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Abstract. Social networks have grown exponentially in use and impact
on the society as a whole. In particular, microblogging platforms such as
Twitter have become important tools to assess public opinion on different
issues. Recently, some approaches for assessing Twitter messages have
been developed, identifying sentiments associated with relevant keywords
or hashtags. However, such approaches have an important limitation, as
they do not take into account contradictory and potentially inconsistent
information which might emerge from relevant messages. We contend
that the information made available in Twitter can be useful to extract
a particular version of arguments (called “opinions” in our formalization)
which emerge bottom-up from the social interaction associated with such
messages. In this paper we present a framework which allows to mine
opinions from Twitter based on incrementally generated queries. As a
result, we will be able to obtain an “opinion tree”, rooted in the first
original query. Distinguished, conflicting elements in an opinion tree lead
to so-called “conflict trees”, which resemble dialectical trees as those used
traditionally in defeasible argumentation.

1 Introduction and motivations

Social networks have grown exponentially in use and impact on the society as
a whole, aiming at different communities and providing differentiated services.
In particular, microblogging has become a very popular communication tool
among Internet users, being Twitter1 by far the most widespread microblogging
platform. Twitter, created in 2006, enables its users to send and read text-based
posts of up to 140 characters, known as “tweets”. It has grown into a technology
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which allows to assess public opinion on different issues. Thus, for example, it is
common to read nowadays newspapers articles referring to the impact of political
decisions measured by their associated positive or negative comments in Twitter.
Symmetrically, policy makers make public many of their claims and opinions,
having an influence on the citizenry,2 prompting their “tweeting back” with
further comments and opinions. As the audience of microblogging platforms and
services grows everyday, data from these sources can be used in opinion mining
and sentiment analysis tasks [1].

As pointed out in [2], microblogging platforms (in particular Twitter) offer
a number of advantages for opinion mining. On the one hand, Twitter is used
by different people to express their opinion about different topics, and thus they
are a valuable source of people’s opinions. Given the enormous number of text
posts, the collected corpus can be arbitrarily large. On the other hand, Twitter’s
audience varies from regular users to celebrities, company representatives, politi-
cians, and even country presidents. Therefore, it is possible to collect text posts
of users from different social and interests groups. According to Merriam Webster
online dictionary,3 an opinion can be seen as: a) a view, judgment, or appraisal
formed in the mind about a particular matter; b) belief stronger than impres-
sion and less strong than positive knowledge; a generally held view; c) a formal
expression of judgment or advice by an expert. Clearly, there is a natural link
between opinion and argument. In many cases, opinions by themselves do not
provide arguments, as they do not necessarily imply giving reasons or evidence
for accepting a particular conclusion. However, from a meta-level perspective,
policy makers devote much effort in analyzing the reasons underlying complex
collections of opinions from the citizenry, as they indicate the willingness of the
people to accept or reject some particular issue. A well-known example in this
setting is the analysis of public opinion (e.g. through the quantitative measure-
ment of opinion distributions through polls and the investigation of the internal
relationships among the individual opinions that make up public opinion on an
issue).

A fundamental need for policy makers is to back their decisions and agree-
ments on reasons or opinions provided by citizens. They might even argue with
other policy makers about why making a particular decision is advisable (e.g.
“according to the last poll, 80% of the people are against the health system
reform; therefore, the reform should not be carried out”). From this perspec-
tive, social networks like Twitter provide a fabulous knowledge base from which
information could be collected and analyzed in order to enhance and partially
automatize decision making processes. In particular, tweets have a rich struc-
ture, providing a number of record fields which allow to detect provenance of
the tweet (author), number of re-tweets, followers, etc.

2 E.g. the current UK Prime Minster David Cameron and the current US President
Barack Obama can be followed on Twitter at @Number10gov and @BarackObama,
respectively.

3 http://www.merriam-webster.com



We contend that the information made available from such tweets can be use-
ful for modeling opinions which emerge bottom-up from the social interaction
existing in Twitter. In our analysis, we will assume that opinions are argu-
ments, which can be seen as particular instances of the “Argument from Ma-
jority” schema [3]. In this paper, we analyze the main elements characterizing
an argument-based approach to mining opinions from Twitter based on incre-
mentally generated queries. Given a query, we will model an opinion supporting
it as a set of aggregated tweets along with a prevailing sentiment,4 which can
be attacked by alternative counter-opinions. As a final result, we will be able to
obtain a “conflict tree”, rooted in the first original query, in a way that resembles
dialectical trees in argumentation.

