
A New E�ective Approach for Modelling

and Veri�cation of Security Protocols

Olga Siedlecka-Lamch1, Mirosªaw Kurkowski1, and Henryk Piech1

Institute of Computer and Information Sciences,
Cz¦stochowa University of Technology ,

D¡browskiego 73, 42-200 Cz¦stochowa, Poland
olga.siedlecka@icis.pcz.pl, mkurkowski@icis.pcz.pl,

h.piech@adm.pcz.czest.pl

Abstract. This paper presents a new mathematical model, and based
on it a new automatic approach for veri�cation of security protocols. This
model contains a representation of the actions executed during the real-
ization of the protocol, and the representation of changes of knowledge
states of honest users and an Intruder. These possibilities are given to
us by the formal de�nition (also shown in the article) of the runs repre-
senting the execution of protocols in real, open computer networks. Our
model uses a simple and intuitive idea of chains of states for which the
concept of protocol's properties veri�cation has been given. This idea has
been implemented, and the results presented in this article are compared
with the results obtained by the use of the best veri�cation tools.

Keywords: security protocols, modeling and veri�cation, user's knowl-
edge, Intruder's attacks

1 Introduction

Security protocols are a key point of safety in computer systems. In the open
computer networks, especially in the systems which ful�ll the aims of the pub-
lic key infrastructure, these concurrent algorithms are often applied during an
exchange of information for, generally speaking, assuring a su�cient level of
security of data transmitted over networks and electronic transactions. The mu-
tual authentication of communicating parties (users, servers) or a new session
key distribution is mostly a principal task. Basically, they are most often used
as vital elements of large systems, such as widely used communication protocols.
Vital examples of such systems are Kerberos, SSL/TLS and Zfone. However in
literature and applications, errors in the protocol's design can be found. That is
why the methods of specifying and verifying their properties are developed to
�nd faults which allow unwanted behavior and can lower the security level or
even question it completely.

For automatic or semi-automatic veri�cation systems of protocols, not only
modeling protocol's executions are required, but also modeling of the user's



knowledge gained during the system performance. The full and formal descrip-
tion of the protocol is needed as a base for a formal veri�cation. However, the
Common Language does not ful�ll this requirement. Hence, specifying of the in-
ternal and external protocol's actions are required. The methodology suggested
in the following sections of this paper ful�lls this requirement.

The same as communicating protocols there are several approaches to veri-
fying of time (in)dependent security protocols. We can verify the protocols us-
ing the deductive methods (e.g., theorem proving) or algorithmic methods. The
deductive methods have been exploited in many veri�cation systems such as:
Isabelle, TAPS, PVS, and NRL [6, 8, 12, 22]. The algorithmic approaches mainly
consist of methods based on model checking, which have been the aim of an in-
tensive research for several years in both academic and commercial institutions.

Intuitively, the model checking of a security protocol consists of checking if
a model of the protocol accepts an execution that represents an attack upon
the protocol. In comparison with the standard model checking methods for com-
municating protocols or for distributed systems, the main trouble is the need
to model both the intruder who is responsible for generating attacks as well as
changes of knowledge (about keys, nonces, etc.) of the participants.

We can de�ne the properties expressing correctness of security protocols as
reachability properties or in linear (branching) time temporal logic. Following the
early achievements in model checking of cryptographic protocols by the teams of
E. Clarke, C. Meadows, G. Lowe, or D. Bolignano, there has been the state-of-
the-art veri�cation system AVISPA [2] designed and implemented as the result
of the EU research project. The AVISPA is composed of the following four self-
complementing modules: OFMC applying symbolic veri�cation on-the-�y via
analysis of a transition system described in the speci�cation language IF, CL-
AtSe using 'constrain solving' and enables discovering of the type �aws, SATMC

being a bounded model checker exploiting a SAT-solver and TA4SP applying a
method based on regular tree languages and term rewriting.

On the other hand, veri�cation systems for distributed and real time systems
such as SMV, Spin, KRONOS, UppAal [1], or Verics [16] represent much longer
history and experience in use. It is clearly very interesting to investigate the
methods of applying the above tools to the veri�cation of security protocols.

