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ABSTRACT 
Because of high demand that applications and new technologies 
have today for data storage capacity, more disk drives are needed, 
resulting in increased probability to inaccessible sectors, referred 
as Latent Sector Errors (LSE). Aiming to reduce data loss by 
LSE, two main techniques are extensively studied lately: Disk 
Scrubbing, which performs reading operations during idle periods 
on systems to search for errors and Intra Disk Redundancy which 
is based on redundancy codes. This paper reviews and discusses 
the problems of LSE and the main causes that lead to LSE, its 
properties and their correlation on nearline and enterprise disks. 
Focusing on reducing LSE with regards to security, 
processing overhead and disk space, we analyze and 
compare the latest techniques: Disc Scrubbing and Intra 
Disk Redundancy aiming to highlight the issues and 
challenges according to different statistical approaches. 
Furthermore, based on previous evaluation results, we 
discuss and introduce the benefits on using both schemes 
simultaneously: combining different IDR coding schemes 
with Accelerated Scrubbing and Staggered Scrubbing in 
particular regions of disc drives that store crucial data 
during idle periods. Finally, we discuss and evaluate from 
an extended statistical analysis the best ways on how 
reduce data loss with a minimum impact on system 
performance.   

Categories and Subject Descriptors 
C.4 [Performance of Systems]: Reliability, availability and  
serviceability; B.3.2 [Memory Structures]: Design Styles—Mass 
storage 

General Terms 
Performance, Reliability 

Keywords 
Latent sector errors, disk scrubbing, intra disk redundancy, 
staggered scrubbing, accelerated scrubbing, data storage capacity, 
disk drives 

1. INTRODUCTION 
Except complete disc failures[1,18] there are other factors 

that leave the HDD functioning but corrupt the data [7,24,26]. 

The one that we will focus on are latent sector errors. Although, 
many solutions are proposed for total failure cases, the latter has 
higher chances of occurrence [15,20]. Both affect enterprise discs 
which are mostly used by business –critical applications, and also 
nearline discs which are used for archival purpose. There are 
several reasons on why we focus on this subject:  

The usage of cheaper disk drives, which at the same time are 
less reliable (like choosing SATA disk drive components over 
SCSI or FC) and at the same time, the need for more storage and 
faster performance (using smaller disks) .  

Also, when a disk fails in a system using RAID5, during the 
reconstruction process, good sectors are read, so that all the 
undamaged data could be written in a free disc. During this 
process if the reading operation finds a damaged sector, the data 
will be lost [22]. The same thing happens when using RAID6, 
with the difference that it is used for every two disk fails.  

The main problem with LSE is the fact that until a particular 
sector is used, we can never know that it is corrupted or damaged, 
nor we know the exact time the problem occurred. Along with 
that, understanding error distribution, helps creating new 
techniques in preventing data loss. Intra Disk Redundancy helps 
in reducing unrecoverable errors. It aims to add an extra 
redundancy level to disk drives, along with the existing Inter Disk 
Redundancy, or RAID. Disc scrubbing [10,16] scans periodically 
to find media errors and so to prevent data loss, having a positive 
impact on MTTDL.  

Disc scrubbing [2] and Intra Disk Redundancy [4], were first 
evaluated based on the assumption that LSE is similar to the 
Poisson distribution. The results of this assumption demonstrated 
that Disc scrubbing depends on workload and it can never offer 
the reliability that IPC offers. IPC is a technique of Intra disc 
redundancy which does not affect noticeably workload. This 
scheme was thought to give the same reliability on data as an 
operating system without unrecoverable sectors would give. So, 
IPC would have been a way better security scheme than Disk 
scrubbing for a system with high workload. After an expanded 
analyze of data in [5], a better statistical approach was adopted, 
the Pareto distribution. As a result, a reconsideration of the older 
Intra-Disk Redundancy techniques is done on [27] like: simple 
parity check, simple parity check, interleaved parity, maximum 
distance separable codes and new techniques were created: hybrid 
SPC and MDC, and Column Diagonal Parity. The same thing 
applies to Disk scrubbing: Localized, Accelerated, Staggered, and 
Accelerated Staggered Scrubbing. As a result of  new strategies, 
we reconsider the simultaneous usage of methods, to detect errors 
and then to correct data, preventing it from loss.  
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At last, understanding the distribution of the LSE helps in 
deciding where to put the important information of a file system, 
like metadata [21], which as known is essential in data loss when 
the sector in which they are written is damaged. These specific 
parts of disk drives, require methods like Accelerated Scrubbing 
and Staggered Scrubbing to detect as soon as possible, errors that 
can result fatal. Even so, we have to find a proper scrubbing 
technique and frequency that does not affect our system. We 
apply different coding schemes on Intra Disk Redundancy 
arguing on security level, over disk space that the parity sectors 
occupy. We manage the utilization of idle times with the Busy 
Bee dynamic algorithm, in order to balance the need for security 
and performance at the same time. The paper shall include an 
introduction on the current research in the papers field, original 
solutions, experimental results analysis, conclusions and 
references. 