The rest of the paper is structured as follows. In Section 2 we present our pro-
posal for characterizing Twitter-based arguments and their interrelationships.
We will formalize the notion of opinion tree, which can be constructed from
user queries, allowing to assess alternative opinions associated with incremen-
tally generated queries. A high-level algorithm for computing opinion trees is
presented, along with a case study to illustrate our proposal. Section 3 discusses
the relationship emerging from opinions in conflict, modeled as a conflict tree.
Section 4 generalizes previous results using superior lattices, for both opinion and
conflict trees. The benefits of applying this mathematical approach are discussed
in Section 5. Section 6 reviews related work, and finally Section 7 summarizes
the conclusions.

2 Twitter-based Argumentation Framework: viewing
aggregated tweets as arguments

In this Section we will describe how different elements in Twitter can be cap-
tured under an argumentative perspective [4, 5]. First we will characterize dis-
tinguished collections of tweets (obtained on the basis of a given query) as ar-
guments with an associated prevailing sentiment. Such arguments will be called
TB-arguments (Twitter-based arguments). Then, we will formalize interrelation-
ships between TB-arguments, which lead to the notion of opinion tree.

2.1 Formalizing Aggregation of Twitter Messages

Twitter messages (Tweets) are 140 character long, with a number of additional
fields which help identify relevant information within a message (sender, number
of retweets associated with the message, etc.). In particular, we will focus on the
presence of descriptors which are either hashtags (words or phrases prefixed with
the symbol #, a form of metadata tag) or terms that tend to occur often in the
context of a given topic. Hashtags are used within IRC networks to identify
groups and topics and in short messages on microblogging social networking

4 Several software tools have been recently developed for such an association, such as
www.sentiment140.com or tweetsentiments.com.



services such as Twitter, identi.ca or Google+ (which may be tagged by including
one or more with multiple words concatenated). Other good descriptors can be
dynamically found by looking for terms that are frequently used in tweets related
to the topic at hand. In the sequel we will assume that the term “descriptor”
refers to either actual hashtags in Twitter or to relevant keywords found in
tweets.

Definition 1 (Tweet. Twitter Query). We define a tweet T as a bag (or
multiset) of terms {t1, t2, . . . tk }, where every ti ∈ T is a string. A Twitter
query (or just query) is a non-empty set Q = {d1, d2, . . . , dk} of descriptors,
where every di ∈ Q is a string.

In the analysis that follows, we will assume that a tweet is just a bag of words,
not taking into account the actual order of terms in the tweet. Additionally, we
assume that the set of all currently existing tweets corresponds to a snapshot
of Twitter messages at a given fixed time, as the Twitter database is highly
dynamic. In our approach, a query Q is any set of descriptors used for filtering
some relevant tweets from Tweets based on a given criterion C. In order to
abstract away how such selection is performed, we will define an aggregation
operator AggTweets(Q,C). Formally:

Definition 2 (Tweet set. Aggregation Operator). Let Tweets be the set
of all currently existing tweets. We will write 2Tweets to denote the set of all
possible subsets of Tweets. Any element in 2Tweets will be called a tweet set.
Given a query Q, and a criterion C, we will define an aggregation operator
AggTweets(Q,C) which returns an element (tweet set) in 2Tweets based on Q and
C.

The aggregation operator could be defined in several ways. For instance,
suppose that C1 is a criterion that indicates that only tweets posted between
time timestamp1 and timestamp2 are to be selected. Then AggTweets(Q,C1)
=def { T ∈ Tweets such that Q ⊆ T and T satisfies C1 } will be the set of
tweets that contain all the terms of query Q and have been posted in the time
period [timestamp1,timestamp2]. Other examples of criteria that can be naturally
applied are, for instance, requiring that those tweets T were retweeted more than
n times, requiring that every user that posted tweets T has at least m followers,
etc.

