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1 Introduction

Decision rules are widely used in applications connected with data mining, knowl-
edge discovery and machine learning.

There are many different approaches to the design and analysis of decision
rules: brute-force approach, genetic algorithms [25], simulated annealing [12],
Boolean reasoning [18, 20, 24], ant colony optimization [13], algorithms based on
decision tree construction [14, 17, 21], algorithms based on a sequential cover-
ing procedure [5, 8, 9], different kinds of greedy algorithms [16, 18], and dynamic
programming [2–4].We can find many programs which allow data analysis us-
ing decision rules based on the approaches mentioned above, e.g., LERS [10],
RSES [7], Rosetta [19], Weka [11], TRS library [23], and others.

We propose a new tool for analyzing relationships between the length and
coverage of decision rules. This tool is based on a dynamic programming ap-
proach and is part of the software system Dagger [1] created in King Abdullah
University of Science and Technology.

We study the dependence between length and coverage of exact irredun-
dant decision rules. Such rules are constructed using a dynamic programming
algorithm [3]. The length of a rule is the number of descriptors (expressions
“attribute=value”) on the left-hand side of the rule. The coverage of a rule, for
a given decision table, is the number of rows in the table for which the rule is
realizable (the left-hand side of the rule is true) and the decision from the right-
hand side of the rule is equal to the decision attached to the row. The choice of
length as a rule parameter is connected with the Minimum Description Length
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principle [22]. The rule coverage is important for discovering major patterns in
the data.

For a given decision table T , row r of T , and a natural number m, we would
like to find the value FT,r(m) which is the maximum coverage of a decision rule
that is true for T , realizable for r, and whose length is at most m.

We created an algorithm that allows us to find the value FT,r(m), for all
m such that m is at least the minimum length of the considered rules and at
most the number of attributes in T . This algorithm is based on ideas of dynamic
programming and requires the construction of a graph which nodes are subtables
of the decision table T . We also study the reverse relationship which is described
by the function GT,r. The value of this function, for a given p, is equal to the
minimum length among all irredundant decision rules for T and r which have a
coverage of at least p. For experimentation, we used decision tables from UCI
ML Repository [6].

The chapter consists of seven sections. Section 2 contains main notions and
defines irredundant decision rules. In Sect. 3, we present an algorithm for con-
structing a directed acyclic graph whose nodes are subtables of a given decision
table T . Section 4 is devoted to the consideration of an algorithm that constructs
the function FT,r for a given decision table T and its row r. In Sect. 5, we de-
scribe how it is possible to find values of the function GT,r using values of the
function FT,r . Section 6 contains the results of our experiments, and Sect. 7 –
a short conclusion.

2 Main Notions

In this section, we present definitions of notions corresponding to decision tables
and decision rules.

A decision table T is a rectangular table with n columns labeled with condi-
tional attributes f1, . . . , fn. Rows of this table are filled with nonnegative integers
which are interpreted as values of conditional attributes. Rows of T are pairwise
different and each row is labeled with a nonnegative integer (decision) which is
interpreted as a value of the decision attribute.

We denote by N(T ) the number of rows in the table T . The table T is called
degenerate if T is empty (in this case N(T ) = 0) or all rows of T are labeled
with the same decision.

A table obtained from T by the removal of some rows is called a subtable of
the table T . Let T be nonempty and fi1 , . . . , fim ∈ {f1, . . . , fn} and a1, . . . , am
be nonnegative integers. We denote by T (fi1 , a1) . . . (fim , am) the subtable of
the table T which contains only rows that have numbers a1, . . . , am at the inter-
section with columns fi1 , . . . , fim . Such nonempty subtables (including the table
T ) are called separable subtables of T .

We denote by E(T ) the set of attributes from {f1, . . . , fn} which are not
constant on T . For any fi ∈ E(T ), we denote by E(T, fi) the set of values of the
attribute fi in T .
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The expression
fi1 = a1 ∧ . . . ∧ fim = am → d (1)

is called a decision rule over T if fi1 , . . . , fim ∈ {f1, . . . , fn}, and a1, . . . am, d

are nonnegative integers. It is possible that m = 0. In this case (1) is equal to
the rule

→ d. (2)

Let r = (b1, . . . , bn) be a row of T . We will say that the rule (1) is realizable
for r if a1 = bi1 , . . . , am = bim . If m = 0 then the rule (2) is realizable for any
row from T .

