
 46

Protection of Web Applications Using Aspect Oriented
Programming and Performance Evaluation

Elinda Kajo-Mece
Faculty of Information

Technology
Polytechnic University of

Tirana
Albania

ekajo@fie.upt.al

Lorena Kodra
Faculty of Information

Technology
Polytechnic University of

Tirana
Albania

lorena.kodra@gmail.com

Enid Vrenozaj
Faculty of Information

Technology
Polytechnic University of

Tirana
Albania

enidv11@gmail.com

Bojken Shehu
Faculty of Information

Technology
Polytechnic University of

Tirana
Albania

b.shehu@fti.edu.al

ABSTRACT
Web application security is a critical issue. Security concerns are
often scattered through different parts of the system. Aspect
oriented programming is a programming paradigm that provides
explicit mechanisms to modularize these concerns. In this paper
we present an Aspect Oriented system for detecting and prevent
common attacks in web applications like Cross Site Scripting
(XSS) and SQL Injection and evaluate its performance by
measuring the overhead introduced into the web application. The
results of our tests show that this technique was effective in
detecting attacks while maintaining a low performance overhead.

General Terms
Algorithms, Performance, Security

Keywords
Security, web application, XSS, SQL injection, aspect oriented
programming, performance evaluation

1. INTRODUCTION
Today, user and critically important company information is
managed using web applications. For this reason, web
applications can be a door for attacks. The vulnerabilities present
in the application can be exploited by an attacker. Even with the
rapid development of Internet technologies, web applications
have not achieved the desired security levels. As a result, web
servers and web applications are popular attack targets.

The most common attacks on web applications are Cross Site
Scripting (XSS) and SQL Injection [14]. SQL Injection is a
technique where an attacker injects SQL code into the user input
field in order to modify the original structure of the query to post
hidden data, or execute arbitrary queries in the database. Cross
Site Scripting occurs when an attacker injects and executes scripts
written in languages like JavaScript or VBScript.

In the case of SQL injection a string is considered to be dangerous
when it alters the original structure of the sql statement. These
strings tipically contain non-alpha numeric characters such as <,
>, =, –, '," and/or a combination of the SQL keywords.

In the case of XSS we consider a dangerous string the one
containing non-alpha numeric characters such as <, >, =, –, ',".

Aspect Oriented Programming is a programming paradigm that
provides explicit mechanisms to modularize crosscutting concerns
(behavior that cuts across different divisions of the software) such
as security. This means that the security code can be separated
from the system code which makes it a good candidate for
applying security to a system compared to traditional
programming methodologies where the security code may be
spread over multiple modules of the system and its maintenance
would be difficult and error prone.

In this paper, we propose and evaluate an Aspect Oriented
protection system that detects and prevents attacks on web
applications. This system analyzes and validates user input
strings. We use an aspect to capture input strings and compare
them to predefined patterns. The intrusion detection aspect is
implemented in AspectJ and is woven into the target system. The
resulting system has the ability to detect malicious user input and
prevent SQL Injection and Cross Site Scripting. The advantage in
using aspect oriented programming lies in separating the security
code from application code. In this way it can be developed
independently to adapt to new attacks.

We test our system by applying it to an insecure web application
and we evaluate its impact on the overall web application
performance.

The rest of the paper is organized as follows. Section 2 presents
concepts of SQL Injection, XSS and AOP. Section 3 describes our
proposed solution. Section 4 describes in details the architecture
of our system and its integration with the web application. Section
5 describes the experimentation and evaluation results. Section 6
concludes and discusses some future work.

2. CONCEPTS OF SQL INJECTION, XSS
AND ASPECT ORIENTED PROGRAMMING
The basic idea behind SQL Injection is inserting malicious SQL
commands into a parameter that a web application sends to a
database. The malicious SQL commands alter the original
intended structure of the query and it becomes a malicious query.
If it is executed it may corrupt or even destroy the database. The
most popular techniques used in SQL injection are tautology,
union, and comments.