Note that for the same query Q, different alternative criteria (C1, C2, . . . , Ck)
can lead to different distinguished elements in 2Tweets. As explained before, tweet
sets can be associated with different feelings or sentiments. Even if in real life
there may be a lot of emotions in tweets (such as anger, happiness, and so on), we
will assume here that there is a distinguished set S of possible sentiments. Thus,
given a query Q and a criterion C, we assume that the tweet set AggTweets(Q,C)
is associated with a prevailing sentiment in S.5 We will consider that some

5 A possible range for S could be positive, negative and neutral (as done for example in
platform Sentiment140.com) In this platform, prevailing sentiments associated with
a tweet set are expressed by percentages.



sentiments might convey different, possibly conflicting feelings or emotions (e.g.
anger and happiness; boredom and excitement, etc.). As before, we will abstract
away which are potentially conflicting sentiments as follows.

Definition 3 (Sent and conflict mappings). Let T ∈ 2Tweets be a tweet
set, and let Sent : 2Tweets → S and conflict : S → 2S be mappings. The
sentiment Sent(T) will be called the prevailing sentiment (or just sentiment)
for T. For any sentiment s ∈ S, we will define conflict(s) as a subset of S,
such that: a) s 6∈ S (a sentiment is not in conflict with itself); b) for any
s′ ∈ conflict(s), then s ∈ conflict(s′) (the notion of conflict is symmetrical).
Given two sentiments s1 and s2, we will say that they are in conflict whenever
s2 ∈ conflict(s1). For simplicity, given a sentiment s ∈ S, we will write s to
denote any s′ ∈ conflict(s).

The previous elements will allow us to characterize the notion of TB-
framework and TB-argument as follows:

Definition 4 (TB-framework). A Twitter-based argumentation framework
(or TB-framework) is a 5-tuple (Tweets, C,S, Sent, conflict), where Tweets is
the set of available tweets, C is a selection criterion, S is a non-empty set of
possible sentiments and Sent and conflict are sentiment prevailing and conflict
mappings.

Definition 5 (TB-argument). Let (Tweets, C,S, Sent, conflict) be a
TB-framework. A Twitter-based argument (or TB-argument) for a conclusion
(query) Q is a 3-tuple 〈Arg,Q, Sentiment〉, where Arg is AggTweets(Q,C) and
Sentiment is Sent(AggTweets(Q,C)).

Example 1. Consider a TB-framework (Tweets, C,S, Sent, conflict), where C
is defined as “all T ∈ Tweets | timestamp(T )≥ 2012-01-01T00:00:00”, Q =
{“#greece”, “#eurozone”}, S = {pos, neg, neutral}, and conflict(pos) =def

{neg, neutral}, conflict(neg) =def {pos, neutral} and conflict(neutral) =def

{pos, neg}. Then Arg = AggTweets(Q,C) is the set of all possible tweets
containing {“#greece”,“#eurozone”} that have been published since Jan-
uary 1, 2012. Suppose that Sent(AggTweets(Q,C)) = negative. Then
〈Arg, {“#greece”, “#eurozone”}, negative〉 is a TB-argument.

2.2 Specificity in a TB-framework. Opinion trees

In the previous section we have shown how to express arguments for queries
associated with a given prevailing sentiment. Such arguments might be attacked
by other arguments, which on their turn might be attacked, too. In argumen-
tation theory, this leads to the notion of dialectical analysis [5], which can be
associated with a tree-like structure in which arguments, counter-arguments,
counter-counter-arguments, and so on, are taken into account. Our approach
will be more generic, in the sense that for a given argument, the children nodes
will correspond to more specific arguments that are not necessarily in conflict
with the parent argument. Next we will formalize these notions.



Definition 6 (Query Equivalence). Let (Args,Tweets, C,S, s) be a TB-
framework. Given two queries Q1 and Q2, we will say that Q1 is equivalent to
Q2 whenever AggTweets(Q2, C) = AggTweets(Q1, C).

Definition 7 (Query Subsumption). Let (Args,Tweets, C,S, s) be a TB-
framework. Given two queries Q1 and Q2, we will say that Q1 subsumes Q2

whenever it holds that AggTweets(Q2, C) ⊂ AggTweets(Q1, C).

Example 2. A query Q1 formed by {“#greece”} subsumes the query Q2 formed
by {“#greece”, “#eurozone”}, as all the tweets that are returned by Q2 will be
part of the tweets returned by Q1, but not the other way around.

Note that the subsumption relation is more general than the inclusion re-
lation, since Q1 subsumes Q2 whenever Q1 ⊂ Q2 (as AggTweets(Q2, C) ⊂
AggTweets(Q1, C)). However, it is possible that Q1 subsumes Q2 even when
Q1 6⊂ Q2.