We will say that the rule (1) is true for T if each row of T for which the rule
(1) is realizable has the decision d attached to it. Note that (1) is true for T if
and only if the table T ′ = T (fi1 , a1) . . . (fim , am) is degenerate and each row of
T ′ is labeled with the decision d. If m = 0 then the rule (2) is true for T if and
only if T is degenerate and each row of T is labeled with the decision d.

If a rule is true for T and realizable for r, we will say that this is a decision
rule for T and r.

2.1 Irredundant Decision Rules

We will say that the rule (1) with m > 0 is an irredundant decision rule for T

and r if (1) is a decision rule for T and r and the following conditions hold:

(i) fi1 ∈ E(T ), and if m > 1 then fij ∈ E(T (fi1 , a1) . . . (fij−1
, aj−1)) for j =

2, . . . ,m;
(ii) if m = 1 then the table T is nondegenerate, and if m > 1 then the table

T (fi1 , a1) . . . (fim−1
, am−1) is nondegenerate.

If m = 0 then the rule (2) is an irredundant decision rule for T and r if (2) is
a decision rule for T and r, i.e., if T is degenerate and each row of T is labeled
with the decision d.

Lemma 1. [3] Let T be a nondegenerate decision table, fi1 ∈ E(T ), a1 ∈
E(T, fi1), and r be a row of the table T ′ = T (fi1 , a1). Then the rule (1) with
m ≥ 1 is an irredundant decision rule for T and r if and only if the rule

fi2 = a2 ∧ . . . ∧ fim = am → d (3)

is an irredundant decision rule for T ′ and r (if m = 1 then (3) is equal to → d).

Let τ be a decision rule over T and τ be equal to (1).
The number m of descriptors (pairs “attribute=value”) on the left-hand side

of τ is called the length of the rule and is denoted by l(τ). The length of decision
rule (2) is equal to 0.

The coverage of τ is the number of rows in T for which τ is realizable
and which are labeled with the decision d. We denote it by c(τ). The cov-
erage of decision rule (2) is equal to the number of rows in T which are la-
beled with the decision d. If τ is true for T (we consider now this case) then
c(τ) = N(T (fi1 , a1) . . . (fim , am)).
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Proposition 1. [3] Let T be a nonempty decision table, r be a row of T and τ

be a decision rule for T and r which is not an irredundant decision rule for T

and r. Then by removal of some descriptors from the left-hand side of τ we can
obtain an irredundant decision rule irr(τ) for T and r such that l(irr(τ)) ≤ l(τ)
and c(irr(τ)) ≥ c(τ).

From Proposition 1 it follows that instead of arbitrary decision rules for T

and r we can consider only irredundant decision rules for T and r.
We will say that an irredundant decision rule for T and r is totally opti-

mal relative to the length and coverage if it has the minimum length and the
maximum coverage among all irredundant decision rules for T and r.

3 Directed Acyclic Graph ∆(T )

Now, we consider an algorithm that constructs a directed acyclic graph ∆(T ).
Based on this graph we can describe the set of irredundant decision rules for T
and for each row r of T . We can also study relationships between the length and
coverage of such rules. Nodes of the graph are separable subtables of the table
T . During each step, the algorithm processes one node and marks it with the
symbol *. At the first step, the algorithm constructs a graph containing a single
node T which is not marked with *.

Let us assume that the algorithm has already performed p steps. We now de-
scribe the step (p+1). If all nodes are marked with the symbol * as processed, the
algorithm finishes its work and presents the resulting graph as ∆(T ). Otherwise,
choose a node (table) Θ, which has not been processed yet. If Θ is degenerate,
then mark Θ with the symbol * and go to the step (p+ 2). Otherwise, for each
fi ∈ E(Θ), draw a bundle of edges from the node Θ. Let E(Θ, fi) = {b1, . . . , bt}.
Then draw t edges from Θ and label these edges with pairs (fi, b1), . . . , (fi, bt)
respectively. These edges enter to nodes Θ(fi, b1), . . . , Θ(fi, bt). If some of nodes
Θ(fi, b1), . . . , Θ(fi, bt) are absent in the graph then add these nodes to the graph.
Mark the node Θ with the symbol * and proceed to the step (p+ 2).

