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ABSTRACT
This paper describes our systems submitted to the spoken
web search (SWS) task at MediaEval 2012. All the sys-
tems were based on a new framework which is modified from
the posteriorgram-based template matching approach. This
framework employs parallel tokenizers to convert audio data
into posteriorgrams, and then combine the distance matri-
ces from the posteriorgrams of different tokenizers to derive
a combined distance matrix. Lastly dynamic time warping
(DTW) is applied to the combined distance matrix to detect
the possible occurrences of the query terms. For this SWS
task, we used three types of tokenizers, namely Gaussian
mixture model (GMM) tokenizer, acoustic segment model
(ASM) tokenizer, and phoneme recognizers of rich-resource
languages. Pseudo-relevance feedback (PRF) and score nor-
malization were also used in some of the systems.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval

General Terms
Algorithms, Experimentation, Languages

Keywords
Query-by-example, spoken term detection, low-resource language,
parallel tokenizers followed by DTW detection

1. INTRODUCTION
The spoken web search (SWS) task of MediaEval 2012 is to lo-

cate the occurrences of the query terms in the audio archive us-
ing audio content queries [3]. All our systems were based on the
same framework: parallel tokenizers followed by DTW detection
(PTDTW). This framework was modified from the posteriorgram-
based template matching approach [2]. The motivation of devel-
oping this framework was to exploit the complementary nature of
different tokenizers when building the DTW distance matrix.

2. RESOURCES
We submitted the results of five systems for this task. System 1

and system 2 were built using only the provided development audio
data without transcriptions. System 3, 4 and 5 used more resources,
including the provided development audio data without transcrip-
tions, the three Brno phoneme recognizers (Czech, Hungarian and
Russian), which were trained on the SpeechDat-E corpus with tran-
scriptions [1, 4], one English phoneme recognizer trained on about
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15-hour audio data with transcriptions from the Fisher corpus and
Swichboard Cellular corpus, and one Mandarin phoneme recog-
nizer trained on about 15-hour audio data with transcriptions from
the CallHome corpus and the CallFriend corpus.

3. SYSTEM DESCRIPTION
3.1 PTDTW framework

Fig. 1 illustrates our proposed PTDTW framework. It involves
N parallel tokenizers, which are either trained from the develop-
ment data given in the SWS task, or developed from some rich-
resource languages. Using these tokenizers, the query examples
and test utterances are converted into frame-level posteriorgrams.
Each of the N tokenizers may use a different algorithm to com-
pute its posteriorgrams. For each type of posteriorgrams, the DTW
distance matrix Di(1 ≤ i ≤ N) is computed. To take advan-
tage of the complementary information from different tokenizers,
the N distance matrices are combined linearly to give a new dis-
tance matrix, i.e., D =

∑N
i=1 wiDi. For simplicity, the weighting

coefficient wi was set to 1
N

in our systems. Subsequently DTW
detection is applied to D to compute the raw detection score.

3.2 Tokenizers
The first type of tokenizer we used is the GMM tokenizer. In

our implementation, the GMM tokenizer contained 1024 Gaussian
components trained from the provided development data. The in-
put of the GMM tokenizer was 39-dimensional MFCC feature vec-
tor. The MFCC features were further processed with voice activ-
ity detection (VAD), sentence-based mean and variance normaliza-
tion (MVN) and vocal tract length normalization (VTLN). This to-
kenizer is referred to as MFCC-GMM.

The second type of tokenizer is the ASM tokenizer, which was
also trained using only the development data. The ASM tokenizer
was trained in an unsupervised manner. Details of ASM training
are shown in [5]. The ASM tokenizer contained 256 units. Each
unit owned 3 states with 16 gaussian components for each state.
The input features for the ASM tokenizer were the same as those
for the GMM tokenizer. The tokenizer is named as MFCC-ASM.