Definition 8 (Argument Specificity). Given a TB-framework with TB-
arguments 〈Arg1, Q1, Sent1〉 and 〈Arg2, Q2, Sent2〉, we say that 〈Arg2, Q2, Sent2〉
is strictly more specific than 〈Arg1, Q1, Sent1〉 and we denote it 〈Arg2, Q2, Sent2〉
≺ 〈Arg1, Q1, Sent1〉 if Q1 subsumes Q2. We will write 〈Arg2, Q2, Sent2〉 �
〈Arg1, Q1, Sent1〉 when Q1 subsumes Q2 or Q1 is equivalent to Q2.

Suppose that a TB-argument supporting the query “#greece” is obtained,
with a prevailing sentiment neutral. If the original query Q is extended in some
way into a new query Q′ that is more specific than Q (i.e. Q′ = Q∪{d}), it could
be the case that a TB-argument supporting Q′ has a different (possibly conflict-
ing) prevailing sentiment. For example, more specific opinions about Greece are
related to other topics, like for example vacations, politics, philosophy, etc. To
explore all possible relationships associated with TB-argument returned for a
specified query Q and criteria C, we can define an algorithm to construct an
“opinion tree” recursively as follows:

1. We start with a TB-argument obtained from the original query Q (i.e.,
〈A,Q, Sent〉 ), which will be the root of the tree.

2. Next, we compute within A all relevant descriptors that might be used to
“extend” Q, by adding a new element (NewTerm) to the query, obtaining
Q′ = Q ∪ {NewTerm}.

3. Then, a new argument for Q′ is obtained, which will be associated with a
subtree rooted in the original argument A.

The high-level algorithm can be seen in Fig. 1. As stated before, note that our
approach to opinion trees is more generic than the one used for dialectical trees
in argumentation (as done e.g. in [6]), in the sense that for a given argument,
the children nodes will correspond to more specific arguments that are not
necessarily in conflict with the parent argument.

It is also easy to see that for any query Q, the algorithm BuildOT finishes
in finite time: given that a tweet may not contain more than 140 characters,
the number of contained descriptors is finite, and therefore the algorithm will
eventually stop, providing an opinion tree as an output



ALGORITHM BuildOT
INPUT: Tweets, R, Q, C

{ Initially, R = Tweets. Each Ti ∈ Tweets is represented as a multiset }
OUTPUT: Opinion Tree OTQ

{ opinion tree rooted in RootOTQ
}

RootOTQ
:= 〈Arg,Q, Sentiment〉,

where Arg is AggTweets(Q,C) and Sentiment is Sent(AggTweets(Q,C)).
IF |R| > threshold { Cardinality of R determines maximum depth level }
THEN

REPEAT
W := { d | d is the most frequent word in

⊎
Ti∈R Ti

such that d /∈ Q ∪ Stopwords }a
IF W 6= ∅
THEN
Qnew := Q ∪W
TweetsQNew := AggTweets(Qnew, C)
OTQnew := BuildOT (TweetsQNew ,R, Qnew, C)
PutSubtree(RootOTQ

,OTQnew )

R := R− TweetsQNew

UNTIL W = ∅
RETURN OTQ

a For simplicity, we assume W is a singleton. In a more general case, a distinguished
element from W could be selected according to some criterion (e.g. overall frequency
in Twitter, etc.). The operation

⊎
is the union operation on multisets.

Fig. 1. High-level algorithm for computing an opinion trees OTQ from Twitter

2.3 Case study

As discussed before, the algorithm shown in Fig. 1 allows to obtain an opinion
tree from a given query Q, a criterion C, and the set Tweets of all possible tweets.
An additional parameter R allows us to specify the set of tweets to be considered
when searching for a new descriptor. Initially, R = Tweets. The cardinality of
R determines the threshold associated with the depth of the tree.

