used to generate the argument represented by the
argument-case (the set of domain-cases and argument-cases). In the example
of Table 1, the justification part of the argument-case includes the domain-
case DC1, that the migration manager M1 used to generate its position. In
addition, the justification of each argument-case has a dialogue-graph (or several)
associated, which represents the dialogue where the argument was put forward
(DG1 in Table 1). In this way, the sequence of arguments that were put forward
in a dialogue is represented, storing the complete conversation as a directed
graph that links argument-cases. This graph can be used later to improve the
efficiency of an argumentation dialogue, for instance, finishing a current dialogue
that is very similar to a previous one that proposed a solution that ended up in
an unsuccessful re-distribution of resources.

2.3 Argumentation Dialogue

The agents of the our framework use an argumentation protocol to manage
positions and arguments and perform the argumentation dialogue. The entire
protocol is defined in [1, Chapter 4]. Here a simplified version of the protocol
proposed in [9] is instantiated to provide an example dialogue between a set of
migration agents presented with the problem of deciding the best solution to
re-distribute resources for the overloaded service. The protocol is represented by

a set of locutions that the agents use to argue with other agents, and an state
machine that defines the allowed locutions that an agent can put forward in
each step of the argumentation dialogue (presented in Figure 3). The transitions
between states depend on the locutions that the agent can use in each step. The
set of locutions of our argumentation protocol are the following:

– open dialogue(as, q): an agent as opens the argumentation dialogue, asking
other agents to collaborate to solve a problem q.

– enter dialogue(as, q): an agent as engages in the argumentation dialogue to
solve the problem q.

– withdraw dialogue(as, q): an agent as leaves the argumentation dialogue to
solve the problem q.

– propose(as, p): an agent as puts forward the position p as its proposed solu-
tion to solve the problem under discussion in the argumentation dialogue.

– why(as, ar, φ) (where φ can be a position p or an argument arg): an agent
as challenges the position p or the argument arg of an agent ar, asking it
for a support argument.

– no commit(as, p): an agent as withdraws its position p as a solution for the
problem under discussion in the argumentation dialogue.

– assert(as, ar, arg): an agent as sends to an agent ar an argument arg that
supports its position.

– accept(as, ar, φ) (where φ can be an argument arg or a position p): an agent
as accepts the argument arg or the position p of an agent ar.

– attack(as, ar, arg): an agent as challenges the argument arg of an agent ar.
– retract(as, ar, arg): an agent as informs an agent ar that it withdraws the

argument arg that it put forward in a previous step of the dialogue.

In order to show how our argumentation framework can be applied to man-
age the service overload problem, the data-flow for the argumentation dialogue
among several migration agents engaged in the agreement process is described
below. The process starts when a demand monitor agent notifies an overload in a
service that it manages. Then, the resource monitor agent in charge of the virtual
machines that offer this service sends the load information about the resources
associated to these virtual machines to the migration manager of the physical
machine that hosts them. For clarity reasons, we assume in this example that all
virtual machines that offer a service are hosted in the same physical machine.
However, in a real implementation, these virtual machines could be distributed
in several physical machines and in that case, several parallel argumentation
dialogues would be started by the migration manager of each physical machine.
Also, migration managers are connected among them and are able to check the
positions proposed by other migration managers.

1. The first state is the initial state. At the beginning of the agreement pro-
cess, migration managers remain in this state waiting for an open dialogue
locution. Also, they will come back to this state when the agent that starts
the argumentation dialogue (say, the initiator agent) communicates that
the dialogue has finished. The open dialogue locution informs the migra-
tion manager agent that receives it about the start of a new dialogue to

Fig. 3. Argumentation state machine of the agents

solve a re-distribution problem. Then, this agent will retrieve the cases of
its domain-cases case-base which features match the given problem charac-
terisation (e.g. the FSS overload presented in Figure 2) with a similarity
degree greater than a given threshold. Finally, if the agent has been able to
retrieve similar domain-cases and use their solutions to propose a solution
for the current problem, it will engage in the argumentation dialogue with
the locution enter dialogue and will go to the state 2. A migration manager
only engages in the dialogue if it has solutions to propose. For instance, on
our running example, M1 will engage in the dialogue, since it has been able
to retrieve DC1 as a similar case.