In this paper we present a new idea of veri�cation of security protocols by
using the chains for modeling separately the steps of many di�erent executions
of the protocol. Thanks to that we get a very distributed representation of the
protocol executions, which is important for an e�cient model checking. For the
above we use a syntax and semantics of security protocols introduced in paper
[18] and later reformulated to veri�cation of timed protocols in [19] and [20].

In the following, a method is given for representing the executions of a se-
curity protocol (within a computational structure for a bounded number of ses-
sions) by the chains of states and it shows how the attacks on authentication
and security can be found.Our model allows for speci�cation and veri�cation
of untimed cryptographic protocols realizing the well-known challenge-response

idea. The Needham-Schroeder public key protocol [23] is the best known ex-

2



ample here, however NSPK-Lowe, Untimed WMF, Andrew, TMN, Otway-Rees,
and Yahalom [7] are more complicated problems.

Our model of the Intruder's behavior follows the well known Dolev-Yao model
[11] however our Intruder can get letters sent only to him. A limitation of the
Intruder is visible because we need to �nd attacks in a more e�cient way as the
size of a state space is then very limited.

The rest of the paper is organized as follows. In the second section we show
the NSPK protocol as the basic example of protocols. In the third section we
introduce a formal language that allows you to intuitively describe in detail
the steps of security protocols. In the next section we present a new, simple,
mathematical model representing executions of protocol's steps (introducing the
Intruder). Finally, we show the experimental results for a few protocols.

2 The Needham Schroeder Public Key Protocol

If we want to understand the problems of design and the practical use of protocols
in this section, there is one example of them presented: the Needham Schroeder
Public Key Authentication Protocol (NSPK). The protocol is written in the so
called Common Language � a protocol's speci�cation language widely used in
the literature. Unfortunately, as we can see, this language does not fully describe
the protocol. A scheme of sending messages during the protocol's execution and
constructing the messages is presented, i.e., the external actions of the protocol.
The description of the internal actions and the other conditions of the protocol's
execution is usually written in a natural language.

Now, we show one of the protocols proposed in [23]. In the notation presented
below, the symbols i(A) and i(B) denote the identi�ers of the users A and
B, which want to communicate safely with each other. By 〈X〉KA we mean a
ciphertext containing a message X encrypted with the public key of the user A.
Analogously, by 〈X〉KB we mean a ciphertext encrypted by B's public key.

The user A initiates the protocol. The objective, which should be achieved
after the protocol's execution, is a mutual authentication of the parties A and
B, i.e., the mutual con�rmation of their identities. The notation A → B : X
means that the message X is transmitted from A to B. In our approach it is
often assumed that sending information implies its receipt by the receiver. The
notation X · Y means concatenation of X and Y .

Example 1. The paper [23] proposed a protocol with public keys in a server
environment. Nowadays, when the Public Key Infrastructure is widely used,
NSPK without key servers is particularly interesting. The scheme of this version
of the protocol is the following:

α1 A → B : 〈NA · i(A)〉KB ,
α2 B → A : 〈NA ·NB〉KA , (1)

α3 A → B : 〈NB〉KB .

3



In the �rst step of the protocol, the user A generates its random number NA
and sends it together with its identi�er i(A) to B, encrypting everything with
the public key belonging to B. In the second step, B generates its own number
NB and encrypts it together with the obtained number NA with A's public key.

Then, B sends the so prepared ciphertext to A, which can decrypt it, A
compares the number received from B with its nonce NA and at this moment A
acknowledges B to be authenticated, since B sent to A the nonce NA. A encrypts
this number with B's public key and sends it to B. B decrypts the ciphertext
(only it is able to do that) and compares the number sent by A with its own NB .
At this moment A is authenticated by B. Due to the structure of transferring
the data used in the protocol and properties of the asymmetric cryptography,
the users A and B should be sure of their identity after executing the protocol.

A very interesting and instructive history of this protocol has been shown
and used in practice in its original version for 17 years. However, in 1995 it
turned out that the protocol can be broken. Gavin Lowe presented an attack
upon the protocol in [21]. The attack is performed by the Intruder denoted by ι.
The Intruder is a user of the computer network which has its own identi�er and
asymmetric keys. However, ι does not need to execute the protocol according to
its scheme. In many ways it may cheat other parties communicating with them.

Example 2. Below we present the attack given by Lowe.

