
Notes on the Parallels Between Biological and Software
Evolution

Ladislav Samuelis
Technical University of Košice

Letná 9, Košice
Slovakia

ladislav.samuelis@tuke.sk

ABSTRACT

This contribution analyzes parallels between software and
biological evolution published in software engineering liter-
ature. Several papers suggest to the software engineering
community that software and biological systems share some
useful features of evolution. We compare the driving forces
of the software evolution with biological evolution and high-
light their different nature. We conclude that searching for
parallels between biological and software evolution is a chal-
lenging task but at the same time there are limits, which
may be hardly observed in the impure research field of soft-
ware evolution.

Categories and Subject Descriptors

D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement—Enhancement ; D.2.13 [Software Engi-

neering]: Reusable Software—Reuse models

Keywords

Software engineering, software evolution, software mainte-
nance, biological evolution

1. INTRODUCTION
Writing this paper was motivated by the author’s read-

ing papers in software engineering journals devoted to the
parallels between the software and biological evolution, e.g.
[22], [15] and [19]. These works suggest that “new light can
be shed on the nature of software evolution investigating the
parallels between the biological and software evolution”. We
put some questions: Is it feasible to rely in software devel-
opment processes on principles of biological evolution? Are
there any “parallels” or common “key properties” at all?

The aim of this contribution is to highlight observations
concerning the role of biological evolution mechanisms within
the context of computer science and software engineering. In
particular, it analyzes the abstractions and driving forces of
the biological and software evolution. In the conclusion we
summarize the possible ways of misunderstandings.

BCI’12, September 16–20, 2012, Novi Sad, Serbia.

Copyright c© 2012 by the paper’s authors. Copying permitted only for private and

academic purposes. This volume is published and copyrighted by its editors.

Local Proceedings also appeared in ISBN 978-86-7031-200-5, Faculty of Sciences,

University of Novi Sad.

2. SOME HISTORICAL NOTES ON SOFT-

WARE EVOLUTION
The notion of software evolution, which is closely related

and often interchanged with the term maintenance was al-
ready introduced in the middle of the seventies when Lehman
and Belady examined the growth and the evolution of a num-
ber of large software systems [13]. They proposed 8 laws,
which are often cited in software engineering literature and
are considered as the first research results gained by observ-
ing the evolution of large software systems.

The term software evolution has emerged in many research
papers with roots both in computer science and software
engineering disciplines [16]. Nowadays, it has become an
accepted research area. In spite of the fact that the science
of software evolution is in its infancy, formal theories are
being developed and empirical observations are compared
to the predicted results.

Lehman’s second law states the following: An evolving

system increases its complexity unless work is done to re-

duce it. Due to the consequences of this law and due to
the increased computing power, research in software and re-
lated areas accelerates and very often causes confusion and
inconsistency in the used terminology.

Research on software evolution is discussed in many soft-
ware related disciplines. Topics of software evolution are
subjects of many conferences and workshops, too. In the
following paragraph we will briefly characterize the inter-
pretation of the notion of evolution in the short history of
software engineering.

The notions of program synthesis or automated program
construction are the first forerunners of the evolution ab-
straction in software engineering. Papers devoted to these
topics can be found also in the research field of automated
program synthesis. Practical results achieved in the field
of programming by examples are summarized, for example
in book [7]. The general principle of these approaches are
based on the inductive inference principle [1].

The term evolution was originally a synonym for the au-
tomation of program construction and for the discovery of
the reusable code – i.e. searching for loops. Later on, when
programming technologies matured and program libraries
and components were established in practice, the research
field of pattern reuse [8] and engineering component-based
systems [2] drew attention of the theory and practice to
component engineering. In other words, a slight shift to
component-based aspect is observed in the course of pro-
gram construction. We may say that the widely used term
of customization was stressed and later on this term also

129



merged with the notion of evolution. Of course, this shift
was heavily supported by the object-oriented programming
languages, which penetrated into the industrial practice in
the 1980s.

Since it was a necessity to maintain large and more com-
plex legacy systems, the topic of program comprehension
came into focus and became more and more important. Pro-
gram comprehension is an activity drafted, for example, in
the paper of Rajlich and Wilde [18] as: Program comprehen-

sion is an essential part of software evolution and software

maintenance: software that is not comprehended cannot be

changed. The fields of software documentation, visualiza-

tion, program design, and so forth, are driven by the need for

program comprehension. Program comprehension also pro-

vides motivation for program analysis, refactoring, reengi-

neering, and other processes.
This is in compliance with the idea that our understanding

of the domain problem incrementally evolves and learning is
an indispensable part of program comprehension. Rajlich in
dealing with the changing paradigm of software engineering
stresses the importance of the concept location. He argues
that the volatility of the requirements is the result of the
developer’s learning. Thus learning and understanding or
comprehension is indispensably coupled with the concept of
evolution [17].

These ideas are the forerunners of domain engineering as
described by Bjorner in his work [3]. We add that mental
activities associated with understanding are dealt within the
cognitive sciences and it is important to realize that, for
example, not all software design concepts (intangibilities in
the mind) can be formalized.

