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Abstract. When a physicist writes down equations, or formulates a the-
ory in any other terms, he usually means not only that these equations
are true for the real world, but also that the model corresponding to the
real world is “typical” among all the solutions of these equations. This
type of argument is used when physicists conclude that some property
is true by showing that it is true for “almost all” cases. There are for-
malisms that partially capture this type of reasoning, e.g., techniques
based on the Kolmogorov-Martin-Löf definition of a random sequence.
The existing formalisms, however, have difficulty formalizing, e.g., the
standard physicists’ argument that a kettle on a cold stove cannot start
boiling by itself, because the probability of this event is too small.
We present a new formalism that can formalize this type of reasoning.
This formalism also explains “physical induction” (if some property is
true in sufficiently many cases, then it is always true), and many other
types of physical reasoning.

In the current mathematical formalizations of physics, physically impossible events
are sometimes mathematically possible. From the physical and engineering view-
points, a cold kettle placed on a cold stove will never start boiling by itself. How-
ever, from the traditional probabilistic viewpoint, there is a positive probability
that it will start boiling, so a mathematician might say that this boiling event
is rare but still possible.

In the current formalizations, physically possible indirect measurements are of-
ten mathematically impossible. In engineering and in physics, we often cannot
directly measure the desired quantity; instead, we measure related properties
and then use the measurement results to reconstruct the measured values. In
mathematical terms, the corresponding reconstruction problem is called the in-
verse problem. In practice, this problem is efficiently used to reconstruct the
signal from noise, to find the faults within a metal plate, etc. However, from
the purely mathematical viewpoint, most inverse problems are ill-defined mean-
ing that we cannot really reconstruct the desired values without making some
additional assumptions.
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What we are planning to do. A physicist would explain that in both situations,
the counter-examples like a kettle boiling on a cold stove or a weird configuration
that is mathematically consistent with the measurement results are abnormal. In
this paper, we show that if we adequately formalize this notion of abnormality, we
will be able to weed out these counterexamples and thus, make the formalization
of physics better agreeing with common sense and with the physicists’ intuition.

Our approach uses the notion of Kolmogorov complexity.

What is Kolmogorov complexity. This research is mainly concentrated around
the notion of Kolmogorov complexity. This notion was introduced independently
by several people: Kolmogorov in Russia and Solomonoff and Chaitin in the US.
Kolmogorov used it to formalize the notion of a random sequence. Probability
theory describes most of the physicist intuition in precise mathematical terms,
but it does not allow us to tell whether a given finite sequence of 0’s and 1’s is
random or not. Kolmogorov defined a complexity K(x) of a binary sequence x as
the shortest length of a program which produces this sequence. Thus, a sequence
consisting of all 0’s or a sequence 010101. . . have a very small Kolmogorov com-
plexity because these sequences can be generated by simple programs, while for
a sequence of results of tossing a coin, probably the shortest program is to write
print(0101. . . ) and then reproduce the entire sequence. Thus, when K(x) is ap-
proximately equal to the length len(x) of a sequence, this sequence is random,
otherwise it is not. The best source for Kolmogorov complexity is a book [14].

Physicists assume that initial conditions and values of parameters are not ab-
normal. To a mathematician, the main contents of a physical theory is the
equations. The fact that the theory is formulated in terms of well-defined math-
ematical equations means that the actual field must satisfy these equations.
However, this fact does not mean that every solution of these equations has a
physical sense. Let us give three examples:

Example 1. At any temperature greater than absolute zero, particles are ran-
domly moving. It is theoretically possible that all the particles start moving in
one direction, and, as a result, the chair that I am sitting on starts lifting up
into the air. The probability of this event is small (but positive), so, from the
purely mathematical viewpoint, we can say that this event is possible but highly
unprobable. However, the physicists say plainly that such an abnormal event is
impossible (see, e.g., [5]).

