
Using Jason to Develop Declarative Prototypes of
Automated Negotiations

Alex Muscar
University of Craiova
Software Engineering

Department
Bvd. Decebal 107, Craiova,

200440, Romania
silie@software.ucv.ro

Laura Surcel
University of Craiova
Software Engineering

Department
Bvd. Decebal 107, Craiova,

200440, Romania
laura_surcel@yahoo.com

Costin Bădică
University of Craiova
Software Engineering

Department
Bvd. Decebal 107, Craiova,

200440, Romania
cbadica@software.ucv.ro

ABSTRACT

We propose a declarative approach for prototyping automated nego-

tiations in multi-agent systems. Our approach is demonstrated by

using Jason agent programming language to describe English and

Dutch auctions.

Categories and Subject Descriptors

I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence

Keywords

Artificial intelligence, computer programming

1. INTRODUCTION
Automated negotiations are common in multi-agent systems (MAS)

– e.g. bargaining, auctions [8], multi-criteria negotiation [6], multi-

commodity negotiations. Some of the practical applications of au-

tomated negotiations are: price negotiation for e-commerce ([2]),

cooperative design, and task allocation.

Although there are many methods of automated negotiations,

they generally fail to properly address the reusability and the ex-

tensibility of the proposed approaches. In most applications the

negotiation mechanism is very specific and hard coded, making the

reusability of research results difficult.

In order to treat these issues we have set up a research project

aiming to develop a generic, reusable negotiation framework. One

of the key insights of our approach is that an (automated) negotia-

tion has two main components: the protocol which governs agents’

interaction during negotiation and the strategy of participating agents.

While the analysis and design of specific negotiations mechanisms

and the development of appropriate strategies with desired proper-

ties (e.g. stability, equilibrium, efficiency, a.o) has received a lot of

attention in the context of particular situations, they have not been

properly addressed with regard to reusability and extensibility.

This paper is a follow-up of our initial proposal [5]. Our results

consisted in the identification of a minimal yet viable Generic Nego-

tiation Protocol (GNP) as well as of a declarative approach of repre-

senting rules and constraints specific to negotiation types. Our aim

was to combine them for deriving the basis of a generic, reusable

negotiation framework that would allow agents to specify and un-

derstand customizable negotiation protocols and strategies. In [5]

BCI’12, September 16–20, 2012, Novi Sad, Serbia.

Copyright c© 2012 by the paper’s authors. Copying permitted only for private and

academic purposes. This volume is published and copyrighted by its editors.

Local Proceedings also appeared in ISBN 978-86-7031-200-5, Faculty of Sciences,

University of Novi Sad.

we introduced a prototype MAS for English auctions based on Ja-

son agent programming language [1]. Here we take a closer look at

the implementation of this prototype and extend it to support Dutch

auctions.

2. BACKGROUND
The system architecture is based on our work [4], which distin-

guished between several types of agents:1 (i) Auction Service (AS)

manages auction-related activities (e.g. creation, termination), co-

ordinates the auction participants, and acts as a yellow page service

for ongoing auctions; (ii) Auction Host (AH) is an arbitrator agent

responsible with coordinating the agents participating in a single

auction instance (AI); and (iii) Auction Participant (AP) which par-

ticipates by bidding in an AI – out of all the participants one is

distinguished as the Auction Initiator Participant (AIP).

Conceptually, the declarative specification of a negotiation is

composed of three essential ingredients: (i) Generic Negotiation

Protocol (GNP) which defines and governs the interaction between

the agents that are part of the system and it is the same for all

of them, independently of their role in the negotiation (i.e. buyer,

seller); (ii) Declarative Negotiation Mechanism (DNM) is specific

to a given negotiation type and it serves to customize the GNP for

representing the specific conditions and events that enable the per-

missible actions of specific AP agents; and (iii) Custom Negotiation

Strategy (CNS) is specific to a given AP and must be consistent with

the DNM. It is used by the AP to select and configure a specific ne-

gotiation action that could be most useful in a given negotiation

context.