The scattered results from the above mentioned areas lead
to the attempt to establish the taxonomy of software evolu-
tion [5]. Further areas of the contemporary research, which
deal more or less with the evolution concept, are software
merging [14], measurement of the flexibility and complex-
ity of the software [6], and software visualization for reverse
engineering [12].

It is also obvious that the evolution principle in the bi-
ological interpretation heavily attracted and influenced the
research of the evolution in software engineering. The work
of Nehaniv et al. critically warns the software engineering
community about the non-obvious traps when the evolution
principles valid in biology are mechanically applied to the
area of software artifacts [15].

These short notes highlighted the interlacing of software
related disciplines and how they mutually influence each
other.

3. DOES SOFTWARE DEVELOPMENT BE-

NEFIT FROM THE MECHANISMS OF

BIOLOGICAL EVOLUTION?
Our position is that abstractions and mechanisms of bio-

logical evolution have limited impact on our understanding
of software evolution. It is a challenge to question and clear
the abstractions derived from the parallels in the impure
field of software evolution. Questioning parallels between
the biological and software systems reveals the limits of their
applicability.

Let us cite from the work of Svetinovic and Godfrey [21]:

[...] all possible mechanisms that introduce
variation in the software world are introduced by

intentional human actions. So how do they re-
late? We take the stand that it does not matter
at all. The important fact is that there exist the
mechanisms that introduce change and variation
in both.

In fact this approach neglects at all the importance of the
change mechanisms. That is why we cannot discuss about
the differences or similarities between them.

The next sentence says:

Who or what is the reason for this change and
variation, and how they get incorporated into the
population is not of great importance. [...]

If we want to analyze the parallels between the biologi-
cal and software evolution then it is of great importance to
characterize them. First of all, we have to distinguish be-
tween the processes that model the domain and processes
that select the appropriate model for the domain. The se-
lection of the appropriate model (or software development)
is a non-deterministic process and that is why it cannot be
fully automated, too.

Let us put the question: How does genetic algorithms
relate to software evolution?

If we accept the standpoint that software models processes
of a certain domain (natural or artificial) by algorithms (not
only) then those algorithms may be inspired (among others)
also by natural evolution (see, for example, the Wikipedia
definition of the genetic algorithm). The answer is clear,
genetic algorithms belong to the world of algorithms (the
abstractions applied to a certain domain may be valid or
not).

If we accept the standpoint that changes ”are introduced
by intentional human actions” (as stated by the authors in
the same paper) then we also have to admit that the changes
are non-deterministic (it is also possible to select other al-
gorithms than genetic for modeling a particular problem).

The conclusion is that we have to be aware and not to
confuse non-deterministic human activities with the deter-
ministic processes of the natural evolution.

The following sentence of the authors says:

The methodology and consequences stay the
same as long as the whole process is the same.

Accepting the fact that the processes are not the same
intrinsically (software development is non-deterministic pro-
cess – based on creative thinking and understanding) then we
have to avoid temptation (very comfortable) to write about
”some common principles, mechanisms between the software
and biological evolution”.

Otherwise we come to the conclusion that software devel-
opment is a deterministic process (some natural process),
which is contradiction with our initial standpoint (it is non-
deterministic).

To sum up, we have to differentiate strictly between the
processes that we model and the thinking-understanding
(this was not yet modeled). These processes belong to two
”distinct worlds”. If we superficially ”merge”these two worlds
(intentionally or unintentionally) then we deliberately give
up seeking the truth and may construct false theories.

The same work states also:

If one wants to make the parallel between bi-
ological and software evolution, one could argue

130



about the similarity of mutation to the incorpo-
ration of new, relatively origin features into the
product. Recombination could be treated similar
to the product combination and gene flow could
be compared to the improvements due to the flow
of knowledge similar.

We note that it is easy to find common abstractions on
the observational level and, for example, to draw an analogy
between the biological mutation and the incorporation of
new features into the product. At the same time we have to
declare that here we arrived to our boundaries. We have to
fix that gene flow is deterministic but flow of knowledge is
unknown and non-deterministic.

In other words; software is modified by actions of human
beings, while biological evolution is not the result of ac-
tions by human beings. Biological evolution is forced by
”some natural” forces. Processes that drive the organism’s
genotypes and phenotypes [9] are deterministic and cannot
be compared non-deterministic flow of knowledge applied to
the man-made artifacts.

This idea is expressed from another aspect by Jazayeri
[11]:

[...] Not the software itself evolves, but our
understanding and the comprehension of the re-
ality. [...]

This approach stresses the importance of program com-
prehension and the tools that support comprehension (see
also the work of Jackson [10] on tools for supporting under-
standing).

In summary, software evolution evolves according to our
understanding of the domain, which we want to model by
the computer. From this point of view knowledge about
biological evolution does not support our understanding of
the domain under consideration (or universe of discourse).

Considering a software’s life cycle phases, we may observe
(and have to observe) in all steps (as domain engineering,
requirements engineering, specification, design, implementa-
tion, test, and operation) learning activities, which in fact
means the evolution of our understanding of the modeled
phenomenon.

