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ABSTRACT
We present an overview for a truly zero resource query-by-
example search system designed for the 2012 MediaEval Spo-
ken Web Search task. Our system is based on the recently
proposed randomized acoustic indexing and logarithmic-
time search (RAILS) framework. The input is merely the
raw acoustic observations for the query and search collec-
tion, requiring no trained models whatsoever, not even un-
supervised ones. Even still the system is capable of search
speeds of at least a thousand times faster than real time, and
capable of producing competent zero resource performance.

1. INTRODUCTION
Traditional high resource search systems rely on prepro-

cessing the search collection audio with phonetic or word rec-
ognizers and constructing efficient indices of these symbolic
units to allow fast and accurate retrieval. Our entry into the
2012 MediaEval Spoken Web Search task (see [1] for a com-
plete description of the task and data), is a zero resource
approach (no language- or application-specific training re-
sources) that replaces an index of language-specific symbolic
units with an index of the individual acoustic feature vec-
tors themselves. The technique, dubbed Randomized Acous-
tic Indexing and Logarithmic-time Search (RAILS) [3], pro-
vides a means to achieve sublinear search times in the ab-
sence of a speaker independent symbolic representation, and
thus avoids the need for either supervised or unsupervised
acoustic models. This permits zero resource search with no
upfront training costs and means that RAILS enables, for
the first time, keyword search that is both scalable and com-
pletely language independent.

2. SYSTEM OVERVIEW
We begin with a brief description of the RAILS approach,

a scalable extension of the original segmental dynamic time
warping (DTW) approach [5], followed by a description of
additional system processing steps introduced specifically for
our 2012 MediaEval system. Note that a complete RAILS
specification can be found in [3].

2.1 RAILS Overview
The RAILS approach involves four primary processing

stages: (1) we map each frame to a sortable bit signature
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using locality sensitive hashing (LSH) [2], using the variant
that preserves cosine distance; (2) we construct sorted lists
(the index) of the signatures in the search collection; (3)
using the index, we compute approximate nearest neighbor
sets for each query frame in logarithmic time, allowing the
construction of a sparse similarity matrix between query and
search collection; and (4) we search for runs of similar frames
with efficient sparse image processing techniques applied to
the similarity matrix. In our MediaEval system develop-
ment we investigated system performance as a function of
only two RAILS parameters: the size of the neighborhood
search beam, B, and the cosine similarity threshold for a
frame-level comparison to make it into the sparse matrix, δ.
The default values listed in [3] were used for all other RAILS
parameters.

2.2 Acoustic Front-End
Based on success for the task demonstrated in [3], we

opted to use short-time frequency domain linear prediction
features (FDLP-S) [4] for our MediaEval 2012 system. How-
ever, we explored the effect of various FDLP-S parameter
values on the search task. Inspired by an as-yet-unpublished
finding of Vijayiditya Peddinti and Hynek Hermansky dur-
ing the 2012 JHU CLSP Summer Workshop, we found that
decreasing both LPC model order and number of cepstral
coefficients produced substantially better speaker indepen-
dence. We believe this is a product of the resulting spectral
smoothing, which reduces speaker dependent effects without
substantially reducing phonetic discriminability.

2.3 Query Preprocessing
The nature of this year’s query sets are such that some pre-

processing was necessary to achieve performance comparable
to that previously documented for the RAILS approach. In
our previous study [3], all queries were single words and all
query examples were extracted from continuous speech using
forced alignments. In the present case, queries can contain
multiple words (with silence often occurring between and
around the constituent words) and are provided in citation
form. Both of these factors necessitate the use of speech ac-
tivity detection to (1) remove begin/end silences from each
example and (2) split multiword queries into subsegments
about substantial pauses greater than 200 ms. Splitting
is thus limited to multiword queries, but note that not all
multiword queries required a split. We used a prototype
speech activity system being developed at JHU-HLTCOE
to identify non-speech regions, though manual speech activ-
ity corrections on the query examples were performed as
necessary (subsequent improvements in our speech activ-



ity system will remove the need for manual intervention).
When multiple segments were identified for a given query,
each was processed by the RAILS system independently as
if they were separate queries. However, the detections for
multiword queries only were triggered with the constituent
subsegments were detected in the proper order with at most
0.5 s of silence in between.