Consider the query Q = “#greece”, and a criterion C = { T ∈ Tweets | T is
among the 1000 most recent Tweets }. A root TB-argument is computed for Q,
C and Tweets, obtaining an associated prevailing sentiment (neutral). If |R| is
above a given threshold value, the algorithm computes the most frequent word d
in R whenever d is not already present in Q∪Stopwords. The underlying idea is
that any sibling node in the same level of the tree refers to terms not appearing
already in previous siblings (from left to right). The set Stopwords will usually
include terms such as the, as, which, etc. In our example, d = “coalition”. A
new TB-argument can now be built for query Q′ = {“#greece”} ∪ {“coalition”},
criterion C and the preserving sentiment calculated for the new subset of tweets
TweetsQNew

. In the recursive call, the most frequent word is calculated for this
subset (obtaining the result “democratic”), so that a new TB-argument for the
query {“#greece”, “coalition”, “democratic”} is obtained, with a new associated
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Fig. 2. Opinion Tree based on query “#greece” (computation based on status of Twit-
ter as present at June 26, 2012). The associated conflict tree for the same query is
shown in dotted lines.

prevailing sentiment. Note that within a particular instance of the recursive
call, the REPEAT loop takes care that alternative ways of “extending” Q are
considered by adding a particular descriptor d, not repeating d within the sibling
nodes at a given level of the tree. The process is repeated until the threshold has
been reached. At the end, the resulting opinion tree OTQ is returned.

Figure 2 illustrates how the construction of an opinion tree for the query
Q = {“#greece”} looks like. Distinguished symbols (“+”, “-”, “=”) are used
to denote positive, negative and neutral sentiments, respectively. Note that the
original query Q has cardinality 1, and further levels in the opinion tree refer
to incrementally extended queries (e.g. {“#greece”, “coalition”}, or {“#greece”,
“#spain”}). Leaves correspond to arguments associated with a query Q′ which
cannot be further expanded, as the associated number of tweets is too small
for any possible query Q′ ∪W . Furthermore, we can identify some subtrees in
OT{“#greece”} which consist of nodes which have all the same sentiment. In

other words, further expanding a query into more complex queries does not
change the prevailing sentiment associated with the root node. In other cases,
expanding some queries results in a sentiment change (e.g. from {“#greece”}
into {“#greece”, “#spain”} ). This situation will allow us to characterize conflict
trees, in which we take into account opinions that attack each other, as discussed
in the next Section.

3 Conflict trees

Next we will provide a formal definition of conflict between TB-arguments.
Intuitively, a conflict will arise whenever two arguments for similar queries lead
to conflicting sentiments assuming that the involved queries are related to each
other by the subsumption relationship.



Definition 9 (Argument Attack). Given a TB-framework with TB-
arguments 〈Arg1, Q1, Sent1〉 and 〈Arg2, Q2, Sent2〉 such that Q1 subsumes Q2,
we say that 〈Arg2, Q2, Sent2〉 attacks 〈Arg1, Q1, Sent1〉 whenever Sent1 and
Sent2 are in conflict.

Example 3. Consider two queries Q1 = {“#greece”} and Q2 = {“#greece”,
“#eurozone”}, such that 〈Arg1, Q1, neutral〉 and 〈Arg2, Q2, negative〉. Then
〈Arg2, Q2, negative〉 attacks 〈Arg1, Q1, neutral〉.

Note that in the previous situation, adding the descriptor “eurozone” to the
the original query “#greece” involves a sentiment change. We will formalize this
situation as follows:

Definition 10 (Sentiment-Preserving and Sentiment-Shifting Descrip-
tor). Given an argument 〈A1, Q, Sent1〉, d is a sentiment-preserving (resp.
sentiment-preserving) descriptor wrt Q whenever there exists an argument
〈A2, Q ∪ {d}, Sent2〉 such that Sent1 and Sent2 are non-conflicting (resp.
conflicting). Argument 〈A2, Q ∪ {d}, Sent2〉 will be called sentiment-preserving
(resp. sentiment-shifting argument).

Given a particular descriptor Q, note that several alternative expansions
(supersets of Q) can be identified. We are interested in identifying which is the
smallest superset of Q which is associated with a sentiment-shifting argument.
This gives rise to the following definition:

Definition 11 (Minimal-Shift Descriptor. Minimal-Shifting Relation).
Let (Args,Tweets, C,S, s) be a TB-framework. Given two conflicting arguments
〈A1, Q1, Sent〉 and 〈A2, Q2, Sent〉, we will say that Q2 is a minimal shift de-
scriptor wrt Q1 iff 〈A2, Q2, Sent〉 is a sentiment-shifting argument wrt Q1 and
6 ∃Q′ ⊂ Q2 such that 〈A′, Q′, Sent〉 is a sentiment-shifting argument wrt Q1.

We define a minimal-shifting relation “�min ” as follows: 〈A1, Q1, Sent1〉
�min 〈A2, Q2, Sent2〉 iff 〈A2, Q2, Sent2〉 attacks 〈A1, Q1, Sent1〉 and Q2 is a
minimal-shifting descriptor wrt Q1.