Based on the three features described above we can define the

following metaphorical equations that more succinctly describe the

agents present in our framework:

AH = GNPhost + DNMhost

AP = GNPparticipant + DNMparticipant + CNS

These ingredients can be consistently bound into descriptions of

AH and respectively AP behaviors by making them to refer a com-

mon core vocabulary of terms that can be used for defining and

parameterizing the space of negotiation types [7]. This vocabulary

is called Core Negotiation Ontology (CNO). The development of a

more complete CNO is is part of our future research.

1Note that the initial framework targeted auctions, so we have used
the term ‘auction’ interchangeably with ‘negotiation’.

136



+register[source(A)]

: can_register(A)

<- +registered(A);

?buy_it_out(Sum);

?increment(Increment);

?items(Left_items);

?last_offer(Offer);

?state(State);

.send(A, tell,

registered(info(Sum,Increment),

status(Offer, Left_items, State))).

+fold[source(A)]

: registered(A)

<- -registered(A);

.send(A, tell, not_registered).

+bid(Offer,Items)[source(A)]

: check_protocol(A)

& check_proposal(Offer,Items)

& not(terminate(Offer,Items))

<- -+state(processing);

!update_status(A,Offer,Items);

!inform_participants(A,Offer);

-+state(bidding).

+!close

: check_winner

<- ?initiator(I);

-+state(closed);

?bidders(A);

.send(I, tell, winner(A));

.send(A, tell, winner).

Figure 1: The AH agent which implements the GNP.

3. THE GENERIC NEGOTIATION PROTO-

COL
The GNP describes the permissible conversations involving a set

of negotiation agents comprising the following generic roles: (i)

role of AH; there is a single agent playing this role in a negotiation;

and (ii) role of AP; there are one or more agents playing this role

in a negotiation. Thus the GNP is agnostic of any details that are

specific to a particular negotiation type. Consequently, it must only

expose the basic negotiation actions that are common to as many ne-

gotiation types, leaving unspecified the specific details of a certain

negotiation type. Those details can be captured and declaratively

represented with the help of the DNM.

We have identified the following set of actions as sufficient for

the purpose of introducing our proof-of-concept implementation:

(1) register used by an AP to register itself with a specific AH;

(2) bid used to place a bid; (3) tell/ask depending on the push/pull

semantics, the protocol can expose information to the participants

either automatically or on request; (4) fold used by an AP to get

out of an auction; (5) close used by the AH to notify the APs about

the auction termination; and (6) winner used by the AH to notify

the winner participants.

4. IMPLEMENTATION DETAILS
Jason is probably the best known example of agent programming

language that follows the Belief-Desire-Intention (BDI) model. It

supports a declarative programming style, closer to logic program-

ming. We chose Jason as we believe that the mix of declarative,

goal-oriented and knowledge representation features of Jason make

it a good candidate implementation language for our prototype. Fur-

thermore its meta-programming features (e.g. representing pro-

grams as code) has helped with our implementation.

Our implementation provides an internal action that loads the

rules for a specific negotiation type. This has to be called by agents

before they start the negotiation in order to customize their GNP.

Once loaded, the rules can be used like any other rule defined in

the Jason agent source file.

The Jason implementation of the AH role of the GNP, presented

in listing 1, closely follows the definition of the GNP outlined

above. Very briefly, the plan for +register registers a participant

and sends it the current quote (i.e. the value of the outstanding bid)

– this presumes push semantics; the +bid plan updates the quote

and pushes messages with the new value to all the participants; the

+close plan ends the auction and notifies any winner if there is one.

All the plans keep track of the current state the agent is in.

Note that the plans make use of rules that are defined by the

DNM, which we will discuss next. While an AS conceptually im-

plements a type of auction, an AH is spawned for each new auction

started by the AS. When initially started the AH loads the DNM

specific to the auction implemented by the AS and a further mes-

sage from the AIP is responsible for initializing the parameters of

the DNM with appropriate values.

We chose a rule-based representation for our DNM, which builds

on our previous approach presented in [3]. Moreover, this represen-

tation was mapped naturally to Jason.

Listing 2 shows the rules used to customize the AH for our run-

ning example, an English auction. Note that these rules illustrate

the DNM from the AH perspective.

Besides their formal parameters, the rules are also implicitly pa-

rameterized by the current state of the negotiation process – here

we are using the annotations mechanism from Jason to achieve this,

e.g. the [state(bidding)] annotation on the check_proposal

rule makes it applicable only when the agent is in the bidding

state.