The general idea behind tautology is inserting malicious code into
one or more conditional statements of a SELECT or UPDATE

BCI’12, September 16–20, 2012, Novi Sad, Serbia.
Copyright © 2012 by the paper’s authors. Copying permitted only for private and
academic purposes. This volume is published and copyrighted by its editors.
Local Proceedings also appeared in ISBN 978-86-7031-200-5, Faculty of Sciences,
University of Novi Sad.

 47

statement so that they always evaluate as true. Let’s consider the
case where the web application authenticates users by executing
the following query:

SELECT * FROM users WHERE username = ‘admin’
and password = ‘pass’

This query doesn’t select any rows because the password is
incorrect. Injecting ‘OR 1=1 gives:

SELECT * FROM users WHERE username = ‘admin’
and password = ‘‘OR 1=1’

This causes the WHERE clause to be true for every row and all
table rows are returned.

An attacker can use the UNION clause to manipulate an SQL
statement into returning rows from another table. Let’s consider
the following query that allows users to get the product name by
inserting the product ID.

SELECT productName FROM products WHERE
productID = '3'

An attacker can use the UNION clause to modify the structure of
this query to:

SELECT productName FROM products WHERE
productID = '3' UNION SELECT username,
password FROM users

This query will display the product name together with the
usernames and passwords of the users table.

Another type of SQL Injection uses comments to change the
structure of an SQL query. The part of the SQL statement that
comes after the comments will not be executed and the query will
return the results that the attacker wanted. Let’s consider the
following SQL statement:

SELECT * FROM users WHERE username = ‘alice’
and password = ‘alice*123’ can be transformed in the
following way:

SELECT * FROM users WHERE username = ‘admin’
-- and password = ‘’

The query will return all the information about the admin user.

Cross Site Scripting (XSS) is an attack done against the user’s
browser in order to attack the local machine, steal user
information, spoof the user identity, attack other machines, etc.
The attacker uses a web application to send malicious code
usually in the form of a script. Together with the legitimate
content, the users get the malicious script from the web
application. This attack is successful in web applications that do
not validate user input.

Aspect Oriented Programming is a programming paradigm that
aims to solve problems like code scattering and code tangling that
cannot be solved by traditional programming methodologies.
Code scattering means that the problem code is spread over
multiple modules. This makes things difficult for the developers
when they want to fix a bug because they have to modify several
source files. Code tangling means that the problem code is mixed
with other code. In the case of web applications, security code
needs to be applied in different modules of the system. This
process is error prone and difficult to deal with. AOP is a good
candidate for applying security in web applications. The security

code can be encapsulated into modules called aspects which can
be maintained separately from the web application in order to
adapt to new attacks.

3. RELATED WORK AND PROPOSED
SOLUTION
Different solutions have been proposed addressing security issues
in web applications. Some of these solutions are presented below.

Zhu and Zulkerine propose a model-based aspect-oriented
framework for building intrusion-aware software systems [2].
They model attack scenarios and intrusion detection aspects using
an aspect-oriented Unified Modeling Language (UML) profile.
Based on the UML model, the intrusion detection aspects are
implemented and woven into the target system. The resulting
target system has the ability to detect the intrusions automatically.

Mitropoulos and Spinellis propose a method for preventing SQL
Injection attacks by placing a database driver proxy between the
application and its underlying relational database management
system [1]. To detect an attack, the driver uses stripped-down
SQL queries and stack traces to create SQL statement signatures
that are later used to distinguish between injected and legitimate
queries. The driver depends neither on the application nor on the
RDBMS.

Hermosillo et al. present “AProSec” implemented in AspectJ and
in the JBoss AOP framework, a security aspect for detecting SQL
Injection and XSS [3]. They use the same aspect for dealing with
SQL Injection and XSS. Their experiments show the advantage of
runtime platforms such as JBoss AOP for changing security
policies at runtime.