Example 2. Another example from statistical physics: Suppose that we have a
two-chamber camera. The left chamber if empty, the right one has gas in it. If we
open the door between the chambers, then the gas would spread evenly between
the two chambers. It is theoretically possible (under appropriately chosen initial
conditions) that the gas that was initially evenly distributed would concentrate
in one camera, but physicists believe this abnormal event to be impossible. This
is a general example of what physicists call irreversible processes: on the atomic
level, all equations are invariant with respect to changing the order of time flow
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t → −t). So, if we have a process that goes from state A to state B, then, if at B,
we revert all the velocities of all the atoms, we will get a process that goes from
B to A. However, in real life, many processes are clearly irreversible: an explosion
can shatter a statue, but it is hard to imagine an inverse process: an implosion
that glues together shattered pieces into a statue. Boltzmann himself, the 19
century author of statistical physics, explicitly stated that such inverse processes
“may be regarded as impossible, even though from the viewpoint of probability
theory that outcome is only extremely improbable, not impossible.” [1].

Example 3. If we flip a fair coin 100 times in a row, and get heads all the time,
then a person who is knowledgeable in probability would say that it is possible
– since the probability is still positive, while an engineer (and any person who
uses common sense reasoning) would say that the coin is not fair, because if it
is was a fair coin, then this abnormal event would be impossible.

In all the above cases, we knew something about probability. However, there
are examples of this type of reasoning in which probability does not enter into
picture at all. For example, in general relativity, it is known that for almost
all initial conditions (in some reasonable sense) the solution has a singularity
point. From this, physicists conclude that the solution that corresponds to the
geometry of the actual world has a singularity (see, e.g., [15]): the reason is
that the initial conditions that lead to a non-singularity solution are abnormal
(atypical), and the actual initial conditions must be not abnormal.

In all these cases, the physicists (implicitly or explicitly) require that the ac-
tual values of the fields must not satisfy the equations, but they must also satisfy
the additional condition: that the initial conditions should not be abnormal.

How is all this connected with the existing work in NMR, in particular, in
probability-based NMR. It is well known that probability leads to non-monotonic
reasoning (NMR). For example, we can define “typically, A implies B” as mean-
ing that out of all events for which A is true, the probability of “not B” is
smaller than a certain threshold p0. The resulting implication is not transitive
(hence, not monotonic): if C ⊆ B ⊆ A with p(A) = 1, p(B) = 1 − p0, and
p(C) = (1 − p0)2, then “typically, A implies B” and “typically, B implies C”,
but not “typically, A implies C”.

There is a massive body of work by J. Pearl, H. Geffner, E. Adams, F. Bac-
chus, Y. Halpern, and others on probability-based non-monotonic reasoning;
many of them are cited in a recent book [8] that also describes other exist-
ing approaches to non-monotonic reasoning, approaches found in the AI and
Knowledge Representation communities. The existing approaches have shown
that many aspects of non-monotonic reasoning can indeed be captured by the
existing logic-related and probability-related ideas. In this paper, we consider as-
pects of non-monotonic reasoning expert that are not captured by the previous
formalisms, and we produce a new probability-related formalism for capturing
these aspects.

In the future, it is desirable to combine our new approach with the existing
logic-based and probability-based NMR into a single NMR technique.
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The notion of “not abnormal” is difficult to formalize. At first glance, it looks
like in the probabilistic case, this property has a natural formalization: if a
probability of an event is small enough (say, ≤ p0 for some very small p0), then
this event cannot happen. For example, the probability that a fair coin falls heads
100 times in a row is 2−100, so, if we choose p0 ≥ 2−100, then we will be able
to conclude that such an event is impossible. The problem with this approach
is that every sequence of heads and tails has exactly the same probability. So, if
we choose p0 ≥ 2−100, we will thus exclude all possible sequences of heads and
tails as physically impossible. However, anyone can toss a coin 100 times, and
this prove that some sequences are physically possible.