The graph ∆(T ) is a directed acyclic graph. A node of this graph will be
called terminal if there are no edges leaving this node. Note that a node Θ of
∆(T ) is terminal if and only if Θ is degenerate.

Now, for each node Θ of ∆(T ) and for each row r of Θ we describe a set of
decision rules Rul(Θ, r). Let Θ be a terminal node of∆(T ), i.e., Θ is a degenerate
table in which each row is labeled with the same decision d. Then

Rul(Θ, r) = {→ d}.

Let Θ now be a nonterminal node of ∆(T ) such that for each child Θ′ of Θ
and for each row r′ of Θ′ the set of rules Rul(Θ′, r′) has already been defined.
Let r = (b1, . . . , bn) be a row of Θ labeled with a decision d. For any fi ∈ E(Θ),
we define the set of rules Rul(Θ, r, fi) as follows:

Rul(Θ, r, fi) = {fi = bi ∧ α → d : α → d ∈ Rul(Θ(fi, bi), r)}.
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Then
Rul(Θ, r) =

⋃

fi∈E(Θ)

Rul(Θ, r, fi).

Theorem 1. [3] For any node Θ of ∆(T ) and for any row r of Θ, the set
Rul(Θ, r) is equal to the set of all irredundant decision rules for Θ and r.

A detailed example for the construction of the directed acyclic graph and the
description of the set of all irredundant decision rules for each row of a given
decision table T can be found in [3].

It is possible to show (see analysis of similar algorithms in [17], page 64) that
the time complexities of algorithms which construct the graph ∆(T ) and make
optimization of decision rules relative to length or coverage are bounded above
by polynomials on the number of separable subtables of T , and the number of
attributes in T . In [15] it was shown that the number of separable subtables for
decision tables with attributes from a restricted infinite information systems is
bounded from above by a polynomial on the number of attributes in the table.
Examples of restricted infinite information system were considered, in particular,
in [17].

4 Relationship Between Coverage and Length

Let T be a decision table with n columns labeled with attributes f1, . . . , fn, and
r = (b1, . . . , bn) be a row of T . Let Θ be a node of the graph ∆(T ) containing
the row r.

From Theorem 1 it follows that the set Rul(Θ, r) is equal to the set of all
irredundant decision rules for Θ and r. We denote by lmin(Θ, r) the minimum
length of a decision rule from Rul(Θ, r). We denote

BΘ,r = {lmin(Θ, r), lmin(Θ, r) + 1, . . . , n}.

Now we define a function FΘ,r : BΘ,r → N, where N is the set of natural
numbers. For any m ∈ BΘ,r, we have

FΘ,r(m) = max{c(τ) : τ ∈ Rul(Θ, r), l(τ) ≤ m}.

This function describes the relationship between coverage and length of decision
rules: FΘ,r(m) is equal to the maximum coverage among all irredundant decision
rules for Θ and r whose length is at most m.

The function FΘ,r can be represented by the tuple (FΘ,r(t), FΘ,r(t+1), . . . , n),
where t = lmin(Θ, r).

We now describe a procedure that allows us to find (describe) function FΘ,r

for each node Θ of the graph ∆(T ) that contains the row r.
Let Θ be a degenerate table that contains the row r. All rows of Θ are labeled

with the same decision d. We know that there is exactly one irredundant decision
rule → d for Θ and r. Therefore, lmin(Θ, r) = 0 and FΘ,r(m) = N(Θ) for any
m ∈ BΘ,r.
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Now, let Θ be a nondegenerate table (node) from ∆(T ) containing the row r.
We know that

Rul(Θ, r) =
⋃

fi∈E(Θ)

Rul(Θ, r, fi),

where Rul(Θ, r, fi) = {fi = bi ∧ α → d : α → d ∈ Rul(Θ(fi, bi), r)}. From here
it follows that

lmin(Θ, r) = min{lmin(Θ(fi, bi)) : fi ∈ E(Θ)} + 1

and, for any m ∈ BΘ,r,

FΘ,r(m) = max{FΘ(fi,bi),r(m− 1) : fi ∈ E(Θ),m− 1 ≥ lmin(Θ(fi, bi), r)}.

