
 40

A Review of Disc Scrubbing and Intra Disc Redundancy
Techniques for Reducing Data Loss in Disc File Systems

Genti Daci
Polytechnic University of Tirana

Faculty of Information Technology
Sheshi Nene Tereza 4, Tirana, Albania

gdaci@icc-al.org

Aisa Bezhani
Polytechnic University of Tirana

Faculty of Information Technology
Sheshi Nene Tereza 4, Tirana, Albania

aisa_bezhani@live.com

ABSTRACT
Because of high demand that applications and new technologies
have today for data storage capacity, more disk drives are needed,
resulting in increased probability to inaccessible sectors, referred
as Latent Sector Errors (LSE). Aiming to reduce data loss by
LSE, two main techniques are extensively studied lately: Disk
Scrubbing, which performs reading operations during idle periods
on systems to search for errors and Intra Disk Redundancy which
is based on redundancy codes. This paper reviews and discusses
the problems of LSE and the main causes that lead to LSE, its
properties and their correlation on nearline and enterprise disks.
Focusing on reducing LSE with regards to security,
processing overhead and disk space, we analyze and
compare the latest techniques: Disc Scrubbing and Intra
Disk Redundancy aiming to highlight the issues and
challenges according to different statistical approaches.
Furthermore, based on previous evaluation results, we
discuss and introduce the benefits on using both schemes
simultaneously: combining different IDR coding schemes
with Accelerated Scrubbing and Staggered Scrubbing in
particular regions of disc drives that store crucial data
during idle periods. Finally, we discuss and evaluate from
an extended statistical analysis the best ways on how
reduce data loss with a minimum impact on system
performance.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Reliability, availability and
serviceability; B.3.2 [Memory Structures]: Design Styles—Mass
storage

General Terms
Performance, Reliability

Keywords
Latent sector errors, disk scrubbing, intra disk redundancy,
staggered scrubbing, accelerated scrubbing, data storage capacity,
disk drives

1. INTRODUCTION
Except complete disc failures[1,18] there are other factors

that leave the HDD functioning but corrupt the data [7,24,26].

The one that we will focus on are latent sector errors. Although,
many solutions are proposed for total failure cases, the latter has
higher chances of occurrence [15,20]. Both affect enterprise discs
which are mostly used by business –critical applications, and also
nearline discs which are used for archival purpose. There are
several reasons on why we focus on this subject:

The usage of cheaper disk drives, which at the same time are
less reliable (like choosing SATA disk drive components over
SCSI or FC) and at the same time, the need for more storage and
faster performance (using smaller disks) .

Also, when a disk fails in a system using RAID5, during the
reconstruction process, good sectors are read, so that all the
undamaged data could be written in a free disc. During this
process if the reading operation finds a damaged sector, the data
will be lost [22]. The same thing happens when using RAID6,
with the difference that it is used for every two disk fails.

The main problem with LSE is the fact that until a particular
sector is used, we can never know that it is corrupted or damaged,
nor we know the exact time the problem occurred. Along with
that, understanding error distribution, helps creating new
techniques in preventing data loss. Intra Disk Redundancy helps
in reducing unrecoverable errors. It aims to add an extra
redundancy level to disk drives, along with the existing Inter Disk
Redundancy, or RAID. Disc scrubbing [10,16] scans periodically
to find media errors and so to prevent data loss, having a positive
impact on MTTDL.