Historical comment. This problem was first noticed by Kyburg under the name
of Lottery paradox [13]: in a big (e.g., state-wide) lottery, the probability of
winning the Grand Prize is so small, then a reasonable person should not expect
it. However, some people do win big prizes.

How to formalize the notion of “not abnormal”: idea. “Abnormal” means some-
thing unusual, rarely happening: if something is rare enough, it is not typical
(“abnormal”). Let us describe what, e.g., an abnormal height may mean. If a
person’s height is ≥ 6 ft, it is still normal (although it may be considered abnor-
mal in some parts of the world). Now, if instead of 6 pt, we consider 6 ft 1 in, 6 ft
2 in, etc, then sooner or later we will end up with a height h such that everyone
who is higher than h will be definitely called a person of abnormal height. We
may not be sure what exactly value h experts will call “abnormal”, but we are
sure that such a value exists.

Let us express this idea is general terms. We have a Universe of discourse,
i.e., a set U of all objects that we will consider. Some of the elements of the
set U are abnormal (in some sense), and some are not. Let us denote the set
of all elements that are typical (not abnormal) by T . On the set U , we have a
decreasing sequence of sets A1 ⊇ A2 ⊇ . . . ⊇ An ⊇ . . . with the property that
∩An = ∅. In the above example, U is the set of all people, A1 is the set of all
people whose height is ≥ 6 ft, A2 is the set of all people whose height is ≥ 6 ft
1 in, A2 is the set of all people whose height is ≥ 6 ft 2 in, etc. We know that if
we take a sufficiently large n, then all elements of An are abnormal (i.e., none of
them belongs to the set T of not abnormal elements). In mathematical terms,
this means that for some n, we have An ∩ T = ∅.

In case of a coin: U is the set of all infinite sequences of results of flipping a
coin; An is the set of all sequences that start with n heads but have some tail
afterwards. Here, ∩An = ∅. Therefore, we can conclude that there exists an n
for which all elements of An are abnormal. According to mechanics, the result of
flipping a coin is uniquely determined by the initial conditions, i.e., on the initial
positions and velocities of the atoms that form our muscles, atmosphere, etc. So,
if we assume that in our world, only not abnormal initial conditions can happen,
we can conclude that for some n, the actual sequence of results of flipping a coin
cannot belong to An. The set An consists of all elements that start with n heads
and a tail after that. So, the fact that the actual sequence does not belong to An
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means that if an actual sequence has n heads, then it will consist of all heads.
In plain words, if we have flipped a coin n times, and the results are n heads,
then this coin is biased: it will always fall on heads.

Let us describe this idea in mathematical terms [7, 12]. To make formal defi-
nitions, we must fix a formal theory: e.g., the set theory ZF (the definitions and
results will not depend on what exactly theory we choose). A set S is called
definable if there exists a formula P (x) with one (free) variable x such that P (x)
if and only if x ∈ S.

Crudely speaking, a set is definable if we can define it in ZF. The set of all
real numbers, the set of all solutions of a well-defined equations, every set that
we can describe in mathematical terms is definable.

This does not means, however, that every set is definable: indeed, every
definable set is uniquely determined by formula P (x), i.e., by a text in the
language of set theory. There are only denumerably many words and therefore,
there are only denumerably many definable sets. Since, e.g., there are more than
denumerably many set of integers, some of them are thus not definable.

Definition 1. A sequence of sets A1, . . . , An, . . . is called definable if there exists
a formula P (n, x) such that x ∈ An if and only if P (n, x).

Definition 2. Let U be a universal set.

– A non-empty set T ⊆ U is called a set of typical (not abnormal) elements if
for every definable sequence of sets An for which An ⊇ An+1 and ∩An = ∅,
there exists an N for which AN ∩ T = ∅.

– If u ∈ T , we will say that u is not abnormal.
– For every property P , we say that “normally, for all u, P (u)” if P (u) is true

for all u ∈ T .