The third type of tokenizers are phoneme recognizers. These
recognizers were trained on rich-resource languages, for which la-
beled training data are readily available. As mentioned in Section 2,
we used five phoneme recognizers, namely Czech (CZ), Hungarian
(HU), Russian (RU), English (EN) and Mandarin (MA) phoneme
recognizers. All these phoneme recognizers used the split temporal
context network structure [4]. They performed as the front-end to
produce posterior features. The posterior features were further pro-
cessed by taking logarithm and PCA transformation, and then mod-
eled by 256 Gaussian mixtures which were trained on the develop-
ment data. The 256-dimensional Gaussian posteriorgrams were the
final output of this type of tokenizers. These tokenizers are respec-
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Figure 1: PTDTW Framework

tively referred to as CZ-GMM, HU-GMM, RU-GMM, EM-GMM,
and MA-GMM.

3.3 DTW Detection
DTW detection is performed with a sliding window, which moves

along the test utterance with one frame forward for each step. Let I
denote the length of the query example, and let J denote the width
of the sliding window. The DTW detection for each window oper-
ates on a I × J distance matrix, which is extracted from the whole
distance matrix D. The DTW alignment path maximize the detec-
tion score, which is negative to the following normalized distance:

d̂ = min
K,i(k),j(k)

∑K
1 d(i(k), j(k))wk

Z(w)
(1)

where i(k) and j(k) denote the coordinates of the kth(1 ≤ k ≤
K) step of the alignment path. For this SWS task, d(i(k), j(k))
was computed as the inner-product distance [2]. The weighting
coefficient wk was set to 1, and the normalization factor Z(w) was
set to K.

An additional restriction was imposed on the alignment path:
|i(k)− j(k)| ≤ R, where R defines the allowed range of the path.
With this restriction, we have J ≥ I + R and I − R ≤ j(K) ≤
I + R. Because of the significant variation of the query length,
R was not set to a fixed number but was made proportional to the
query length I , i.e.,R = αI . α was set to 1

3
in our experiment.

3.4 PRF and Score Normalization
After obtaining the DTW detection raw scores, the Pseudo-relevance

feedback (PRF) we used could be divided into 3 steps for each
query:

1) The top H hits from all the test utterances were selected as
the relevance examples. Selection criterion included: a) H ≤ 3;
b) raw detection score should be larger than a pre-set threshold.

2) The relevance examples were used to score the top Ĥ (Ĥ = 2
for this task) hits from each utterance.

3) The scores obtained by the relevance examples were linearly
fused with the scores of the original query examples.

Score normalization was applied to normalize the score as ŝq,t =
(sq,t − µq)/δq , where sq,t is the score of the qth query on the tth
hit region. µq and δ2q are the mean and variance of the scores for
the qth query estimated from the development data.

4. CONFIGURATION AND PERFORMANCE
We submitted the results of five different systems. Their con-

figurations and performances are given in Table 1. The perfor-
mance metric is ATWV [3]. System 1 and 2 belong to the re-
quired run condition as defined in [3]. The other three utilized the
phoneme recognizers of other languages, so they belong to general
run condition. System 1 and system 4 were the primary systems
for the two conditions respectively. As can be seen, using par-
allel phoneme recognizers from rich-resource languages provide

quite promising performances. The combination of unsupervised
tokenizers (GMM and ASM) and these phoneme recognizers im-
proves the system performance. Moreover, PRF leads to consistent
improvements.

Table 1: System Configurations (rows 2-10) and
ATWV performances (rows 11-14).

System No. 1 2 3 4 5

MFCC-GMM
√ √ √ √

MFCC-ASM
√ √ √ √

CZ-GMM
√ √ √

HU-GMM
√ √ √

RU-GMM
√ √ √

MA-GMM
√ √ √

EN-GMM
√ √ √

PRF
√ √

Score Normalization
√ √ √ √ √

devQ - devC 0.68 0.63 0.73 0.78 0.74
devQ - evlC 0.60 0.55 0.70 0.75 0.70
evlQ - devC 0.68 0.65 0.73 0.77 0.75
evlQ - evlC 0.64 0.59 0.72 0.74 0.74

5. CONCLUSION
We have presented the proposed PTDTW framework, which can

effectively combine different tokenizers for the query-by-example
spoken term detection task. The modification of DTW detection,
the PRF technique and the score normalization have also been de-
scribed. Promising results are obtained from the SWS evaluation.
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