2. BACKGROUND 
       Our review is based on collected data of [5] which analyses 
causes that lead to LSE and its characteristics. This data was 
collected from 1.53 million disks during a period of 32 months. 
The software stack consisted of three layers: The Wafl file 
system, Raid and storage layer. Logs of important events were 
registered from a mechanism located in storage data. Latent sector 
errors are known to be there, only when we try to access a certain 
sector. Based on the Net Apps’s system which scrubbing 
frequency is 2 weeks, we can approximate the occurrence of the 
error around the same amount of time. More than 30 models were 
studied, each of them is found to have its own characteristics but 
we focus on the general distinction between enterprise and 
nearline disks. The results of the logs in the systems were latter 
analyzed according to two main different approaches, and it is 
based on those two that we argue our decisions on a better system.  

3. LATENT SECTOR ERRORS 
Impact on Nearline and enterprise disks: Expectedly, 

experiments [6,27] showed that, nearline discs are more likely to 
develop latent sector errors, compared to enterprise disks [5]. 
However, both are more likely to develop other errors, after the 
first one has occurred. Of all the cases in which this problem was 
encountered, 60% of them was identified by disk scrubbing. The 
information retrieved by the logs showed the moment when the 
problem wass evidenced. It is not known the exact moment when 
this error was created. 

Error bursts: By error burst we mean a series of contiguous 
errors located in a logical block space. We should be able to 
answer questions like: If two error burst occur, will they be far 
enough from each other so that they happen to be in different 
parity sectors (statistically speaking) ? If an error occurs, will the 
system have enough time to recover itself before the next error 
happens? An important factor that helped in answering these 
questions is error burst distribution. 90%- 98% of error bursts was 
created by a single error. In most models, more than 2.5% caused 
2 continuous errors, the percentage dropped even more for cases 
with more than two errors. Having the experimental results, five 
different approaches were studied, and the one who fitted most 
the results, was the Pareto distribution. Another factor considered 
was the distance of error bursts. According to the results, 20 – 60 
% of errors, were prone to have another error in a distance of less 
than 10 sectors. Specific regions of the discs are more prone to 
errors. Depending on the disc type, 20-50 % of all errors 

happened on the first 10% of the disk, on others, this percentage 
was focused at the last sectors. In the same way, experiments 
proved that after the first error was detected, chances for the 
second error to happen dropped exponentially (1% after 10 
weeks, 0.1% after 30 weeks). Another interesting numerical factor 
was the fact that 58-85 % of errors in disc happened during a two 
week period. 

 

Figure 1: IPC scheme. 

 

Spatial and local correlation: Until late those two factors 
were studied apart. For example, If we wanted to determine that 
an inter disk redundancy scheme is appropriate for a certain 
system, despite of the distance that two errors occur, will the 
system have the necessary time to recover from the first error 
before the second one occurs? Over 90% of burst errors are 
discovered in two weeks, and over 95% are detected in a one 
month distance. This means that errors are caused by a common 
factor, that’s why they happen at the same time.  

4. INTRA DISK REDUNDANCY  
Logic structure: Intra disk redundancy has a simple logic: 

every stripe is divided into segments. There are data bits and 
parity bits inside each segment. Parity bits are created using 
different parity codes. A segment is compound of ℓ sectors, of 
which n sectors are used for data bits, and the remaining (ℓ-n) 
sectors for parity bits. The schemes proposed change the security 
level according to disc space and overhead penalties.  

Single Parity Check (SPC) uses k consecutive sectors to 
store data and one sector for parity. SPC is a simple scheme, 
therefore it implies low overhead .This scheme is able to correct 
only one error per parity group. To be able to correct more than 
one error, inter disk redundancy is needed, which means Raid 
needs to be used. IPC uses an internal scheme which is based on 
simple XOR[22] operations. This scheme guarantees security in 
Raid systems, without a noticeable growth in overhead. The way 
IPC works is: N sequential data sectors are put in a certain way to 
create a matrix. Parity sectors in columns are created using XOR. 
When data is updated, the parity sectors are updated too. A 
column with data along with its parity sector is called interleave. 
An IPC scheme which has a number of m interleaves, is able to 
correct one mistake per interleave. According to Poisson 
distribution results, IPC is an optimal choice for typical frequency 
and workload. It is stated that it reaches the same reliability state 
comparable to a system without inaccessible sectors. There are 



 42

also down sides to this, such as: to reach this state of security, we 
should increase the dick size by 6% in order to store the same 
amount of data [11,12,17]. 