Disc scrubbing [2] and Intra Disk Redundancy [4], were first
evaluated based on the assumption that LSE is similar to the
Poisson distribution. The results of this assumption demonstrated
that Disc scrubbing depends on workload and it can never offer
the reliability that IPC offers. IPC is a technique of Intra disc
redundancy which does not affect noticeably workload. This
scheme was thought to give the same reliability on data as an
operating system without unrecoverable sectors would give. So,
IPC would have been a way better security scheme than Disk
scrubbing for a system with high workload. After an expanded
analyze of data in [5], a better statistical approach was adopted,
the Pareto distribution. As a result, a reconsideration of the older
Intra-Disk Redundancy techniques is done on [27] like: simple
parity check, simple parity check, interleaved parity, maximum
distance separable codes and new techniques were created: hybrid
SPC and MDC, and Column Diagonal Parity. The same thing
applies to Disk scrubbing: Localized, Accelerated, Staggered, and
Accelerated Staggered Scrubbing. As a result of new strategies,
we reconsider the simultaneous usage of methods, to detect errors
and then to correct data, preventing it from loss.

BCI’12, September 16–20, 2012, Novi Sad, Serbia.
Copyright © 2012 by the paper’s authors. Copying permitted only for private and
academic purposes. This volume is published and copyrighted by its editors.
Local Proceedings also appeared in ISBN 978-86-7031-200-5, Faculty of Sciences,
University of Novi Sad.

 41

At last, understanding the distribution of the LSE helps in
deciding where to put the important information of a file system,
like metadata [21], which as known is essential in data loss when
the sector in which they are written is damaged. These specific
parts of disk drives, require methods like Accelerated Scrubbing
and Staggered Scrubbing to detect as soon as possible, errors that
can result fatal. Even so, we have to find a proper scrubbing
technique and frequency that does not affect our system. We
apply different coding schemes on Intra Disk Redundancy
arguing on security level, over disk space that the parity sectors
occupy. We manage the utilization of idle times with the Busy
Bee dynamic algorithm, in order to balance the need for security
and performance at the same time. The paper shall include an
introduction on the current research in the papers field, original
solutions, experimental results analysis, conclusions and
references.

2. BACKGROUND
 Our review is based on collected data of [5] which analyses
causes that lead to LSE and its characteristics. This data was
collected from 1.53 million disks during a period of 32 months.
The software stack consisted of three layers: The Wafl file
system, Raid and storage layer. Logs of important events were
registered from a mechanism located in storage data. Latent sector
errors are known to be there, only when we try to access a certain
sector. Based on the Net Apps’s system which scrubbing
frequency is 2 weeks, we can approximate the occurrence of the
error around the same amount of time. More than 30 models were
studied, each of them is found to have its own characteristics but
we focus on the general distinction between enterprise and
nearline disks. The results of the logs in the systems were latter
analyzed according to two main different approaches, and it is
based on those two that we argue our decisions on a better system.

3. LATENT SECTOR ERRORS
Impact on Nearline and enterprise disks: Expectedly,

experiments [6,27] showed that, nearline discs are more likely to
develop latent sector errors, compared to enterprise disks [5].
However, both are more likely to develop other errors, after the
first one has occurred. Of all the cases in which this problem was
encountered, 60% of them was identified by disk scrubbing. The
information retrieved by the logs showed the moment when the
problem wass evidenced. It is not known the exact moment when
this error was created.

Error bursts: By error burst we mean a series of contiguous
errors located in a logical block space. We should be able to
answer questions like: If two error burst occur, will they be far
enough from each other so that they happen to be in different
parity sectors (statistically speaking) ? If an error occurs, will the
system have enough time to recover itself before the next error
happens? An important factor that helped in answering these
questions is error burst distribution. 90%- 98% of error bursts was
created by a single error. In most models, more than 2.5% caused
2 continuous errors, the percentage dropped even more for cases
with more than two errors. Having the experimental results, five
different approaches were studied, and the one who fitted most
the results, was the Pareto distribution. Another factor considered
was the distance of error bursts. According to the results, 20 – 60
% of errors, were prone to have another error in a distance of less
than 10 sectors. Specific regions of the discs are more prone to
errors. Depending on the disc type, 20-50 % of all errors

happened on the first 10% of the disk, on others, this percentage
was focused at the last sectors. In the same way, experiments
proved that after the first error was detected, chances for the
second error to happen dropped exponentially (1% after 10
weeks, 0.1% after 30 weeks). Another interesting numerical factor
was the fact that 58-85 % of errors in disc happened during a two
week period.