We use here the fact that the length of the rule fi = bi ∧ α → d is equal to the
length of rule α → d plus 1, and the coverage of rule fi = bi ∧ α → d for the
table Θ is equal to the coverage of rule α → d for the table Θ(fi, bi).

Let us consider an example with a decision table T0 on the top of Fig. 1.
We study the relationship between coverage and length of irredundant decision

Fig. 1. Relationships between coverage and length of rules for r2

rules for the row r2 of the table T0. For clarity, the example contains only a part
of the directed acyclic graph ∆(T0) constructed for the decision table T0; we
omitted separable subtables which do not contain the second row of T0. We
attached to each subtable Θ of this graph a two-row table that describes the
function FΘ,r2 : the first row contains values lmin(Θ, r2), . . . , 3, and the second
row contains values FΘ,r2(lmin(Θ, r2)), . . . , FΘ,r2(3) respectively. The relation-
ship between coverage and length of irredundant decision rules for the row r2
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is described by the functions FΘ2,r2 , FΘ9,r2 , FΘ4,r2 , FΘ6,r2 and FT0,r2 (see corre-
sponding tables in Fig. 1).

5 Relationships Between Length and Coverage

In this section, we study a reversed relationship, i.e., the dependency between
length and coverage of irredundant decision rules.

Let T be a decision table with n columns labeled with attributes f1, . . . , fn
and r = (b1, . . . , bn) be a row of T . We know (see Theorem 1) that Rul(T, r) is
the set of all irredundant decision rules for T and r. We denote by cmax(T, r)
the maximum coverage of a decision rule from Rul(T, r). We denote

CT,r = {0, 1, . . . , cmax(T, r)}.

We now define a function GT,r : CT,r → Z+, where Z+ is the set of nonnegative
integers. For any p ∈ CT,r, we have

GT,r(p) = min{l(τ) : τ ∈ Rul(T, r), c(τ) ≥ p}.

The value GT,r(p) is equal to the minimum length among all irredundant decision
rules for T and r for which the coverage is at least p. To find this value we can
use values of the function FT,r . Let us show that

GT,r(p) = min{m : m ∈ {lmin(T, r), . . . , n}, FT,r(m) ≥ p}. (4)

We denote

m0 = min{m : m ∈ {lmin(T, r), . . . , n}, FT,r(m) ≥ p}.

It is clear that there exists a rule τ ∈ Rul(T, r) such that l(τ) ≤ m0 and
c(τ) ≥ p, and there is no rule ρ ∈ Rul(T, r) such that l(ρ) < m0 and c(ρ) ≥ p.
From here it follows that GT,r(p) = m0.

We should add that cmax(T, r) = FT,r(n). It is clear that FT,r is a nonde-
creasing function. So, to find the value of m0 we can use binary search which
requires O(log n) comparisons.

6 Experimental Results

In this section, we present experimental results for decision tables from UCI Ma-
chine Learning Repository [6] and we show plots depicting relationships between
length and coverage of irredundant decision rules.

On the left-hand side of Fig. 2 we can see the function Fcars,row488 (relation-
ship between coverage and length), and on the right-hand side – the function
Gcars,row488 (relationship between length and coverage). Both functions are con-
stant, which means that for row 488 of decision table “cars” there exists a totally
optimal rule relative to the length and coverage, i.e., rule with minimum (among



8 Talha Amin, Igor Chikalov, Mikhail Moshkov, and Beata Zielosko

 570

 572

 574

 576

 578

 580

 1  2  3  4  5  6

m
ax

 c
ov

er
ag

e

length

F cars, row488

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  100  200  300  400  500

m
in

 le
ng

th

coverage

G cars, row488

Fig. 2. Relationships between length and coverage of irredundant decision rules for the
row 488 of decision table “cars”
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Fig. 3. Relationships between length and coverage of irredundant decision rules for the
row 57 of decision table “breast-cancer”

all irredundant rules) length equal to 1 and maximum (among all irredundant
rules) coverage equal to 576.