Much more effective, than to seek parallels between bio-
logical and software evolution is to follow the ideas in works
of Bjorner [4]. He introduces the notion of domain engineer-
ing and his triptych dogma says:

[...] Software cannot be designed without a
robust understanding of the requirements and
the requirements cannot be prescribed without
a robust understanding of the domain. [...]

As far as we know, the only way of achieving a robust un-
derstanding of the domain is attentive work in the domain
in order to gain experiences by trial and error. This is also
called inductive inference and the product is our intangible
understanding of the idea to be modelled. Following this
thread of thought; the result of inductive inference is a de-

ductive system (software or model), which has to be mapped
on the computer.

In fact, it is not possible to build a software system with-
out thorough understanding of the domain (which we do
anyhow through all phases of software development life cy-
cle). The more deeply we understand the reality the more
the software could be evolved.

We must note that the Software Engineering Method and

Theory initiative [20] does not mention parallels between
biological and software evolution at all.

4. CONCLUSION
Summing up, the existing disciplines of software engineer-

ing approach the phenomenon of evolution from various as-
pects. These approaches have their own history and theoret-
ical roots; they are in various branches of computer/comput-
ing science and are treated from the philosophical point of
view, too. It can be guaranteed that new techniques and re-
search areas will emerge in the near future and will further
deal with the phenomenon of evolution.

We hope that the above-discussed ideas will focus the
attention of software engineers toward the reconsideration
of the obviously claimed statements, which are against the
facts observed in reality. In other words, to provoke a discus-
sion about the feasibility of biological and software evolution
parallels in software development.

5. ACKNOWLEDGMENTS
This work was supported by the project KEGA 040TUKE-

4/2011: Modern Software Engineering in Education – Pro-
posal of the Structure and Realization of Actual Software
Engineering Subjects for Informatics Study Program at Tech-
nical Universities.

6. REFERENCES

[1] http://en.wikipedia.org/wiki/Inductive inference.

[2] F. Allen. The history of language processor technology
in ibm. IBM Journal of Research and Development,
25(2):535–548, 1981.

[3] D. Bjorner. Domain engineering: Technology
management, research and engineering,.
http://www2.imm.dtu.dk/ db/jaistmono.pdf.

[4] D. Bjorner. From domains to requirements.
methodology contributions to domain analysis and
requirements engineering.
http://www2.imm.dtu.dk/ db/from-domains-to-
requirements.pdf,.

[5] J. Buckley. Towards a taxonomy of software change.
Journal of Software Maintenance, 17(5):309–332, 2005.

[6] A. Eden. Measuring software exibility. IEE Software,
153(3):113–126, 2006.

[7] A. C. et al. Watch What I Do: Programming by

Demonstration, chapter Chapter ”Programming by
demonstration”. Cambridge University Press, 1993.

[8] M. Fowler. Analysis Patterns: Reusable Object Models,
volume Object Technology Series. The
Addison-Wesley, 2000.

[9] http://en.wikipedia.org/wiki/Genotype-
phenotype distinction.

[10] M. Jackson. Automated Software Engineering,
volume 15, pages 275–281. Kluwer Academic
Publishers Hingham, Dec. 2008. ISSN: 0928-8910.

[11] M. Jazayeri. Species evolve, individuals age. In In

International Workshop on Principles of Software

Evolution. ACM, Sept. 5-6 2005.

[12] R. Koschke. Software visualization, state-of-the-art
survey. In Software Visualization for Reverse

131



Engineering, volume 2269, pages 113–126. Springer
LNCS, 2002.

[13] M. Lehman and L. Belady. A model of large program
development. IBM Systems Journal, 15(3):225–252,
1976.

[14] T. Mens. A state-of-the-art survey on software
merging. IEEE Transactions on Software Engineering,
28(5):449–462, 2002.

[15] C. Nehaniv, J. Hewitt, B. Christianson, and
P. Wernick. What software evolution and biological
evolution don’t have in common. In
SOFTWARE-EVOLVABILITY ’06: Proceedings of

the Second International IEEE Workshop on Software

Evolvability, pages 58–65, Washington, DC, USA,
2006. IEEE Computer Society.

[16] L. J. Osterweil. What is software? Automated

Software Engineering, 15(3):261–273, 2008.

[17] V. Rajlich. Changing the paradigm of software
engineering. Commun. ACM, 49(8):67–70, 2006.

[18] V. Rajlich and N. Wilde. The role of concepts in
program comprehension. In Proceedings of the IEEE

International Workshop on Program Comprehension,
pages 271–278. IEEE Computer Society Press, 2002.

[19] A. Sampaio. Software phenetics, phylogeny and
evolution. In Software Evolvability, 2007 Third

International IEEE Workshop on, pages 60 –66, oct.
2007.

[20] http://www.semat.org.

[21] D. Svetinovic and M. Godfrey. Software and biological
evolution: Some common principles, mechanism, and
a definition. In Proceedings of the 8th IWPSE, Lisbon,
2005.

[22] L. Yu and S. Ramaswamy. Software and biological
evolvability: A comparison using key properties. In
Software Evolvability, 2006. SE ’06. Second

International IEEE Workshop on, pages 82 –88, sept.
2006.

132