Figure 1: IPC scheme.

Spatial and local correlation: Until late those two factors
were studied apart. For example, If we wanted to determine that
an inter disk redundancy scheme is appropriate for a certain
system, despite of the distance that two errors occur, will the
system have the necessary time to recover from the first error
before the second one occurs? Over 90% of burst errors are
discovered in two weeks, and over 95% are detected in a one
month distance. This means that errors are caused by a common
factor, that’s why they happen at the same time.

4. INTRA DISK REDUNDANCY
Logic structure: Intra disk redundancy has a simple logic:

every stripe is divided into segments. There are data bits and
parity bits inside each segment. Parity bits are created using
different parity codes. A segment is compound of ℓ sectors, of
which n sectors are used for data bits, and the remaining (ℓ-n)
sectors for parity bits. The schemes proposed change the security
level according to disc space and overhead penalties.

Single Parity Check (SPC) uses k consecutive sectors to
store data and one sector for parity. SPC is a simple scheme,
therefore it implies low overhead .This scheme is able to correct
only one error per parity group. To be able to correct more than
one error, inter disk redundancy is needed, which means Raid
needs to be used. IPC uses an internal scheme which is based on
simple XOR[22] operations. This scheme guarantees security in
Raid systems, without a noticeable growth in overhead. The way
IPC works is: N sequential data sectors are put in a certain way to
create a matrix. Parity sectors in columns are created using XOR.
When data is updated, the parity sectors are updated too. A
column with data along with its parity sector is called interleave.
An IPC scheme which has a number of m interleaves, is able to
correct one mistake per interleave. According to Poisson
distribution results, IPC is an optimal choice for typical frequency
and workload. It is stated that it reaches the same reliability state
comparable to a system without inaccessible sectors. There are

 42

also down sides to this, such as: to reach this state of security, we
should increase the dick size by 6% in order to store the same
amount of data [11,12,17].

Maximum distance separable codes (MDS) is compound of k
data sectors followed by m parity sectors. This scheme can
tolerate the loss of m sectors per segment. It can recover the data
for m errors, where m is the number of sector that the parity bits
occupy. Again this is an adaptation of codes used in raid systems
[19]. Obviously there is higher reliability, because parity sectors
are calculated by RS codes, but simultaneously it gives higher
overhead and parity bits take a considerable part of the hard disk
space not usable for actual data. Lately, the overhead that it
implies comparing to IPC is discussable [29].

Most disc errors happen at 5 – 15% of the disk space, that is
why hybrid methods were created. Hybrid SPC and MDS uses
MDS [27] code for parts that are more prone to errors, and a
simple SPC 8+1 code for the rest. This helps in finding the
balance between security and overhead.

CDP can detect more errors if compared to SPC and IPC,
and at the same time it implies less overhead if compared to
MDS. This code is based on RDP [25] which is used to recover
from double failures on systems that use RAID. Originally, RDP
uses p+1 disks, from which p-1 store data and the other 2 left :
one is used for diagonal parity and the other for row parity. This
code, besides its application to RAID, works with inter disk
redundancy too, where the number of data sectors is k = (p -1) ²,
and the number of parity sectors is m = 2(p – 1). CDP can
tolerate 2 error bursts with length p-1, and reconstruct data of a
sector /diagonal if the sector /diagonal is found in a column with
less than 2 errors. Even in this case we have an inverse correlation
of efficient space in disk (k / (k + m)) against I/O overhead and
the security that it offers. Expectedly, the most efficient codes
have lower reliability. Several experiments, changed the sector
size to find the maximum efficiency. If the sector sizes were
enlarged, higher overhead was encountered, because of the
distance between data and parity sectors. As a result, if two data
sectors are far from each other, so will the parity sectors be. On
the other hand, accessing the desired sectors will take more time,
leading to higher overhead. Experiments showed that, if a change
in the MDS scheme was applied from 8+1 to 16 +2, the security
level raised by 50%. To achieve this level of security, IPC used
schemes of 56+7 and 64+8. When bigger segments were used
MDS and CDP would outreach the performance of IPC with a
few orders.