2.4 Score Normalization and Combination
The requirements of the spoken web search task are such

that hit lists for queries are merged before scoring. There-
fore, it is essential that scores are properly normalized across
query types. Moreover, given we split individual queries
into multiple segments using speech activity preprocessing,
we require a means to normalize across single-segment and
multi-segment queries. During development, it became ex-
ceedingly clear that reliable score normalization was essen-
tial for good system performance, especially for high preci-
sion operating points (e.g. the devA scoring condition).

First, we observed the DTW score distribution for the
false alarms is Gaussian. Second, for a sufficiently low
threshold, the score distributions were massively dominated
by false alarms. Therefore, we can convert each raw DTW
score to a normalized z-score using the overall mean and
standard deviation estimated from scores of all putative hits
for a given query. We define the raw score for multi-segment
queries as the sum of the raw DTW scores for each individ-
ual segment. However, to make these scores comparable
to the single-segment queries, we must again perform a z-
normalization as follows. Let q be the number of the seg-
ments in a given multi-segment query. First we compute the
z-scores for each of the query segments as described above,
which we denote {z1, . . . , zq}. Then, since the sum of two
Gaussian distributed random variables is also Gaussian, we
can easily compute the z-score for the multi-segment query
according to
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where each σi is the standard deviation of raw DTW scores
for the ith segment of the query.

3. EXPERIMENTS
Facilitated by the efficient search speeds and limited

search collection, we conducted extensive experimentation
using the development queries on the development search
collection. The primary area of interest was the investiga-
tion of the RAILS parameters on system accuracy and search
speed. Ultimately, we found performance to largely saturate
at B=1000 and δ=0.0 (dev/dev MTWV of 0.381), where
a real-time speedup of approximately 1000X was observed
(this was the system parameters used for the official sub-
mission, measured using a 0.8 s long query example). How-
ever, there were still marginal gains to be had for a larger
B = 2000 (0.404 MTWV), but that comes at about half the
search speed. Note that increasing δ to 0.25 with B = 1000
led to a more dramatic performance drop to 0.331 MTWV,
without as substantial improvement in speed (1600X). Note
that the real-time speedups are somewhat smaller than those
reported in [3], a result of longer queries and smaller search
collections used here (recall search speeds are logarithmic in
the size of the search collection).

Table 1: Official performance results for all pairings

of query set and search collection.

Query Set Collection MTWV ATWV
dev dev 0.381 0.381
dev eval 0.336 0.321
eval dev 0.439 0.421
eval eval 0.384 0.369

The official results on all four combinations of query sets
and search collections are provided in Table 1. Both the
actual and maximum term weighted value (ATWV and
MTWV) are shown. Note that the score threshold was cho-
sen to maximize TWV using the development query set and
search collection, explaining the equivalence of ATWV and
MTWV for that case. However, we find that there is a rela-
tively small difference (less than 0.02) between ATWV and
MTWV for all conditions, indicating that our score normal-
ization procedure provides a reliable confidence measure for
DTW-based search systems.

Ultimately, for truly zero resource systems, a recall ceiling
is imposed according to the degree of speaker and channel in-
variance afforded by the acoustic front end. While progress
is being made, the simple truth is that without annotated
data in the language of interest (or a closely related lan-
guage), high recall focused metrics like ATWV will always
lag behind. However, zero resource solutions such as the
one described here remain lighter weight and more language
independent, which make them ideal for many downstream
applications.

4. CONCLUSIONS
We have presented an overview of the JHU-HLTCOE sys-

tem for the MediaEval 2012 Spoken Web Search task along
with the evaluation results. The recall of our system is
not as high as other zero resource approaches that rely ei-
ther on borrowing highly supervised acoustic models from
other languages or training unsupervised acoustic models
for the search collection. However, our system is arguably
the most versatile, not requiring the prerequisite of any in-
language, out-of-language, or in-domain resources of any
kind (not even unannotated data). Furthermore, the ef-
ficiency of our indexing procedure permits unprecedented
scalability for DTW-based approaches.
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