Functions presented in Fig. 3, Fbreast−cancer,row57 and Gbreast−cancer,row57

are increasing, which means that for row 57 of decision table “breast-cancer”
there are no totally optimal rules relative to the length and coverage.

Table 1 presents, for a given decision table T , the number of rows r such that
there exists a totally optimal irredundant decision rule for T and r.

We denote by Row(T ) the set of rows from T . We have |Row(T )| = N(T ). Let
S be a system of irredundant decision rules for T where, for each row r ∈ Row(T ),
we have a decision rule rule which is realizable for r and true for T . The number
of rules is equal to the number of rows in T . By P (T ) we denote the set of such
systems.

By lmax(S) we denote the maximum length of rules from S. By cavg(S) we
denote the average coverage of rules from S,

cavg(S) =

∑
rule∈S c(rule)

|Row(T )|
.
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Table 1. Existence of totally optimal rules

Decision Number Number of rows
table of rows with tot. opt. rules
Adult-stretch 16 16
Agaricus-lepiota 8124 612
Balance-scale 625 625
Breast-cancer 266 133
Cars 1728 1728
Flags 193 53
Hayes-roth-data 69 69
Hause-votes-84 279 101
Lymphography 148 52
Nursery 12960 12960
Shuttle-landing-control 15 13
Soybean-small 47 37
Spect-test 169 108
Teeth 23 23
Tic-tac-toe 958 942
Zoo 59 44

Let BT = {lmin(T ), . . . , n}, where n is the number of conditional attributes
in T and

lmin(T ) = max{lmin(T, r) : r ∈ Row(T )}.

Our aim is to find for each m ∈ BT the value

F
avg
T (m) = max{cavg(S) : S ∈ P (T ), lmax(S) ≤ m}.

The value of F avg
T can be calculated in the following way

F
avg
T (m) =

∑
r∈Row(T ) FT,r(m)

|Row(T )|
.

So, F avg
T (m) is equal to the maximum value of the average coverage of rules

among all systems S ∈ P (T ), where the length of each rule is at most m.
By cmin(S) we denote the minimum coverage of rules from S. By lavg(S) we

denote the average length of rules from S,

lavg(S) =

∑
rule∈S l(rule)

|Row(T )|
.

Let CT = {0, 1, . . . , cmax(T )}, where

cmax(T ) = min{cmax(T, r) : r ∈ Row(T )}.

Our aim is to find for each p ∈ CT the value

G
avg
T (p) = min{lavg(S) : S ∈ P (T ), cmin(S) ≥ p}.

The value of Gavg
T can be calculated in the following way

G
avg
T (p) =

∑
r∈Row(T )GT,r(p)

|Row(T )|
.
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Fig. 4. Relationships between length and coverage of irredundant decision rules for
decision table “cars”
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Fig. 5. Relationships between length and coverage of irredundant decision rules for
decision table “breast-cancer”

So, Gavg
T (p) is equal to the minimum value of the average length of rules among

systems S ∈ P (T ), where the coverage of each rule is at least p.

Functions F avg
T and G

avg
T for the decision table “cars” are presented in Fig. 4,

and for the decision table “breast-cancer” – in Fig. 5.

The study of relationships between length and coverage of irredundant deci-
sion rules can be considered as a tool that supports designing of classifiers. To
predict the value of a decision attribute for a new object, we can have a classifier
use only totally optimal rules, rules with the maximum coverage, or with the
minimum length. We can study the accuracy of classifiers, and based on a tool
for relationships, we can try to find associations between length and coverage of
rules which give the best result of classification. Besides, short rules which cover
many objects can be useful in knowledge representation. In this case, rules with
smaller number of descriptors are more understandable.
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7 Conclusions

In this paper, we considered relationships between length and coverage of ir-
redundant decision rules. Such a study can be useful from the point of view of
knowledge representation. It can also give useful information for the construction
of rule based classifiers.
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