Maximum distance separable codes (MDS) is compound of k 
data sectors followed by m parity sectors. This scheme can 
tolerate the loss of m sectors per segment. It can recover the data 
for m errors, where m is the number of sector that the parity bits 
occupy. Again this is an adaptation of codes used in raid systems 
[19]. Obviously there is higher reliability, because parity sectors 
are calculated by RS codes, but simultaneously it gives higher 
overhead and parity bits take a considerable part of the hard disk 
space not usable for actual data. Lately, the overhead that it 
implies comparing to IPC is discussable [29].  

Most disc errors happen at 5 – 15% of the disk space, that is 
why hybrid methods were created. Hybrid SPC and MDS uses 
MDS [27] code for parts that are more prone to errors, and a 
simple SPC 8+1 code for the rest. This helps in finding the 
balance between security and overhead.  

CDP can detect more errors if compared to SPC and IPC, 
and at the same time it implies less overhead if compared to 
MDS. This code is based on RDP [25] which is used to recover 
from double failures on systems that use RAID. Originally, RDP 
uses p+1 disks, from which p-1 store data and the other 2 left : 
one is used for diagonal parity and the other for row parity. This 
code, besides its application to RAID, works with inter disk 
redundancy too, where the number of data sectors is k = ( p -1 ) ², 
and the number of parity sectors is m = 2( p – 1 ). CDP can 
tolerate 2 error bursts with length p-1, and reconstruct data of a 
sector /diagonal if the sector /diagonal is found in a column with 
less than 2 errors. Even in this case we have an inverse correlation 
of efficient space in disk (k / (k + m)) against I/O overhead and 
the security that it offers. Expectedly, the most efficient codes 
have lower reliability. Several experiments, changed the sector 
size to find the maximum efficiency. If the sector sizes were 
enlarged, higher overhead was encountered, because of the 
distance between data and parity sectors. As a result, if two data 
sectors are far from each other, so will the parity sectors be. On 
the other hand, accessing the desired sectors will take more time, 
leading to higher overhead. Experiments showed that, if a change 
in the MDS scheme was applied from 8+1 to 16 +2, the security 
level raised by 50%. To achieve this level of security, IPC used 
schemes of 56+7 and 64+8. When bigger segments were used 
MDS and CDP would outreach the performance of IPC with a 
few orders. 

5. DISK SCRUBBING  
 Disk Scrubbing is applied in order to detect silent 

errors before the damage is done [20, 23]. Schemes: 
Sequential scrubbing is a process which scans and reads disc 
sectors one after another. The moment it scans the last sectors, the 
process repeats. Scrubbing period is determined by the capacity 
and speed by which the disc is checked and the time required to 
scan the sectors form the first to the last.  

Random scrubbing is similar to sequential scrubbing, with 
the only difference that accessing is done in a random order. The 
problem in this case is that several sectors may be scanned many 
times, while others may not be checked at all. Disc scrubbing is 
affected by workload and the frequency of the reading on disc to 
identify the inaccessible sectors. Besides its impact on 

performance, it does not need free disk space. Intelligent 
staggered strategies were later developed.  

 

Figure 2: Staggered scrubbing. 

Staggered scrubbing, divides the disc in m regions. Each 
division is compound of r segments. It reads the first segment of 
every single region according to Logical Block Address (LBA) as 
shown in Figure 1. After that it starts reading the second segments 
of the regions, and so on. This technique is effective because if a 
region has LSE, there is a big chance that some consecutive 
sectors are damaged. For example, an extreme case would be a 
region whose sectors are all corrupted by LSE. Staggered 
scrubbing would be able to detect the error faster than sequential 
scrubbing. Staggered scrubbing has its own downsides, like: more 
head movement, but it can be solved when several parameters are 
chosen. One of those, is request size. The bigger the request size, 
the better the reading performance. After a few tests done on 
variable request sizes, on a 16 GB, 7200RPM Hitachi disc drive, 
the optimal size is 16KB. For larger sizes, the optimization is not 
noticeable.  