Definition 12 (Conflict tree). Let (Args,Tweets, C,S, s) be a TB-framework.
Given a query Q, and its associated argument 〈A,Q, Sent〉 we will define a
conflict tree for Q (denoted C(Q)) recursively as follows:

1. If there is no 〈Ai, Qi, Senti〉 such that 〈A,Q, Sent〉 �min 〈Ai, Qi, Senti〉,
then C(Q) is a conflict tree consisting of a single node 〈A,Q, Sent〉.

2. Let 〈A1, Q1, Sent1〉, 〈A2, Q2, Sent2〉, . . . 〈Ak, Qk, Sentk〉 be those arguments
in (Args,Tweets, C,S, s) such that 〈A,Q, Sent〉 �min 〈Ai, Qi, Senti〉 (for
i = 1 . . . k). Then C(Q) is a conflict tree consisting of 〈A,Q, Sent〉 as the
root node and C(Q1), . . .C(Qk) are its immediate subtrees.

Intuitively, a conflict tree depicts all possible ways of extending the original
query Q such that every extension (child node in the tree) corresponds to a
sentiment change. Figure 2 illustrates how the construction of a conflict tree for



the query Q = {“#greece”} looks like, depicting nodes and arcs with dotted lines.
Every node in the tree (except the root) is associated with a TB-argument which
is a sentiment-shifting argument wrt its parent. Leaves correspond to nodes for
which no further sentiment shift can be found.

4 Generalizing Opinion and Conflict Trees as Superior
Lattices

Next we will show a formal lattice-based characterization of our approach. Su-
perior lattices will account for a more generic view of opinion trees, identifying
relevant sublattices based on an equivalence relation between TB-arguments.
First we will review some background definitions to make our presentation self-
contained.

Definition 13 (Partial Order. Partially Ordered Set). A partial order
is a binary relation “�” over a set A which is reflexive, antisymmetric, and
transitive, i.e., for all a, b, and c in A, we have that (1) a � a (reflexivity); if
a � b and b � a then a = b (antisymmetry); if a � b and b � c then a � c
(transitivity). A set with a partial order is called partially ordered set (or just
ordered set).

Definition 14 (Cover Relation). Given an ordered set (A,�), for two ele-
ments a, b ∈ A we use a ≺ b to specify that a � b and a 6= b. Let (A,�) be an
ordered set. Then for any a, b ∈ A we say that a covers b if b ≺ a and there is
no c ∈ A such that b ≺ c ≺ a.

Definition 15 (Tree Order). An ordered set (A,�) is a tree if (1) there is a
unique a ∈ A such that b � a for all b ∈ A, and (2) for all a, b, c ∈ A, if b covers
a and c covers a, then b = c.

Definition 16 (Superior Lattice. Inferior Lattice. Lattice). Let (A,�) be
an ordered set. Then for any a, b ∈ A, we will say that c ∈ A is the least upper
bound of a and b (also called the join of a and b), denoted c = a∨ b, whenever i)
a � c and b � c; ii) if for x ∈ A, it holds that x � a and x � b, then c � x. An
ordered set (A,�) is a superior lattice whenever for any pair of elements a, b ∈ A
there is a least upper bound element in A. The notions of greatest lower bound
(or meet), denoted c = a ∧ b, and inferior lattice are defined analogously as the
duals of the notions of least upper bound and superior lattice. An ordered set
(A,�) that is both a superior lattice and an inferior lattice is called a lattice.

Definition 17 (Join-Homomorphism. Meet-Homomorphism. Lat-
tice Homomorphism). The mapping h from (X,�) to (Y,�) is a join-
homomorphism provided that for any a, b ∈ x, h(a ∨ b) = h(a) ∨ h(b). It is
also said that “h preserves joins.” The notion of meet-homomorphism is
defined analogously as the dual of the notion of join-homomorphism. The
mapping h is a lattice homomorphism if it is both a join-homomorphism and a
meet-homomorphism.
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Fig. 3. Opinion tree (left) and its corresponding opinion lattice (right).

In the rest of this section we will show that the above definitions provide
a solid mathematical foundation for the study of TB-arguments. Note, in the
first place, that the ordered set (2Tweets,⊆) is a lattice, as is the case for any
power set of a given set, ordered by inclusion. The join is given by the union and
the meet by the intersection of the subsets. More interestingly, it can be shown
that for any query Q, the resulting opinion tree OTQ associated with a query Q
defines a tree order (see Def. 15).