The authors in [4] present Noxes, which is a client-side solution to
mitigate cross-site scripting attacks. Noxes acts as a web proxy
and uses both manual and automatically generated rules to
mitigate possible cross-site scripting attempts. Analogous to
personal firewalls, Noxes allows the user to create filter rules (i.e.,
firewall rules) for web requests.

In [5], Madow et al. describe a method for defending web
applications against XSS vulnerabilities at runtime by identifying
dangerous values as they are written into the HTTP response
rather than as they enter the program. Their method is comprised
of two phases: an attack-free training period where they capture
the normal behavior of the application in the form of a set of
likely program invariants, and an indefinite period of time spent
in a potentially hostile environment where they check to make
sure the application does not deviate from the normal behavior.

Janot, and Zavarsky in [6] present a study on the prevention of
SQL Injections, an overview of proposed approaches and existing
solutions, and recommendations on preventive coding techniques
for Java-powered web applications and other environments. They
present their solution, the SQLDOM4J, which targets Java
environments and enables developers to construct and execute
safe SQL statements easily and to protect applications against
SQL Injection Attacks.

The solution we propose performs a two-step validation of user
input. In the first step, the user input is validated syntactically by
the Syntactic Validator to check whether it contains dangerous
characters that can be used in XSS and SQL Injection. In the
second step, the input is validated by the SQL validator (Semantic
Validator) in the context of a query. This is done to check
whether it contains always true statements or combinations of

 48

SQL keywords that can modify the original structure of the query
and make it dangerous. What makes our system different from the
solutions described earlier is the fact that it analyzes directly user
input before it is being used as part of an SQL query. This
facilitates the analyzing process because the part of the query that
is pre-programmed is considered safe and there is no need to
validate it. Another advantage of our system is the fact that the
SQL validator checks the presence of SQL keywords in the user
input. This prevents attacks that do not contain comments or
always true statements but contain SQL keywords that can modify
the original structure of the SQL query. The presence of a
combination of SQL keywords is considered as an attack, not the
presence of a single SQL keyword. This prevents the generation
of false positives in cases when for example the word “Union” is
part of a legitimate user name.

3.1 System Architecture
Our system consists of three parts. The first and the most
important part is an aspect implemented in AspectJ [10] called
WebAppInputFilter that contains the logic of the whole defense
process. It contains the advices that control the validation process
as well as the actions to be taken (code to be executed) based on
the results of the validation. The aspect also contains the pointcuts
that define the vulnerable points of the web application and allow
the weaving with the advice code. It monitors the traffic in
servlets and captures some specific calls that implement the
ServletRequest and HttpServletRequest interfaces. The pointcuts
are:

pointcut pcGetParameter(): call(String
javax.servlet.http.HttpServletRequest.getPar
ameter (String))

pointcut pcGetParameterValues():call(String
[]
javax.servlet.ServletRequest.getParameterVal
ues(String))

pointcut pcGetQueryString(): call String
javax.servlet.http.HttpServletRequest.getQue
ryString (String))

pointcut pcGetRequestURL(): call(String
javax.servlet.http.HttpServletRequest.getReq
uestURL (String))

These pointcuts cover even the cases when the attacker performs
the attack directly from the URL without the need for using a
form.

The second part consists of a validators class that validate against
XSS and SQL Injection attacks the input captured by the advices.
The third part consists of an encoder which encodes dangerous
characters by converting them to their decimal equivalent, making
them harmless.

The basic idea behind our technique is to capture user input and
validate it by comparing it to predefined patterns. This makes our
system different from the ones described in [1, 2, 3, 4, 5, 6]. As
we explained before, the user input is validated before being used
as part of a query. The query that is entered into the web
application is a combination of user input and a partial SQL
statement defined by the developer. The part defined by the
developer is considered as safe so there is no need to validate it
and we only validate the user input part. This speeds up the
validation process, makes it easier and also decreases the
possibility of generating false positives.