5. DISK SCRUBBING
 Disk Scrubbing is applied in order to detect silent

errors before the damage is done [20, 23]. Schemes:
Sequential scrubbing is a process which scans and reads disc
sectors one after another. The moment it scans the last sectors, the
process repeats. Scrubbing period is determined by the capacity
and speed by which the disc is checked and the time required to
scan the sectors form the first to the last.

Random scrubbing is similar to sequential scrubbing, with
the only difference that accessing is done in a random order. The
problem in this case is that several sectors may be scanned many
times, while others may not be checked at all. Disc scrubbing is
affected by workload and the frequency of the reading on disc to
identify the inaccessible sectors. Besides its impact on

performance, it does not need free disk space. Intelligent
staggered strategies were later developed.

Figure 2: Staggered scrubbing.

Staggered scrubbing, divides the disc in m regions. Each
division is compound of r segments. It reads the first segment of
every single region according to Logical Block Address (LBA) as
shown in Figure 1. After that it starts reading the second segments
of the regions, and so on. This technique is effective because if a
region has LSE, there is a big chance that some consecutive
sectors are damaged. For example, an extreme case would be a
region whose sectors are all corrupted by LSE. Staggered
scrubbing would be able to detect the error faster than sequential
scrubbing. Staggered scrubbing has its own downsides, like: more
head movement, but it can be solved when several parameters are
chosen. One of those, is request size. The bigger the request size,
the better the reading performance. After a few tests done on
variable request sizes, on a 16 GB, 7200RPM Hitachi disc drive,
the optimal size is 16KB. For larger sizes, the optimization is not
noticeable.

Localized scrubbing scans disks for LSE and when the first
error is found, being aware of spatial and temporal locality, this
scrubbing scheme implies that other errors will likely be near the
one it just detected. So, it scans r sectors continuously with an
accelerated rate.

Accelerated scrubbing: When an error is detected, the rest of
the disk sectors are scanned with an accelerated rate, while
Accelerated staggered scrubbing combines both techniques, as the
name implies. It detects the erroneous sectors, and then scans the
entire disk with accelerated rate.

Comparison: Local scrubbing has a comparative
performance to that of standard disc scrubbing. Traditional
scrubbing does not accelerate, but since we are talking about
contiguous sectors, it will soon detect them. Accelerated
scrubbing also doesn’t perform well for the same obvious reasons.
Both schemes are slow on detecting the first error, and then
accelerate. Thus, a different approach is taken in the Staggered
scrubbing. It localizes which parts are affected by LSE. It
outperforms standard scrubbing in both forms, local and
accelerated. The proper segment size is found: big enough to
minimize overhead, and small enough, so it doesn’t resemble to a
standard scrubbing. For a region size of 128 MB the scrubbing
effectiveness was similar, for segment sizes from 1 KB to 32MB.
If the region size is shrunk to 64MB, accelerated scrubbing
effectiveness drops by 50% if compared to that of the standard
scrubbing.

 43

6. OUR APPROACH
 The idea here, is to use simultaneously Disc Scrubbing to

detect media errors on disc and Intra Disk Redundancy to check if
the data is corrupted. The risk of data loss can be solved by using
mirroring, but this method is time consuming, and applies too
much overhead. Having studied the characteristics and the causes
that lead to data loss, we can try to predict which of the intradisk
redundancy codes along with which disc scrubbing scheme can be
a better match. As we know, the data in hard disk drives is
separated in to regular data (which is data that we store) and
metadata (which is data about the data and it is essential in
locating other files that are stored in the disk). Higher reliability is
crucial in disks that store critical data. To do so, we need to
decrease the MTTDL (in systems using RAID) or MTTF[9,3]
(systems that don’t use RAID). In order to keep crucial data safe
we propose the application of intelligent disc scrubbing strategies
such as: staggered scrubbing or accelerated scrubbing to prevent
from losing data. Check-summing is also required for checking
and reconstructing. We need to find the effective parity coding
that gives reliability and does not occupy much disk space.