α1
1 A → ι : 〈NA · i(A)〉Kι ,
α2

1 ι(A)→ B : 〈NA · i(A)〉KB ,
α2

2 B → ι(A) : 〈NA ·NB〉KA , (2)

α1
2 ι → A : 〈NA ·NB〉KA ,
α1

3 A → ι : 〈NB〉Kι ,
α2

3 ι(A)→ B : 〈NB〉KB .

The above scheme shows two simultaneous runs of the protocol. The execution
α1 corresponds to communication of the user A with the Intruder ι, who imper-
sonates A (we denote it by ι(A)) during the execution α2.

The second step of the �xed version of the protocol, also developed by Lowe,
is as follows:

α2 B → A : 〈NA ·NB · i(B)〉KA , (3)

Simply adding the responder's identi�er i(B) to the ciphertext 〈NA ·NB ·i(B)〉KA
excludes the possibility of its deceptive use by the potential Intruder.

3 Formal model of executions of the protocol

A security protocol can be described intuitively without a formal de�nition.
There is one of the common methods to write such a protocol in the so-called

4



Common Language, in which there are external protocol's actions and this is the
scheme of sending messages. Unfortunately this is not a complete description of
the protocol, since it is necessary to add the information about the internal
actions such as generating new con�dential information or the process of the
message encryption/decryption. A formal de�nition which provides all the in-
formation about the protocol can be found in the papers [18�20]. In these works
the protocol is de�ned as an abstract object (algorithm) and is di�ered from
the execution. The executions of the protocol are certain substitutions of the
abstract protocol in a de�ned structure which re�ects the actual work of the
network [18�20]. Note that in such approach we can also consider the execution,
which cannot be done alone (see Example 3). Such execution is treated as the
hypothetical execution that may be made as parts of the interleaves of several
executions which are assembled as the attack. In this paper we use intuitively
described executions of the protocol as these substitutions.

Example 3. We consider previously discussed Needham Schroeder protocol. Be-
low there are two di�erent hypothetical executions. In the �rst one, the honest
users B and A communicate with each other. In the second: the user A commu-
nicates with the Intruder ι who impersonates the user B. Such behavior of the
Intruder is marked by ι(B).

Note that the second execution cannot be done alone. However, it can be
considered as a potential part of the interleave of several executions are assem-
bled as the attack (see Example 2).

α3
1 = B → A : 〈NB · i(B)〉KA , α4

1 = A→ ι(B) : 〈NA · i(A)〉KB ,
α3

2 = A→ B : 〈NB ·NA〉KB , α4
2 = ι(B)→ A : 〈NA ·Nι〉KA ,

α3
3 = B → A : 〈NA〉KA , α4

3 = A→ ι(B) : 〈Nι〉KB .

The basic notations used in the following part of the paper are given below. We
begin with de�ning the following sets:

• P = {P1, P2, . . . , PnP } - a set of the honest participants in the network,
• Pι = {ι, ι(P1), ι(P2), . . . , ι(PnP )} - a set of the dishonest participants con-
taining the Intruder and the Intruder impersonating the participant Pi for
1 ≤ i ≤ nP ,
• I = {i(P1), . . . , i(PnP ), iι} - a set of the identi�ers of the participants in the
network,
• K =

⋃nP
i=1{KPi ,K

−1
Pi
} ∪ {Kι,K

−1
ι } - a set of the public and private crypto-

graphic keys (already existing or possible to be generated) of the participants,

• N =
⋃NP
i=1{N1

Pi
, . . . , NkN

Pi
} ∪ {N1

ι , . . . , N
kN
ι } - a set of the nonces1.

By the set of letters L we mean the smallest set ful�lling the following con-
ditions:

1. P ∪Pι ∪ I ∪K ∪N ⊆ L,

1 As before, we assume that NP and KN are some �xed natural numbers. For sim-
plicity, we take the same number of nonces for each user.

5



2. If X,Y ∈ L, then the concatenation X · Y ∈ L,
3. If X ∈ L and K ∈ K, then 〈X〉K ∈ L, 〈X〉K is a ciphertext consisting of

the letter X encrypted with the key K.