The validation process happens in two steps. In the first step it is
checked whether the input contains dangerous characters such as
‘<’,’ >’, ‘=’ and’ –‘that can be used to perform XSS and SQL
Injection attacks. In the second step, the input is analyzed by the
SQL Validator (Semantic Validator) in the context of the query.
This is done to check whether the query contains combined SQL
keywords that can modify the original structure of the query or
SQL code that can transform the original query in an SQL
statement that results always true.

Figure 1: The flow of information within the defense system.

Figure 1 shows the flow of information within the defense system.
The aspect captures the user input string and sends it to the first
analyzer (Syntactic Validator). If the string is not dangerous it is
passed on to the second validation step (Semantic Validator). If
the string is dangerous it is send to the encoder. It encodes the
dangerous characters and the result is passed to the Semantic
Validator. If the string is not considered dangerous, it is passed on
to the web application as a legitimate request. If it is considered
dangerous, it is erased.

In the cases when an attack is detected the system generates a
notification showing the dangerous string which can be saved on a
log file or database for later analysis.

4. PERFORMANCE EVALUATION
We tested our system by using it to protect a vulnerable web
application [11]. First we applied all sorts of SQL Injection and
XSS injection attacks on the unprotected system to see how it
behaved. Then we applied our solution to protect it and attacked it
again but were unable to bypass the application’s security. The
results of these tests are described further in [7]

In order to evaluate the impact of the defense system on the
performance of the web application we measured its response
time using JMeter [12], first in the absence of the defense system
and then in the presence of our defense system. JMeter is a tool
used to test performance both on static and dynamic resources. It
can be used to simulate a heavy load on a web application or to
analyze overall performance under different load types. We
created 3 scenarios with GET and POST HTTP requests:

• POST requests for XSS

• POST requests for SQL Injection

 49

• A mix of legitimate requests, XSS attack requests and
SQL Injection requests.

Each of these scenarios represent real life situations where the
requests can be only XSS attacks, only SQL injection attacks or a
mix of legitimate requests, XSS and SQL injection attacks. XSS
and SQL Injection attacks use only POST requests since they try
to insert information into the web application. GET requests
represent the legitimate requests when the user wants to retrieve
information from the web application. POST requests also are
used as legitimate requests in cases where the user wants to insert
information into the web application.

For every scenario we evaluated the system under different loads.
We used 3 different requests loads: 1000 requests, 10000 requests
and 100000 requests. These numbers of requests are used to
simulate normal, high and very high load. The default maximum
number of concurrent threads in the Tomcat’s server
configuration file is set to 150. We could spawn as many client
threads as we wish but if we exceed the limit of 150, performance
will decrease because some client request threads will always be
waiting. So it is better to stay just under the maximum number,
such as 149 client threads. We executed each test 5 times and
measured the average response time and calculated the overhead
introduced. The response time is the time the web application
takes to process a user request and send the result to the user. The
overhead is the difference in response times between the system
with protection and without protection.

Table 1 shows the results for the first scenario where all the
requests are harmful POST requests for XSS.

Table 1: Overhead for POST Requests for XSS

1000

requests
10000

requests
100000

requests

Overhead (%) 2.14 2.21 2.31

As we can see, the defense system introduces an overhead. This
overhead comes from the Syntactic Validator and the Encoder We
also notice that with the increasing number of requests, the
overhead increases too. This comes from the increased processing
and encoding of the requests.

Table 2 shows the results for the second scenario where all the
requests are harmful POST requests for SQL Injection.

Table 2: Overhead for POST Requests for SQL Injection

1000

requests
10000

requests
100000

requests

Overhead (%) 1.99 2.10 2.23

As we can see from the results, even in this case the defense
system introduces an overhead. If we compare these two tables
we notice that the overhead is slightly smaller in the case where
the requests are for SQL Injection. This comes from the fact that
not all strings need to be encoded.

Table 3 shows the results for the third scenario where we have a
mix of harmful and harmless requests for XSS and SQL Injection.