Knowing also that disc drives have certain parts that are
more prone to burst errors, for example 20-50 % of all errors
happen on the first 10% of the disc, or at the last 10% of the disk
depending on the type. Obviously we avoid storing metadata in
these critical areas.

Our aim is to maximize MTTDL time. Being aware of the
fact that chances of a LSE occurrence are focused on the first
10% , we scan in a sequential way. The remaining sectors will be
scanned with staggered scrubbing so we can be able to detect the
error faster. As soon as the first error is detected, we trigger the
accelerated staggered scrubbing. By doing this, we can evidence
in the fastest way possible all the sectors affected by LSE. We
chose accelerated staggered scrubbing based on the fact that there
is a high possibility of another error which is more likely to
happen after the first error has occurred. Applying accelerated
scrubbing will be not efficient because the sectors we are
considering are close in space, so accelerated scrubbing would
result in a slow performance, just like the one of sequential
scrubbing. For the other parts of the disc drive we consider using
staggered scrubbing, because we don’t want the background
activities interfere and create considerable delays in the system
performance. Once the error is found, we will need to correct it.

Inter Disc Redundancy parity sectors are obtained using
simple operations on data bits. It is depending on these operations
that we obtain the security and the overhead. Single Parity Check
based on XOR operation is simple, but it is not appropriate since
bust errors have spatial locality. This means that if two errors
occur in the same logical space, our data can not be reconstructed,
and the scrubbing would be pointless. Next approach would be
MDS, but using Reed Solomon codes while we have also
scrubbing would imply high overhead, predictably not appropriate
to use, although it gives the best combination according to
reliability. In this case we use Column Diagonal Parity (CDP),
which is the adapted code of Raid for double failures. It tolerates
a considerable number of failure patterns, while not implying a
high overhead. Another reason that leads us to use a simple parity
code, is the fact that errors will be detected soon, so there is a
lower chance for them to spread and affect multiple bits in a
single data-parity sectors combination.

Disk scrubbing in terms of latency can take the same time as
a read operation. It is infinite because, once the disc is scrubbed
totally, the process restarts. On the other hand, intra disk
redundancy needs to update the parity sector(s) every time a
change is made. This is reduced to a read process, a calculation
and a write of the parity group. Seemingly, we expect a high
overhead, if we use both techniques. This would not be
appropriate if applied in real systems.

To avoid the overhead we use both, disc scrubbing and intra
disk redundancy as background activities, so it can impact as less
as possible the normal operation of the system [13, 14]. It is
proven that the cooperation of the two gives a high reliability,
more than the linear combination of disc scrubbing or intradisk
redundancy when they operate alone in a system. Out of all the
ways to manage idle times we consider Busy Bee [8]. It is a
scheduling algorithm that adapts dynamically, according on the
current workload. It has a crucial feature: even if we are operating
on a high workload system, this policy doesn’t leave the
background operation starve. For our system, this means, that if a
foreground short job is scheduled, and we evidence a LSE, we can
leave the foreground job waiting, and schedule the accelerated
staggered scrubbing for a limited time, until we are sure that no
other LSE has affected a nearby sector. If the foreground job
takes many clock cycles to complete, we can suspend the
scrubbing because we do not want to add further latency on the
system. As soon as the long job finishes, we restart the scrubbing.
However, we must consider, factors such as the disk model or the
file system that we are working on, because the approach would
change according to the specific case.