2. When a migration manager is in this state it has retrieved a list of similar
domain-cases to the current problem to propose a solution (position to de-
fend). If the agent has been able to generate several alternative solutions, it
will select the most suitable for its current context (following the reasoning
process presented in [6]) and go to state 3 proposing this solution. Otherwise,
the agent will use the withdraw dialogue locution and will return to state 1.
In the example, M1 would propose the solution reused from DC1, ”Migrate
to ServerN”.

3. In this central state, the migration manager can try to attack other positions
or defend its position from the attacks of other agents. First, the agent checks
if there is any why request from other opponent agent that asks for justifying
its proposed solution. The agent that received the why locution will assert
a support argument to its opponent if it is able to do so and goes to state
4 in this case. In our example, M1 will assert SA1 when M2 ask it for a
justification of its proposed solution. Otherwise, if the migration manager

is not able to provide a support argument to defend its position it will go
to state 2 and try to propose another solution from its list of generated
positions. Alternatively, if the migration manager has not received any why
request, it will ask other migration manager (chosen randomly) that has
proposed a different position for an argument to justify it, using the why
locution. In that case, the agent will pass to state 6. Again, in our example
it would occur if M1 has not received any justification requests and asks M2
to justify its solution.

4. In this state, the migration manager that has put forward a support argu-
ment for its position waits for an attack or an accept locution. After certain
time has passed and no locution is received, the agent will return to state 3.
In the case that an attack is received, the migration manager will try to gen-
erate another attack to rebut the attack argument received. If the migration
manager is not able to counter-attack, it will retract its support argument
and go to state 3. Otherwise, it will go to state 5 to wait for another attack or
a retraction from the opponent. In our example, as presented in Table 1, M1
receives an attack from M2 that consists of the counter-example case DC2,
which proposes a different solution for the same problem characterisation.

5. In this state a proponent and an opponent migration managers are engaged in
an attack phase arguing about the position of the proponent. When possible,
every attack received will be replied with another attack and the proponent
agent will remain in this state. However, when the proponent cannot reply
an attack argument with another attack, it will have to retract its last attack
and go to state 4. Otherwise, if the proponent receives an accept locution, the
opponent migration manager accepts its last given attack. That implies going
back to state 4, where the opponent agent must accept the proponent support
argument and its position. As shown in Table 1, the justification argument
SA1 was accepted at the end of the dialogue, although being received an
attack with the counter-example DC2. This means that M1 was able to
rebut the attack and M2 wasn’t able to counter-attack. For instance, if we
assume that VMs = {VM1} in DC2, it could happen if after the attack of
M2, M1 counter-attacks with a distinguishing premise on the VMs attribute
(since it does not subsume the exact value of this premise in the problem
reported, while this premise in the characterisation of DC1 does).

6. When a migration manager enters to this state it waits for an assert or a
no commit locution. Here, after a specific time has passed and no locution
is received, the agent will return to state 3. Alternatively, if the proponent
migration manager receives an assert locution from an opponent and it is not
able to attack the support argument received with this locution, it will accept
the opponent position and go to state 3. However, if an attack argument can
be generated, it sends it to the opponent and goes to state 7. Otherwise, if a
no commit locution is received in this state the opponent agent retracts its
position and the proponent goes back to state 3. In our running example, M1
will wait in this state for a justification argument from M2, which will include
DC2 as supporting element and, if provided, will attack this argument with
the counter-example DC1 or the distinguishing premise VMs.

7. In this state, the migration manager that has sent an attack argument to an
opponent migration manager waits for a counter-attack or an accept locution
from it. The proponent will try to reply to any attack received for its attack-
ing arguments and remain in this state while it can generate new attacks.
If an accept locution is received the last attack argument of the proponent
migration manager has been accepted by the opponent, thus the opponent
support argument is defeated and the proponent will go to state 6 to wait
for another support argument from the opponent or a no commit locution.
Nevertheless, if an attack of the opponent cannot be replied, the agent has to
accept the opponent attack argument, retract its attack argument and go to
state 6. Then, the proponent must go to state 3 after accepting the opponent
position. In the example, after attacking M2, M1 will wait in this state for a
counter-attack. If we assume that M2 is not able to generate another attack
nor more justification arguments, M2 would retract its attack argument and
withdraw its position from the dialogue.