Table 3: Overhead for POST and GET Requests for Harmless
and Harmful Requests for XSS and SQL Injection

1000

requests
10000

requests
100000

requests

Overhead (%) 1.93 2.03 2.19

As we can see, the overhead introduced into the system in this
case is lower due to the presence of harmless requests that don’t
need to be encoded.

We feel that the overhead introduced in the scenarios described
above is at an acceptable level for use in many production
environments and it will not be noticeable by the user. Hence we
can conclude that our system offers an effective defense against
XSS and SQL Injection by keeping at the same time a low
performance overhead.

5. CONCLUSIONS AND FUTURE WORK
We have presented an approach for building an effective security
system for a web application. This system detects XSS and SQL
Injection attacks in requests. Our system was built separately and
the initial code of the web application was not modified. This
allows the security system to be evolved independently from the
web application to adapt to new attacks.

What makes our system different from similar proposed solutions
is the fact that it analyzes directly user input before it is being
used as part of an SQL query. This facilitates and speeds up the
analyzing process because the part of the query that is pre-
programmed is considered safe and there is no need to validate it.

The performance evaluation under normal, moderate and high
load showed that our defense system provides an effective
protection while maintaining within acceptable levels the
overhead introduced in the system.

Our system can be improved in some directions. A possible
improvement might be the implementation of defense against
other form of attacks. Also new techniques like machine learning
and neural networks can be used to detect more sophisticated
attacks. Another direction of improvement might be the
implementation of runtime weaving using the JBoss AOP
Framework [13].

6. REFERENCES
[1] Mitropoulos, D., Spinellis, D. Sdriver. 2009. Location-

specific signatures prevent SQL injection attacks, Computers
& Security, Vol.28, Issues 3-4, (May-June 2009,) 121-129

[2] Zhu, Z.J., Zulkernine, M. 2009.A model-based aspect-
oriented framework for building intrusion-aware software
systems, Information and Software Technology, Vol.51,
Issue 5, (May 2009), 865-875

[3] Hermosillo, G., Gomez, R., Seinturier, L., Duchien, L. 2007.
AProSec: An aspect for programming secure web
applications, In Proceedings of the The Second International
Conference on Availability, Reliability and Security, (2007),
1026-1033

[4] Kirda, E., Jovanovic, N., Kruegel, C., Vigna, G. 2009.
Client-side cross-site scripting protection, Computers &
Security, Vol.28, Issue 7, (October 2009), 592-604

 50

[5] Madou, M., Lee, E., West, J., Chess, B. 2008. Watch What
You Write: Preventing Cross-Site Scripting by Observing
Program Output, OWASP AppSec 2008 Conference
(AppSecEU08)

[6] Janot, E., Zavarsky, P. 2008. Preventing SQL Injections in
Online Applications: Study, Recommendations and Java
Solution Prototype Based on the SQL DOM, OWASP
AppSec 2008 Conference (AppSecEU08)

[7] Kodra, L., Kajo, E. 2011. Protecting Web Applications
using AspectJ . 6th Annual South East European Doctoral
Student Conference, (Thessaloniki, Greece, September 19-
20, 2011).

[8] Lam, M.S., Martin, M., Livshits., Whaley, J. 2008. Securing
Web Applications with Static and Dynamic Information
Flow Tracking. ACM SIGPLAN 2008 Workshop on Partial
Evaluation and Program Manipulation (San Francisco,
USA, January 7-8, 2008). PEPM '08.

[9] Lam, M.S., Martin, M., 2008. Automatic generation of XSS
and SQL injection attacks with goal-directed model
checking. In Proceedings of the 17th conference on Security
symposium (USENIX Association Berkeley, USA. 2008)

[10] AspectJ, http://www.eclipse.org/aspectj/

[11] WebGoat,http://www.owasp.org/index.php/Category:OWAS
P_WebGoat_Project.

[12] Apache Jmeter, http://jakarta.apache.org/jmeter/.

[13] JBoss AOP, http://www.jboss.org/jbossaop

[14] OWASP Top Ten Project,
https://www.owasp.org/index.php/Category:OWASP_Top_T
en_Project