5. CONCLUSION AND FUTURE WORK
We have presented our approach on developing a generic nego-

tiation mechanism (as part of a generic negotiation framework) us-

ing the Jason programming language. We believe the solution is

elegant and promising, due to its declarative nature and modular

nature. Basically the GNP is independent of the negotiation type,

negotiation rules are used to customize it.

One of the necessary next steps is to find a suitable serialization

format for the rules used to customize the GNP, such as RuleML.2

Another direction, as mentioned earlier, is to define a suitable CNO

for the negotiation framework. Yet a third research direction is to

factor out the GNP so that it can be used in multiple platforms–e.g.

Jason, Java+JADE.

6. ACKNOWLEDGMENTS
The work of Alex Muscar was supported by the strategic grant

POSDRU / CPP107 / DMI1.5 / S / 78421, Project ID 78421 (2010),

co-financed by the European Social Fund Investing in People, within

the Sectoral Operational Programme Human Resources Develop-

ment 2007 - 2013. The work of Costin Bădică was supported by the

multilateral agreement on academic cooperation in 2012 between

Serbia (Novi Sad), Romania (Craiova), and Poland (Warsaw and

Gdansk) on “Agent Technologies, Tools, Environments, Applica-

tions”.

2RuleML – http://ruleml.org/

137



// Dutch auction

check_proposal(Offer,Items)

[state(bidding)] :-

asked_price(AskedPrice) &

items(Left_items) &

Left_items>=Items &

Offer <= AskedPrice.

+!update_status(A,Offer,Items)

<- .time(H,M,Sec2);

?items(I);

?increment(Increment);

?asked_price(AskedPrice);

?bidders(B);

-+last_offer(Offer);

-+items(I-Items);

-+bidders([A|B]);

-+asked_price(AskedPrice+Increment);

-+last_update(Sec2).

// English auction

check_proposal(Offer,Items)

[state(bidding)] :-

increment(Increment) &

last_offer(Quote) &

items(Left_items) &

Left_items>=Items &

Offer >= Quote + Increment.

+!update_status(A,Offer,Items)

<- -+last_offer(Offer);

-+bidders([A]).

Figure 2: DNM for English and Dutch auctions.

7. REFERENCES
[1] R. H. Bordini, J. F. Hübner, and M. Wooldridge.

Programming Multi-Agent Systems in AgentSpeak using Jason.

Wiley Series in Agent Technology. Wiley, 2007.

[2] C. Bădică, M. Ganzha, and M. Paprzycki. Implementing

rule-based automated price negotiation in an agent system.

Journal of Universal Computer Science, 13(2):244–266, feb

2007.

[3] C. Bădică, A. Giurca, and G. Wagner. Using rules and r2ml

for modeling negotiation mechanisms in e-commerce agent

systems. In Trends in Enterprise Application Architecture, 2nd

International Conference, TEAA 2006, volume 4473 of

Lecture Notes in Computer Science, pages 84–99, Berlin,

Heidelberg, 2007. Springer.

[4] A. Dobriceanu, L. Biscu, A. Bădică, and C. Bădică. The

design and implementation of an agent-based auction service.

IJAOSE, 3(2/3):116–134, 2009.

[5] A. Muscar and C. Bădică. Exploring the design space of a

declarative framework for automated negotiation: initial

considerations (in press). In Proc.Artificial Intelligence

Applications and Innovations 2012 – AIAI 2012. Springer,

2012.

[6] M. Scafeş and C. Bădică. Computing equilibria for

constraint-based negotiation games with interdependent issues.

In Proceedings of Federated Conference on Computer Science

and Information Systems – FedCSIS 2011, pages 597–603,

2011.

[7] V. Tamma, S. Phelps, I. Dickinson, and M. Wooldridge.

Ontologies for supporting negotiation in e-commerce.

Engineering Applications of Artificial Intelligence,

18(2):223–236, 2005.

[8] P. R. Wurman, M. P. Wellman, and W. E. Walsh. A

parametrization of the auction design space. Games and

Economic Behavior, 35(2):304–338, 2001.

138