Lemma 1. Let Q be a query and let OTQ be an opinion tree for Q in a TB-
framework (Args,Tweets, C,S, s). Then (OTQ,�) defines a tree order.6

On the left-hand side of Figure 3 we illustrate an opinion tree as a tree order
(OTQ,�). Note that each element in OTQ is of the form 〈Argi, Qi, Sentimenti〉,
while the order relation “�” is defined as 〈Arg1, Q1, Sentiment1〉 �
〈Arg2, Q2, Sentiment2〉 if and only if Q2 ⊆ Q1. In this opinion tree we
have indicated that some queries are equivalent (see Def. 6). As a consequence,
we can identify a quotient set, where each member is an equivalence class
[〈Argi, Qi, Sentimenti〉] defined as follows:

[〈Argi, Qi, Sentimenti〉] = {〈Argj , Qj , Sentimentj〉 | Qj is equivalent to Qi}.

We show on the right-hand side of Figure 3 the quotient set resulting from
the given opinion tree. Note that this new set is a superior lattice (see Def. 16).
In general, any opinion tree induces a superior lattice OLQ, which we will refer
to as opinion lattice. This is formally stated in the following lemma:

Lemma 2. Let Q be a query and let OLQ be the quotient set of OTQ by the
query equivalence relation. Then (OLQ,�) is a superior lattice.

Although an opinion lattice is typically more compact than an opinion tree,
we might be interested in finding the minimal structure that reflects all existing

6 Proofs not included for space reasons.
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Fig. 4. From an opinion lattice (left) to a conflict lattice (right).

conflicts between opinions for a given query Q. In other words, we want to build
a minimal superior lattice (CLQ,�) such that it is possible to define a join-
homomorphism h (see Def. 17) from (OLQ,�) to (CLQ,�). In addition, we will
require that whenever h(〈Ai, Qi, Senti〉) = 〈Aj , Qj , Sentj〉 then Senti and Sentj
are non-conflicting. We will call CLQ the conflict lattice for Q. By applying a
partitioning algorithm it is possible to obtain a conflict lattice from any opinion
lattice. This transformation is illustrated in Figure 4.

5 Discussion

Our mathematical characterization of opinion and conflict trees as superior lat-
tices provides a natural foundation for the analysis of important concepts pre-
vailing in argumentation theory. In particular, the use of conflict lattices to rep-
resent diverging arguments leads to the identification of the minimal structure
that reflects the existing collective positions with respect to a topic of interest.

Argument specificity is a key notion in argumentation theory, as it is the
first purely syntactic preference criterion proposed to compare arguments. In
our framework, specificity goes hand by hand with the “�” relation identified in
the resulting superior lattices. The use of minimal structures to represent con-
flicting views facilitates the identification of specificity relations as well as the
recognition of relevant (or irrelevant) elements in the argumentation space, as
it is formalized by the notions of sentiment-shifting descriptors (or sentiment-
preserving descriptors). Similarly, the minimal-shift relation “�min” can be in-
tuitively studied in the light of the resulting mathematical structures.

It must be remarked that our dialectical analysis of TB-arguments aims at
modeling the possible space of alternatives associated with different (incremen-
tally more specific) queries. In contrast, the dialectical analysis in standard ar-
gumentation frameworks [4, 5] aims at determining the ultimate status of a given
argument at issue (in terms of some acceptability semantics).



6 Related Work

Our approach is inspired by recent research in integrating argumentation and
social networks. In the last years, there has been growing interest in assessing
meaning to streams of data from microblogging services such as Twitter, as well
as some recent research on using argumentation for social networks.