do {

If (high probability of short_foreground_job_coming)
 {
 if (scanner_head < 0.1*n) // n- total number of sectors.
 Apply_sequential_scanning //standard frequency

 else if (scanner_head >= 0.1*n) //if out of the first 10%
 Apply_staggered_scrubbing // standard frequency

else if (LSE detected)
{
 Apply_accelerated_staggered_scrubbing
 Call intradisk_redundacy_operation_on_affected_sector
}
else wait for foreground job }}
While (idle_time)

The above pseudo-code reveals the concept on which this theory
is based. The scrubbing operation happens during idle time, and
because it is infinite, we continue until a foreground job is
present. If the foreground job is statistically thought to be short,
the system continues to scrub. In the case it detects an error burst,
weather the foreground job is short or long, the system doesn’t
stop scanning. In this case we prefer to secure our data, not
minding the overhead in this extreme case of risking data loss.
Otherwise, the scrubbing stops. There are three scanning schemes
that we apply, in order to be sure that if a LSE exists, we would
be able to catch it as soon as possible. On the other hand, we can
not use accelerated scrubbing strategies during the whole time
because it would impact on system performance. According to the
mentioned reasons, we scan sequentially the first 10 % of the total
number of sectors, knowing that it has the biggest probability of

 44

developing latent sector errors. After that we chose sequential
scrubbing, knowing that in comparison to the other scrubbing
strategies (except staggered ones), it is the one to detect the errors
first. Last, if we encounter an error, we want to prevent losing
data in any cost. This is why the intradisk redundancy is called to
perform a reading of the damaged sector, and also a recalculation,
so it can locate the error, and fix it. While doing so, we scan at an
accelerated rate, to detect any other possible erroneous areas. We
need to state that in real life, there is no way for us to predict if
the coming job is going to be long or short. In this case, if we are
expecting a short job the scrubbing process will start. But what if
a long job comes? The scrubbing will stop, giving precedence to
the foreground job, if and only if an error is not detected at that
moment.

7. CONCLUSIONS
 Based on previous analyses our aim was to find the best

solution while using disc scrubbing and intradisk redundancy
simultaneously. We proposed a combination of disk scrubbing
techniques by which we can detect LSE in the fastest way
possible. By doing this we can allow the usage of an Intra Disk
Redundancy parity code that will not imply much overhead.
Opting for a minimal impact on performance we use both
strategies as background operations, applying a dynamic
algorithm.

Our idea was based on related studies of temporal and spatial
distributions of error bursts. By understanding them, we predicted
the best approaches among many disc scrubbing schemes and
intra disk redundancy codes possible combinations. We found that
an aggressive policy would be appropriate for those parts of disks
where critical data is stored, or that are more prone to disk errors.
Although, it assures reliability, our theory is yet to be proven in
practical terms of overhead.

8. REFERENCES
[1] D. Patterson, G. Gibson, and R. Katz. A case for redundant

arrays of inexpensive disks (RAID). In Proc. of SIGMOD,
1988

[2] Alina Oprea , Ari Juels, A clean-slate look at disk scrubbing,
Proceedings of the 8th USENIX conference on File and
storage technologies, p.5-5, February 23-26, 2010, San Jose,
California

[3] Mary Baker , Mehul Shah , David S. H. Rosenthal , Mema
Roussopoulos , Petros Maniatis , TJ Giuli , Prashanth
Bungale, A fresh look at the reliability of long-term digital
storage, Proceedings of the ACM SIGOPS/EuroSys
European Conference on Computer Systems 2006, April 18-
21, 2006, Leuven, Belgium
[doi>10.1145/1217935.1217957]

[4] Ajay Dholakia , Evangelos Eleftheriou , Xiao-Yu Hu , Ilias
Iliadis , Jai Menon , K.K. Rao, A new intra-disk redundancy
scheme for high-reliability RAID storage systems in the
presence of unrecoverable errors, ACM Transactions on
Storage (TOS), v.4 n.1, p.1-42, May 2008
[doi>10.1145/1353452.1353453]