Localized scrubbing scans disks for LSE and when the first 
error is found, being aware of spatial and temporal locality, this 
scrubbing scheme implies that other errors will likely be near the 
one it just detected. So, it scans r sectors continuously with an 
accelerated rate. 

Accelerated scrubbing: When an error is detected, the rest of 
the disk sectors are scanned with an accelerated rate, while 
Accelerated staggered scrubbing combines both techniques, as the 
name implies. It detects the erroneous sectors, and then scans the 
entire disk with accelerated rate.  

Comparison: Local scrubbing has a comparative 
performance to that of standard disc scrubbing. Traditional 
scrubbing does not accelerate, but since we are talking about 
contiguous sectors, it will soon detect them. Accelerated 
scrubbing also doesn’t perform well for the same obvious reasons. 
Both schemes are slow on detecting the first error, and then 
accelerate. Thus, a different approach is taken in the Staggered 
scrubbing. It localizes which parts are affected by LSE. It 
outperforms standard scrubbing in both forms, local and 
accelerated. The proper segment size is found: big enough to 
minimize overhead, and small enough, so it doesn’t resemble to a 
standard scrubbing. For a region size of 128 MB the scrubbing 
effectiveness was similar, for segment sizes from 1 KB to 32MB. 
If the region size is shrunk to 64MB, accelerated scrubbing 
effectiveness drops by 50% if compared to that of the standard 
scrubbing.  
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6. OUR APPROACH  
 The idea here, is to use simultaneously Disc Scrubbing to 

detect media errors on disc and Intra Disk Redundancy to check if 
the data is corrupted. The risk of data loss can be solved by using 
mirroring, but this method is time consuming, and applies too 
much overhead. Having studied the characteristics and the causes 
that lead to data loss, we can try to predict which of the intradisk 
redundancy codes along with which disc scrubbing scheme can be 
a better match. As we know, the data in hard disk drives is 
separated in to regular data (which is data that we store) and 
metadata (which is data about the data and it is essential in 
locating other files that are stored in the disk). Higher reliability is 
crucial in disks that store critical data. To do so, we need to 
decrease the MTTDL (in systems using RAID) or MTTF[9,3] 
(systems that don’t use RAID). In order to keep crucial data safe 
we propose the application of intelligent disc scrubbing strategies 
such as: staggered scrubbing or accelerated scrubbing to prevent 
from losing data. Check-summing is also required for checking 
and reconstructing. We need to find the effective parity coding 
that gives reliability and does not occupy much disk space.  

Knowing also that disc drives have certain parts that are 
more prone to burst errors, for example 20-50 % of all errors 
happen on the first 10% of the disc, or at the last 10% of the disk 
depending on the type. Obviously we avoid storing metadata in 
these critical areas.  

Our aim is to maximize MTTDL time. Being aware of the 
fact that chances of a LSE occurrence are focused on the first 
10% , we scan in a sequential way. The remaining sectors will be 
scanned with staggered scrubbing so we can be able to detect the 
error faster. As soon as the first error is detected, we trigger the 
accelerated staggered scrubbing. By doing this, we can evidence 
in the fastest way possible all the sectors affected by LSE. We 
chose accelerated staggered scrubbing based on the fact that there 
is a high possibility of another error which is more likely to 
happen after the first error has occurred. Applying accelerated 
scrubbing will be not efficient because the sectors we are 
considering are close in space, so accelerated scrubbing would 
result in a slow performance, just like the one of sequential 
scrubbing. For the other parts of the disc drive we consider using 
staggered scrubbing, because we don’t want the background 
activities interfere and create considerable delays in the system 
performance. Once the error is found, we will need to correct it. 

Inter Disc Redundancy parity sectors are obtained using 
simple operations on data bits. It is depending on these operations 
that we obtain the security and the overhead. Single Parity Check 
based on XOR operation is simple, but it is not appropriate since 
bust errors have spatial locality. This means that if two errors 
occur in the same logical space, our data can not be reconstructed, 
and the scrubbing would be pointless. Next approach would be 
MDS, but using Reed Solomon codes while we have also 
scrubbing would imply high overhead, predictably not appropriate 
to use, although it gives the best combination according to 
reliability. In this case we use Column Diagonal Parity (CDP), 
which is the adapted code of Raid for double failures. It tolerates 
a considerable number of failure patterns, while not implying a 
high overhead. Another reason that leads us to use a simple parity 
code, is the fact that errors will be detected soon, so there is a 
lower chance for them to spread and affect multiple bits in a 
single data-parity sectors combination. 