Relation to Kolmogorov complexity. Kolmogorov complexity enables us to define
the notion of a random sequence, e.g., as a sequence s for which there exists a
constant c > 0 for which, for every n, the (appropriate version of) Kolmogorov
complexity K(s|n) of its n-element subsequence s|n exceeds n−c. Crudely speak-
ing, c is the amount of information that a random sequence has.

Random sequences in this sense do not satisfy the above definition, and are
not in perfect accordance with common sense – because, e.g., a sequence that
starts with 106 zeros and then ends in a truly random sequence is still random.
Intuitively, for “truly random” sequences, c should be small, while for the above
counter-example, c ≈ 106. If we restrict ourselves to random sequences with
fixed c, we satisfy the above definition.

There are many ways to define Kolmogorov complexity and random se-
quences [14]; it is therefore desirable to aim for results that are true in as general
case as possible. In view of this desire, in the following text, we will not use any
specific version of these definitions; instead, we will assume that Definition 2 is
true.

It is possible to prove that abnormal elements do exist [7]; moreover, we can
select T for which abnormal elements are as rare as we want: for every probability
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distribution p on the set U and for every ε, there exists a set T for which the
probability p(x 6∈ T ) of an element to be abnormal is ≤ ε:

Proposition 1. For every probability measure µ on a set U (in which all de-
finable sets are measurable), and for every ε > 0, there exists a set T of typical
elements for which µ(T ) > 1− ε.

Proof. Similarly to the above argument, one can show that there are no more
than countably many definable sequences of sets {An}. Thus, there are at most
countably many definable decreasing sequences a = {An} for which ∩An = ∅.
Therefore, we can order all such sequences into a sequence of sequences: a(1) =
{A(1)

n }, a(2) = {A(2)
n }, . . . For each of these sequences a(k), since ∩A

(k)
n = ∅, we

have µ(A(k)
n ) → 0 as n →∞, hence there exists an Nk for which µ(A(k)

Nk
) < ε/2k.

Let us show that as T , we can take the complement U \A to the union A of all
the sets A

(k)
Nk

. Indeed, by our choice of T , for every definable decreasing sequence

a(k) = {A(k)
n }, there exists an N , namely N = Nk, for which T ∩A

(k)
N = ∅.

To complete the proof, we must show that µ(T ) > 1 − ε. Indeed, from
µ(A(k)

Nk
) < ε/2k, we conclude that µ(A) = µ(∪A

(k)
Nk

) ≤ ∑
µ(A(k)

Nk
) <

∑
ε/2k = ε,

and therefore, µ(T ) = µ(U \A) = 1− µ(A) > 1− ε. ut

Application: restriction to “not abnormal” solutions leads to regularization of
ill-posed problems. An ill-posed problem arises when we want to reconstruct
the state s from the measurement results r. Usually, all physical dependencies
are continuous, so, small changes of the state s result in small changes in r.
In other words, a mapping f : S → R from the set of all states to the set of
all observations is continuous (in some natural topology). We consider the case
when the measurement results are (in principle) sufficient to reconstruct s, i.e.,
the case when the mapping f is 1-1. That the problem is ill-posed means that
small changes in r can lead to huge changes in s, i.e., that the inverse mapping
f−1 : R → S is not continuous.

We will show that if we restrict ourselves to states S that are not abnormal,
then the restriction of f−1 will be continuous, and the problem will become
well-posed.

Definition 3. A definable metric space (X, d) is called definably separable if
there exists a definable everywhere dense sequence xn ∈ X.

Proposition 2. Let S be a definably separable definable metric space, T be a set
of all not abnormal elements of S, and f : S → R be a continuous 1-1 function.
Then, the inverse mapping f−1 : R → S is continuous for every r ∈ f(T ).