[5] Lakshmi N. Bairavasundaram , Andrea C. Arpaci-Dusseau ,
Remzi H. Arpaci-Dusseau , Garth R. Goodson , Bianca
Schroeder, An analysis of data corruption in the storage

stack, ACM Transactions on Storage (TOS), v.4 n.3, p.1-28,
November 2008

[6] Lakshmi N. Bairavasundaram , Garth R. Goodson , Shankar
Pasupathy , Jiri Schindler, An analysis of latent sector errors
in disk drives, Proceedings of the 2007 ACM SIGMETRICS
international conference on Measurement and modeling of
computer systems, June 12-16, 2007, San Diego, California,
USA [doi>10.1145/1254882.1254917]

[7] Weihang Jiang , Chongfeng Hu , Yuanyuan Zhou , Arkady
Kanevsky, Are disks the dominant contributor for storage
failures?: a comprehensive study of storage subsystem
failure characteristics, Proceedings of the 6th USENIX
Conference on File and Storage Technologies, p.1-15,
February 26-29, 2008, San Jose, California

[8] Feng Yan, Alma Riska, Evgenia Smirni, Busy bee: how to
use traffic information for better scheduling of background
tasks. ICPE '12 Proceedings of the third joint WOSP/SIPEW
international conference on Performance Engineering, p.145-
156, 2012, doi>10.1145/2188286.2188308

[9] Bianca Schroeder , Garth A. Gibson, Disk failures in the real
world: what does an MTTF of 1,000,000 hours mean to
you?, Proceedings of the 5th conference on USENIX
Conference on File and Storage Technologies, p.1-1,
February 13-16, 2007, San Jose, CA

[10] Thomas J. E. Schwarz , Qin Xin , Ethan L. Miller , Darrell
D. E. Long , Andy Hospodor , Spencer Ng, Disk Scrubbing
in Large Archival Storage Systems, Proceedings of the The
IEEE Computer Society's 12th Annual International
Symposium on Modeling, Analysis, and Simulation of
Computer and Telecommunications Systems
(MASCOTS'04), p.409-418, October 04-08, 2004

[11] Ilias Iliadis , Robert Haas , Xiao-Yu Hu , Evangelos
Eleftheriou, Disk scrubbing versus intra-disk redundancy for
high-reliability raid storage systems, ACM SIGMETRICS
Performance Evaluation Review, v.36 n.1, June 2008

[12] Ilias Iliadis , Robert Haas , Xiao-Yu Hu , Evangelos
Eleftheriou, Disk Scrubbing Versus Intradisk Redundancy
for RAID Storage Systems, ACM Transactions on Storage
(TOS), v.7 n.2, p.1-42, July 2011

[13] N. Mi, A. Riska, E. Smirni, and E. Riedel. Enhancing data
availability in disk drives through background activities. In
Proc. of DSN, 2008.

[14] N. Mi, A. Riska, Q. Zhang, E. Smirni, and E. Riedel.
“Efficient utilization of idle times” Proceedings of the ACM
SIGMETRICS, pp. 371–372, 2007

[15] Rozier, E., Belluomini, W., Deenadhayalan, V., Hafner, J.,
Rao, K., and Zhou, P., Evaluating the impact of undetected
disk errors in raid systems. In Dependable Systems
Networks, 2009. DSN '09. IEEE/IFIP International
Conference on (29 2009-july 2 2009), pp. 83-92.