Disk scrubbing in terms of latency can take the same time as 
a read operation. It is infinite because, once the disc is scrubbed 
totally, the process restarts. On the other hand, intra disk 
redundancy needs to update the parity sector(s) every time a 
change is made. This is reduced to a read process, a calculation 
and a write of the parity group. Seemingly, we expect a high 
overhead, if we use both techniques. This would  not be 
appropriate if applied in real systems.  

To avoid the overhead we use both, disc scrubbing and intra 
disk redundancy as background activities, so it can impact as less 
as possible the normal operation of the system [13, 14]. It is 
proven that the cooperation of the two gives a high reliability, 
more than the linear combination of disc scrubbing or intradisk 
redundancy when they operate alone in a system. Out of all the 
ways to manage idle times we consider Busy Bee [8]. It is a 
scheduling  algorithm that adapts dynamically, according on the 
current workload. It has a crucial feature: even if we are operating 
on a high workload system, this policy doesn’t leave the 
background operation starve. For our system, this means, that if a 
foreground short job is scheduled, and we evidence a LSE, we can 
leave the foreground job waiting, and schedule the accelerated 
staggered scrubbing for a limited time, until we are sure that no 
other LSE has affected a nearby sector. If the foreground job 
takes many clock cycles to complete, we can suspend the 
scrubbing because we do not want to add further latency on the 
system. As soon as the long job finishes, we restart the scrubbing. 
However, we must consider, factors such as the disk model or the 
file system that we are working on, because the approach would 
change according to the specific case. 

do { 

If (high probability of short_foreground_job_coming) 
 {  
     if (scanner_head < 0.1*n)  // n- total number of sectors. 
                 Apply_sequential_scanning //standard frequency 
   
 else if (scanner_head >=  0.1*n)  //if out of the first 10%  
                Apply_staggered_scrubbing // standard frequency 
    
else if ( LSE detected) 
{ 
            Apply_accelerated_staggered_scrubbing                 
       Call intradisk_redundacy_operation_on_affected_sector 
} 
else wait for foreground job  }} 
While (idle_time) 
 
The above pseudo-code reveals the concept on which this theory 
is based. The scrubbing operation happens during idle time, and 
because it is infinite, we continue until a foreground job is 
present. If the foreground job is statistically thought to be short, 
the system continues to scrub. In the case it detects an error burst, 
weather the foreground job is short or long, the system doesn’t 
stop scanning. In this case we prefer to secure our data, not 
minding the overhead in this extreme case of risking data loss. 
Otherwise, the scrubbing stops. There are three scanning schemes 
that we apply, in order to be sure that if a LSE exists, we would 
be able to catch it as soon as possible. On the other hand, we can 
not use accelerated scrubbing strategies during the whole time 
because it would impact on system performance. According to the 
mentioned reasons, we scan sequentially the first 10 % of the total 
number of sectors, knowing that it has the biggest probability of 
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developing latent sector errors. After that we chose sequential 
scrubbing, knowing that in comparison to the other scrubbing 
strategies (except staggered ones), it is the one to detect the errors 
first. Last, if we encounter an error, we want to prevent losing 
data in any cost. This is why the intradisk redundancy is called to 
perform a reading of the damaged sector, and also a recalculation, 
so it can locate the error, and fix it. While doing so, we scan at an 
accelerated rate, to detect any other possible erroneous areas. We 
need to state that in real life, there is no way for us to predict if 
the coming job is going to be long or short. In this case, if we are 
expecting a short job the scrubbing process will start. But what if 
a long job comes? The scrubbing will stop, giving precedence to 
the foreground job, if and only if an error is not detected at that 
moment. 
 

7. CONCLUSIONS  
 Based on previous analyses our aim was to find the best 

solution while using disc scrubbing and intradisk redundancy 
simultaneously. We proposed a combination of disk scrubbing 
techniques by which we can detect LSE in the fastest way 
possible. By doing this we can allow the usage of an Intra Disk 
Redundancy parity code that will not imply much overhead. 
Opting for a minimal impact on performance we use both 
strategies as background operations, applying a dynamic 
algorithm. 

Our idea was based on related studies of temporal and spatial 
distributions of error bursts. By understanding them, we predicted 
the best approaches among many disc scrubbing schemes and 
intra disk redundancy codes possible combinations. We found that 
an aggressive policy would be appropriate for those parts of disks 
where critical data is stored, or that are more prone to disk errors. 
Although, it assures reliability, our theory is yet to be proven in 
practical terms of overhead. 
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