In other words, if we know that we have observed a not abnormal state (i.e.,
that r = f(s) for some s ∈ T ), then the reconstruction problem becomes well-
posed. So, if the observations are accurate enough, we get as small guaranteed
intervals for the reconstructed state s as we want.
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Proof. It is known that if a set K is compact, then for any 1-1 continuous
function K → R, its inverse is also continuous. Thus, to prove our result, we will
show that the closure T of the set T is compact.

A set K in a metric space S is compact if and only it is closed, and for every
positive real number ε > 0, it has a finite ε-net, i.e., a finite set K(ε) with the
property that every s ∈ K, there exists an element s(ε) ∈ K(ε) that is ε-close
to s.

The closure K = T is clearly closed, so, to prove that this closure is compact,
it is sufficient to prove that it has a finite ε-set for all ε > 0. For that, it is
sufficient to prove that for every ε > 0, there exists a finite ε-net for the set R.

If a set T has a ε-net T (ε), and ε′ > ε, then, as one can easily see, this same
set T (ε) is also a ε′-net for T . Therefore, it is sufficient to show that finite ε-nets
for T exist for ε = 2−k, k = 0, 1, 2, . . .

Let us fix ε = 2−k. Since the set S is definably separable, there exists a
definable sequence x1, . . . , xi, . . . which is everywhere dense in S. As An, we will
now take the complement to the union Un of n closed balls Bε(x1), . . . , Bε(xn)
of radius ε with centers in x1, . . . , xn.

Clearly, An ⊇ An+1. Since xi is an everywhere dense sequence, for every
s ∈ S, there exists an n for which s ∈ Bε(xn) and for which, therefore, s ∈ Un

and x 6∈ An = S \ Un. Hence, the intersection of all the sets An is empty.
Therefore, according to the definition of a set of typical elements, there exists

an N for which T ∩AN = ∅. This means that T ⊆ UN . This, in its turn, means
that the elements x1, . . . , xN form an ε-net for T . So, the set T has a finite ε-net
for ε = 2−k. ut
Comment. To actually use this result, we need an expert who will tell us what is
abnormal, and whose ideas of what is abnormal satisfies the (natural) conditions
described in Definition 2.

Application: every physical quantity is bounded.

Proposition 3. If U is a definable set, and f : U → R is a definable function,
then there exists a number C such that if u ∈ U is not abnormal, then |f(u)| ≤ C.

Proof. We can take An
def= {u | |f(u)| > n}; then, ∩An = ∅, hence there exists

N for which AN ∩ T = ∅, i.e., for which, once u ∈ T , we have u 6∈ AN – i.e.,
|f(u)| ≤ N . ut

Measurable physical quantities come from an algorithmically described proce-
dures, hence in a reasonable physical theory, these quantities should be definable
in terms of the objects. If we now use the physicists’ idea that abnormal initial
conditions and/or abnormal values of parameters are impossible, then we can
make the following conclusions:

Special relativity. If as U , we take the set of all the particles, and as f , we take
velocity, then we can conclude that the velocities of all (not abnormal) particles
is bounded by some constant C. This is exactly what special relativity says, with
the speed of light as C.
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Cosmology. If we take the same state U , and as f , take the distance from the
a particle u to some fixed point in the Universe, then we can conclude that the
distances between particles in the Universe are bounded by a constant C. So,
the Universe is finite. Similarly, if we take a time interval between the events as
f , we can conclude that the Universe has a finite lifetime.

Why particles with large masses do not exist. Several existing particle classifi-
cation schemes allow particles with arbitrarily large masses [3]. E.g., in Regge
trajectory scheme, particles form families with masses mn = m0 + n · d for some
constants m0 and d: when n → ∞, we have mn → ∞. However, only particles
with relatively small masses have been experimentally observed (see, e.g., [16]).

These particles with large masses, that are difficult to weed out using equa-
tions only, can be easily weeded out if use the notion of “not abnormal”. Indeed,
if we take mass of the particle as f , then we can conclude that the masses of all
(not abnormal) particles are bounded by some constant C.