The same as in the papers [18, 19] the protocol Π is a sequence of steps
de�ned as ordered �ve-tuples α = (P,Q,M,G,K). In such step P is the step
initiator (sending part), Q is a message recipient,M is a sent message, G is a set
of information required in order to be generated by P for the execution of the step
α and K is a set of information required for P in order to send M . Assume the
following notation: if α = (P,Q,M,G,K), then by Send(α), Rec(α), Mess(α),
Gen(α), Know(α) we mean the following elements: P,Q,M,G,K. Consider the
following example:

Example 4. One of the execution of the protocol NSPK described previously can
be de�ned as a sequence of three steps:

α1 = (A,B, 〈NA · i(A)〉KB , {NA}, {i(A), NA,KB}),
α2 = (B,A, 〈NA ·NB〉KA , {NB}, {NA, NB ,KA}),
α3 = (A,B, 〈NB〉KB , ∅, {NB ,KB}).

In this way we can describe any number of executions of the tested protocol.
During the veri�cation the considered space is limited to two honest users and
the Intruder (more information can be obtained in [18, 19]).

The intuition of the following de�nition is as follows: constructed runs cor-
respond with di�erent true interleaves of the protocol. Due to the fact that in
reality, the ability to execute the steps of the protocol is dependent on the knowl-
edge of the individual members in order to de�ne the conditions which enable to
construct the necessary runs, the knowledge of the users will be needed during
the execution of the protocol.

Consider the following �nite sequence of the execution of the protocol's steps:
R = αi1k1 , α

i2
k2
, αi3k3 , . . . , α

is
ks
, where in denoting a step α the superscript indicates

the number of execution, and the subscript indicates the number of the step in
the given execution.

Example 5. If we consider the two di�erent executions of the same protocol,
which consist of three steps, α1

1, α
1
2, α

1
3 and α2

1, α
2
2, α

2
3, the possible sequence is:

R = α1
1, α

1
2, α

2
1, α

1
3, α

2
2, α

2
3. Observe that in such sequences it is necessary to keep

the chronology of the execution of each step, i.e., no step of the execution can
be found in the sequence before the preceding step in the protocol.

For each such sequence R we de�ne the set sequence of the knowledge of users
who take part in the executions which constitute the R. The initiators of given
steps α are denoted by Send(α), and the recipients of the information sent during
the step's execution α by Rec(α). Denote by U the set of all the users involved
in the steps which constitute the sequence R.

We have: U =
⋃
j=1,...,s{Send(α

ij
kj

)} ∪
⋃
j=1,...,s{Rec(α

ij
kj

)}. Assume that
each user has a basic knowledge and it means that the user knows his own
encryption keys (public and private), user IDs and public keys of the users.

6



In the following de�nition we will use the operator κ,2 that means to acquire
the knowledge of the encrypted messages. This acquisition is of course dependent
on the possession of the appropriate encryption keys.

Next de�nition models the knowledge of the users during the execution of
the protocol's steps, taking into account the increase of the knowledge through
the messages and their contents (if the user has the appropriate encryption keys
for the decryption) and the generated information. De�ned sequences are the
ascending sequences.

Consider any j = 1, . . . s− 1 for any sequence R = αi1k1 , α
i2
k2
, αi3k3 , . . . , α

is
ks
. For

every user p ∈ P we have Know1
p =

⋃nP
s=1{i(Ps),KPs} ∪ {ι,Kι,K

−1
p } and:

Knowj+1
p =



Knowjp ∪ Gen(αij+1
kj+1

) if p = Send(αij+1
kj+1

),

κ(Knowjp ∪ {Mess(αij+1
kj+1

))}) if p = Resp(αij+1
kj+1

),

Knowjp othervise.

De�nition 1. By the run we call any �nite sequence of the steps of protocol's

executions which ful�lls the following conditions: r = αi1k1 , α
i2
k2
, αi3k3 , . . . , α

is
ks

that

meets the following conditions:

1. ∀j=1,...,s[kj = 1 ∨ ∃t<j(it = ij ∧ kt = kj − 1)],
2. ∀j=2,...,s[Know(αijkj ) ⊆ Know

j−1

Send(α
ij
kj

)
∪Gen(αijkj ))].

The �rst condition de�nes the appropriate dependence between the subsequent
steps of the same execution of the protocol which are in the given run. The
second condition ensures the proper dependence between the knowledge of the
users who send messages in the next steps - parts of the run.