The dialogue finishes when no new positions or arguments are proposed af-
ter a certain time. Then, the initiator migration manager retrieves the active
positions of the participants and the most accepted position (if several remain
undefeated) is selected as the final solution to propose. In case of draw, the final
solution will be the most frequent position generated by the migration managers
during the argumentation dialogue. Finally, once a position is selected as the
outcome of the agreement process, the migration manager sends it to the local
manager of its physical machine and both would start the process to implement
it (with further negotiations if necessary). Also, at the end of the argumentation
dialogue, all agents update their domain-cases case-bases with the new prob-
lem solved and their argument-cases case-bases with the information about the
arguments proposed, with the attacks received, the final acceptability state, etc.

3 Discussion

Cloud computing is a new model of business and technology services, which al-
lows the user to access a catalog of standardized services and meet the needs
of his business in a flexible and adaptive way, paying only for the consumption
made [10]. Multi-agent systems are a technology paradigm where a set of intel-
ligent software agents interact to cope with complex problems in a distributed
fashion [11]. In the literature, there are not many references of work that com-
bines both agents and cloud computing paradigms: in [12] software agents figure
as a new cloud computing service which would represent clients in virtual envi-
ronments; [13] presents a complex cloud negotiation mechanism that supports
negotiation activities in interrelated markets; [14] proposes the integration of a
cloud on GRID architecture with a mobile agent platform that is able to dy-
namically add and configure services on the virtual clusters; and [15] presents
a service-oriented QOS-assured cloud computing architecture. These contribu-
tions pave the way for an interesting new area of investigation on cloud-based
multi-agent systems. Recent research foresees the advent of a new discipline of

agent-based cloud computing systems on the Future Internet. This work identi-
fies research opportunities from the Multi-Agent Systems (MAS) technology to
the cloud computing paradigm and vice-versa. Summarising, agents can provide
clouds with intelligent, flexible, autonomous and proactive services and clouds
can provide agents with processing and memory resources at unprecedented scale
[2]. Argumentation-based agreement technologies, as a proficient research area
within MAS-based agreement models, should echo these opportunities and con-
tribute to the achievement of new challenges in agent-based cloud computing.
On the next generation of agreement technologies we envisage systems of humans
and agents with the ability of reaching agreements by using the unlimited com-
putational resources provided by cloud systems. This entails the development
of new algorithms, tools and models that enable the creation of open systems
where virtual agents and humans coexist and interact transparently into a fully
integrated agreement environment. Research on this area will provide answers
to questions like: What is necessary to know and design for software agents
and humans to interact in an agent-based cloud computing systems? and how
these interactions should be formalised and structured to obtain software prod-
ucts that are effective in such environments? Argumentation-based agreement
technologies can contribute to cope with these open issues.

In the last years, the community of argumentation in MAS has advanced re-
search in many fields on the area of applying argumentation theory to harmonise
agents incoherent beliefs and model the interaction among a set of agents [16],
but the application of argumentation approaches to cloud computing is a new
challenge. Research on argumentation in Grid computing3 can be viewed as re-
lated work, in the sense that grid computing and cloud computing have many
similarities and a main difference in the storage conception: the grid is well suited
for data-intensive storage while in cloud systems the amount of data stored can
be large or not, depending on the user needs. Thus, results from this research can
be studied and analysed as an starting point to foster work in argumentation-
based agreement technologies applied to cloud computing. In this paper, we
propose the application of argumentation as a suitable technology to model load-
balancing services in cloud systems. Concretely, we have used an argumentation-
based approach to reach an agreement about the best solution to implement for
the re-distribution of resources when facing a peak service demand. In doing so,
we propose the first (to the best of our knowledge) argumentation-based solution
for load-balancing services based on MAS cooperation (one of the open issues
identified in [2]). Current work is being performed to implement and test this
system, in order to analyse the viability and advantages of this approach. Also,
the advantages that this approach contributes over direct resource allocation al-
gorithms must be analysed. However, our intuition is that both direct resource
allocation algorithms and argumentation-based techniques could be considered
as complementary. In our scenario, migration managers could use different deci-
sion making policies (experience-based or any other kind of resource allocation
techniques) to propose the best solution to the resource re-distribution problem