[16] Jon G. Elerath , Michael Pecht, Enhanced Reliability
Modeling of RAID Storage Systems, Proceedings of the 37th
Annual IEEE/IFIP International Conference on Dependable
Systems and Networks, p.175-184, June 25-28, 2007
[doi>10.1109/DSN.2007.41]

[17] Evaluation of Applied Intra-disk Redundancy Schemes to
Improve Single Disk Reliability Matthias Grawinkel,

 45

Thorsten Schafer, Andre Brinkmann, Jens Hagemeyer,
Mario Porrmann (2011) 2011 IEEE 19th Annual
International Symposium on Modelling Analysis and
Simulation of Computer and Telecommunication Systems p.
297-306

[18] Eduardo Pinheiro , Wolf-Dietrich Weber , Luiz André
Barroso, Failure trends in a large disk drive population,
Proceedings of the 5th conference on USENIX Conference
on File and Storage Technologies, p.2-2, February 13-16,
2007, San Jose, CA.

[19] Alexander Thomasian , Mario Blaum, Higher reliability
redundant disk arrays: Organization, operation, and coding,
ACM Transactions on Storage (TOS), v.5 n.3, p.1-59,
November 2009 [doi>10.1145/1629075.1629076]

[20] Pa ̂ris, J.-F. , Improving Disk Array Reliability Through
Expedited Scrubbing, 2010 IEEE Fifth International
Conference on Networking, Architecture and Storage (NAS),
15-17 July 2010 pp 119 - 125

[21] Vijayan Prabhakaran , Lakshmi N. Bairavasundaram , Nitin
Agrawal , Haryadi S. Gunawi , Andrea C. Arpaci-Dusseau ,
Remzi H. Arpaci-Dusseau, IRON file systems, Proceedings
of the twentieth ACM symposium on Operating systems
principles, October 23-26, 2005, Brighton, United Kingdom
[doi>10.1145/1095810.1095830]

[22] James Lee Hafner , Veera Deenadhayalan , K. K. Rao , John
A. Tomlin, Matrix methods for lost data reconstruction in
erasure codes, Proceedings of the 4th conference on
USENIX Conference on File and Storage Technologies,
p.14-14, December 13-16, 2005, San Francisco, CA

[23] Junping Liu, Ke Zhou, Zhikun Wang, Liping Pang, Dan
Feng, Modeling the Impact of Disk Scrubbing on Storage

System. Journal of Computers, Vol 5, No 11 (2010), 1629-
1637, Nov 2010 doi:10.4304/jcp.5.11.1629-1637

[24] Andrew Krioukov , Lakshmi N. Bairavasundaram , Garth R.
Goodson , Kiran Srinivasan , Randy Thelen , Andrea C.
Arpaci-Dusseau , Remzi H. Arpaci-Dussea, Parity lost and
parity regained, Proceedings of the 6th USENIX Conference
on File and Storage Technologies, p.1-15, February 26-29,
2008, San Jose, California

[25] Peter Corbett , Bob English , Atul Goel , Tomislav Grcanac ,
Steven Kleiman , James Leong , Sunitha Sankar, Awarded
Best Paper! -- Row-Diagonal Parity for Double Disk Failure
Correction, Proceedings of the 3rd USENIX Conference on
File and Storage Technologies, March 31-31, 2004, San
Francisco, CA

[26] Jon Elerath, Hard Disk Drives: The Good, the Bad and the
Ugly!, Queue, v.5 n.6, September/October 2007
[doi>10.1145/1317394.1317403]

[27] Bianca Schroeder , Sotirios Damouras , Phillipa Gill,
Understanding latent sector errors and how to protect against
them, ACM Transactions on Storage (TOS), v.6 n.3, p.1-23,
September 2010

[28] J. L. Hafner , V. Deenadhayalan , W. Belluomini , K. Rao,
Undetected disk errors in RAID arrays, IBM Journal of
Research and Development, v.52 n.4, p.413-425, July 2008
[doi>10.1147/rd.524.0413]

[29] Plank, J.S., XOR's, lower bounds and MDS codes for storage
Information Theory Workshop (ITW), 2011 IEEE, 16-20
Oct. 2011, pp. 503- 507