Dimensionless constants are usually small. This is the reason why engineers and
physicists can safely estimate and neglect, e.g., quadratic (or, in general, higher
order terms) in asymptotic expansions, even though no accurate estimates on
the coefficients on these terms is known [6]. In particular, such methods are used
in quantum field theory, where we add up several first Feynman diagrams [4]; in
celestial mechanics [17], etc.

Chaos naturally appears. Restriction to not abnormal also explains the origin of
chaotic behavior of physical systems; see, e.g., [10].

Application: justification of physical induction. From the viewpoint of an ex-
perimenter, a physical theory can be viewed as a statement about the results
of physical experiments. If we had an infinite sequence of experimental results
r1, . . . , rn, . . ., then we will be able to tell whether the theory is correct or not.
So, a theory can be defined as a set of sequences r1, r2, . . . that are consistent
with its equations, inequalities, etc. In real life, we only have finitely many re-
sults r1, . . . , rn, so, we can only tell whether the theory is consistent with these
results or not, i.e., whether there is an infinite sequence r1, r2, . . . that starts
with the given results that satisfies the theory.

It is natural to require that the theory be physically meaningful in the fol-
lowing sense: if all experiments confirm the theory, then this theory should be
correct. An example of a theory that is not physically meaningful is easy to give:
assume that a theory describes the results of tossing a coin, and it predicts that
at least once, there should be a tail. In other words, this theory consists of all
sequences that contain at least one tail. Let us assume that actually, the coin
is so biased that we always have heads. Then, this infinite sequence does not
satisfy the given theory. However, for every n, the sequence of the first n results
(i.e., the sequence of n heads) is perfectly consistent with the theory, because
we can add a tail to it and get an infinite sequence that belongs to the set T .
Let us describe this idea in formal terms.
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Definition 4. Let a definable set R be given. Its elements will be called possible
results of experiments. By S, we will denote the set of all possible sequences
r1, rn, . . ., where ri ∈ R. By a theory, we mean a definable subset T of the set
of all infinite sequences S. If r ∈ T , we say that a sequence r satisfies the theory
T , or, that for this sequence r, the theory T is correct.

Comment. A theory is usually described by its axioms and deduction rules. The
theory itself consists of all the statements that can be deduced from the axioms
by using deduction rules. In most usual definitions, the resulting set is r.e. –
hence definable. We therefore define a theory as a definable set.

Definition 5. We say that a finite sequence (r1, . . . , rn) is consistent with the
theory T if there exists an infinite sequence r ∈ T that starts with r1, . . . , rn and
that satisfies the theory. In this case, we will also say that the first n experiments
confirm the theory.

Definition 6. We say that a theory T is physically meaningful if the following
is true for every sequence r ∈ S:

If for every n, the results of first n experiments from r confirm the theory
T , then, the theory T is correct for r.

In this case, the universal set consists of all possible infinite sequence of exper-
imental results, i.e., U = S. Let T ⊆ S be the set of all typical (not abnormal)
sequences.

Proposition 4. For every physically meaningful theory T , there exists an inte-
ger N such that if a sequence r ∈ S is not abnormal and the first N experiment
confirm the theory T , then this theory T is correct.

Idea of the proof: as An, we take the set of all the sequences r for which either
the first n experiments confirm T or T is not correct for r. ut

This result shows that we can confirm the theory based on finitely many
observations. The derivation of a general theory from finitely many experiments
is called physical induction (as opposed to mathematical induction). There have
been many attempts to justify physical induction. However, in spite of the suc-
cess, the general physical induction is difficult to justify, to the extent that a
prominent philosopher C. D. Broad has called the unsolved problems concerning
induction a scandal of philosophy [2]. We can say that the notion of “not ab-
normal” justifies physical induction by making it a provable theorem (and thus
resolves the corresponding scandal).
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