3 http://www.argugrid.org/

http://www.argugrid.eu/

and then, engage in an argumentation dialogue to decide which is the best so-
lution to apply. Further work in argumentation in cloud computing can elicit
more argumentation-based agreement models that enable agents to argue and
meet their goals within a society. Some application examples may be: negotiat-
ing Service Level Agreements; providing a method to harmonise conflicts that
arise in the adaption of the system to environmental changes; and enabling a
collaborative deliberation to find the best alternative for service composition.

Acknowledgements This work is supported by the Spanish government
grants [CONSOLIDER-INGENIO 2010 CSD2007-00022, TIN2008-04446, and
TIN2009-13839-C03-01] and by the GVA project [PROMETEO 2008/051].

References

1. Heras, S.: Case-Based Argumentation Framework for Agent Societies. PhD thesis,
Universitat Politècnica de València. http://hdl.handle.net/10251/12497 (2011)

2. Talia, D.: Clouds meet agents: Toward intelligent cloud services. IEEE Internet
Computing 16(2) (2012) 78–81

3. Ashton, K.: That ’internet of things’ thing. RFID Journal (2009)
4. Barham, P., et. al.: Xen and the art of virtualization. In: 9th ACM Symposium

on Operating Systems Principles, ACM Press (2003) 164–177
5. Wang, L., et. al.: Scientific cloud computing: Early definition and experience.

In: 10th IEEE Int. Conf. on High Performance Computing and Communications
(HPCC-08), IEEE Press (2008) 825–830

6. Heras, S., Jordán, J., Botti, V., Julián, V.: Argue to agree: a case-based argumen-
tation approach. International Journal of Approximate Reasoning (In Press)

7. Bench-Capon, T., Sartor, G.: A model of legal reasoning with cases incorporating
theories and values. Artificial Intelligence 150(1-2) (2003) 97–143

8. Dignum, F., Weigand, H.: Communication and Deontic Logic. In: Information
Systems Correctness and Reusability, World Scientific Pub. Co. (1995) 242–260

9. Jordán, J., et. al.: A customer support application using argumentation in multi-
agent systems. In: 14th Int. Conf. on Information Fusion. (2011) 772–778

10. : The future of cloud computing. Technical report, European Comission (2010)
11. Wooldridge, M., Jennings, N.R.: Intelligent agents: Theory and practice. The

Knowledge Engineering Review 10(2) (1995) 115–152
12. Lopez-Rodriguez, I., Hernandez-Tejera, M.: Software agents as cloud computing

services. In: 9th Int. Conf. on Practical Applications of Agents and Multiagent
Systems. Volume 88 of Advances in Intelligent and Soft Computing., Springer
(2011) 271–276

13. Sim, K.M.: Towards complex negotiation for cloud economy. In: 5th Int. Conf.
on Advances in Grid and Pervasive Computing. Volume 6104 of LNCS., Springer
(2010) 395–406

14. Aversa, R., et. al.: Cloud agency: A mobile agent based cloud system. In: Int.
Conf. on Complex, Intelligent and Software Intensive Systems, IEEE Computer
Society Press (2010) 132–137

15. Cao, B.Q., et. al.: A service-oriented qos-assured and multi-agent cloud computing
architecture. In: 1st Int. Conf. on Cloud Computing. Volume 5931 of LNCS.,
Springer (2009) 644–649

16. Rahwan, I., Simari, G., eds.: Argumentation in Artificial Intelligence. Springer
(2009)

	The Role of Argumentation on the Future Internet: Reaching agreements on Clouds