To the best of our knowledge, Torroni & Toni [7] were the first that com-
bined social networks and argumentation in a unified approach, coining the term
bottom-up argumentation for the grass-root approach to the problem of deploying
computational argumentation in online systems. In this novel view, argumenta-
tion frameworks are obtained bottom-up starting from the users’ comments,
opinions and suggested links, with no top-down intervention of or interpretation
by “argumentation engineers”. As the authors point out “topics emerge, bottom-
up, during the underlying process, possibly serendipitously”. In contrast with
that proposal, in this paper we generalize this view by identifying arguments
automatically from Twitter messages, establishing as well conflict relationships
in terms of sentiment analysis (and not specified at the meta-level using rules, as
is the case of [7]). In [8], Abbas and Sawamura formalize argument mining from
the perspective of intelligent tutoring systems. In contrast with our approach,
they rely on a relational database, and their aim is not related with identifying
arguments underlying social networks as done in this paper. In [9], Leite and
Martins introduce a novel extension to Dung’s abstract argumentation model,
called Social Abstract Argumentation. Their proposal aims at providing a formal
framework for social networks and argumentation, incorporating social voting
and defining a new class of semantics for the resulting frameworks. In contrast
with our approach, the automatic extraction of arguments from social networks
data is not considered (as done in this paper), nor the modeling of conflicts be-
tween arguments in terms of sentiment analysis. In [10], Amgoud and Serrurier
propose a formal argumentation-based model for classification, which general-
izes the well-known concept learning model based on version spaces [11]. The
framework shares some structural similarities with our approach (as a lattice-
based characterization is also involved when contrasting hypotheses). However,
the aims of the two approaches are different, as our proposal is not focused on
solving classification tasks in a machine learning sense.

A related research area is formal concept analysis [12], which is a method for
deriving conceptual structures out of data. As done in our approach, the theory
of partial orders is used to formally characterize these structures. However, it
differs from our proposal in dealing with concepts rather than opinions and in
not attempting to associate sentiments with the elements of the partial order. In
addition, it does not deal with notions such as arguments, conflict and attack.

It must be remarked that the rise of social media such as blogs and social net-
works has fueled interest in sentiment analysis. With the proliferation of reviews,
ratings, recommendations and other forms of online expression, online opinion
has turned into a kind of virtual currency for businesses looking to market their
products, identify new opportunities and manage their reputations. Several re-
search teams in universities around the world currently focus on understanding



the dynamics of sentiment in e-communities through sentiment analysis. The
EU funded Cyberemotions consortium7 was created in 2009 to better under-
stand collective emotional phenomena in cyberspace, with the help of knowledge
and methods from natural, social, and engineering sciences. Within this project,
Thelwall et al.[13, 14] carried out a number of experiments to assess the feasi-
bility of sentiment analysis within social networks, with a particular focus on
Twitter. In contrast with our approach, no opinion mining was considered in
this context, nor the analysis of alternative opinions (as modelled by conflict
trees in our proposal).

7 Conclusions and Future Work

In this paper we have presented a novel approach which integrates argumentation
theory and microblogging technologies, with a particular focus on Twitter. To
the best of our knowledge, no other approach has been developed in a similar
direction. We have also presented a definition of a Twitter-based argument for
a query Q that considers as a support the bunch of tweets which are associated
with Q according to a given criterion. For such an argument, we also define a
prevailing sentiment, obtained in terms of sentiment analysis tools. This allowed
us to characterize the notion of opinion tree, which can be recursively built by
considering arguments associated with incrementally extended queries . We have
implemented a prototype of our proposal as a proof of concept, which was used
to compute the opinion tree for the case study presented in the paper.

We have also presented a theoretical setting for analyzing Twitter-based
arguments, associating a superior lattice rooted in the initial argument for the
first given query. Based on the notion of attack between arguments, we have
established as well a refined order relationship between conflicting arguments.
As a result, from every superior lattice associated with a given query Q, a
conflict tree rooted in Q can be built, in which alternating opinions can be
better contrasted. Given a node A (argument) associated with query Q′ with a
prevailing sentiment s, every children node for A in a conflict tree corresponds
to an argument for a more specific query Q′, which is in conflict with A as
it is associated with a sentiment shift. Conflict trees allow us to explore the
space of possible confronting opinions associated with a given opinion, using
the specificity principle as traditionally used in argumentation for preferring
arguments.

Part of our future work is associated with deploying the ideas presented in
this paper in a software product. As a basis for such deployment, visual tools
for displaying and analyzing dialectical trees have been already developed for
Defeasible Logic Programming [15]. We expect to use the underlying algorithms
from this tool in our framework. Additionally, we expect to perform different
experiments with hashtags associated with relevant topics, assessing the appli-
cability of our approach in a real-world context. Additionally, we are working on
extending the current Twitter-based model to a more generic setting, in which

7 http://www.cyberemotions.eu/



opinions are collected from other social networks (such as Facebook).8 Research
in this direction is currently being pursued.
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