This de�nition allows to express the actual interleaves of di�erent protocol's
execution which re�ects the actual executions. For such runs in the �xed base
space we de�ne the chains encoding below.

4 Chains of states representing executions of protocol's

steps

In the paper [18], a mathematical model of a protocol's executions (correct runs)
is translated into a network of synchronous automata. The runs were expressed
as the computations in this network. The security problems were modeled as
a problem of the reachability of desired (unsecured) states in the network. The
computations in the network were subsequently encoded as propositional boolean
formulas. SAT-solvers answered the question whether a valuation ful�lling the
formula exists , and therefore whether an attack on the protocol exists. In the
paper [18], several experimental results for untimed protocols were given. In some

2 The formal de�nition of this operator can be found in the paper [19].

7



cases they were better than those obtained during veri�cation with the AVISPA
Tool.

Now, we introduce a new mathematical model of the protocol's executions.
The double translation of the mathematical model of executions proposed in [18]
brought along some redundancies, of which the following approach is free. The
obtained and described experimental results in the last section of the article are
very good, and are promising for the later development of this approach.

In the proposed model, we code each step of every execution of a protocol as
a simple chain of the states representing individual actions carried out during
the step, or the conditions for making them possible.

We distinguish four types of states:

1. states representing the execution of steps, those will be labeled Sij to mark
the execution of i-th step in the j-th execution,

2. states representing the generation of new con�dential information by users
(nonces, keys) labeled onwards e.g. GNAA (nonce NA generated by user A ),

3. states representing the obtaining of knowledge by receivers of steps of pro-
tocol KX

A - user A acquired message X,
4. states representing the requirement of possessing a given knowledge element

necessary for executing a given step described as e.g. PXA (- user A has to
possess knowledge of element X in order to carry out a given step).

As you can easily notice, for execution of NSPK gave in Example 1 we have
the three following communication states: S1

1 , S
1
2 , S

1
3 . We present the chains of the

states representing the executions of individual steps of the discussed protocol
below:

α1
1 = (GNAA , S1

1 ,K
NA
B ), α1

2 = (PNAB , GNBB , S1
2 ,K

NB
A ), α1

3 = (PNBA , S1
3). (4)

The set of the states preceding the state corresponding with the execution of
the steps S will be marked hereinafter by PreCond(S). Accordingly, by using
PostCond(S) we will mark the set of the states found in the sequence after the
state S. Taking into consideration the above, we can model the execution of the
protocol NSPK as the following sequence of the states.

NSPK = α1
1, α

1
2, α

1
3 = (GNAA , S1

1 ,K
NA
B , PNAB , GNBB , S1

2 ,K
NB
A , PNBA , S1

3). (5)

Observe that additionally we have:
PreCond(S1

2) = {PNAB , GNBB } and PostCond(S1
2) = {KNB

A }.

4.1 Infrastructure with Intruder

The de�nitions introduced in the third section do not include the presence of
the Intruder in the network. As we wrote in the introduction we can consider its
various models. In this paper we explore some version of the Dolev-Yao model,
so we assume that there is only one Intruder, who actively tries to deceive the
others by executing the protocols against their assumptions. The Intruder may

8



use any information obtained from a network, and impersonate other users. Note
that the Intruder can compose sent messages contrary to the assumptions of the
protocol. This can be done in many ways. Consider the following example.

Example 6. If the sent message is ciphertext 〈NA〉KA · 〈NB〉KB , the message
can be composed in �ve ways. In each case the Intruder can compose and use
during the execution of the protocol the message: X1 = {〈NA〉KA · 〈NB〉KB},
X2 = {〈NA〉KA , 〈NB〉KB}, X3 = {NA,KA, 〈NB〉KB}, X4 = {〈NA〉KA , NB ,KB},
X5 = {NA,KA, NB ,KB}. In each case the Intruder can compose and use during
the execution of the protocol the message 〈NA〉KA , 〈NB〉KB . The fact, that from
a given set X a message M can be composed, is denoted by X `M .3

To express this we need to slightly modify the de�nition of the execution of
protocol's step where the initiator of this step is an Intruder. In the de�nition
of the execution's step we introduce the following change:

De�nition 2. If Send(α) = ι, then α = (ι, Q,M, ∅, {X | X `M}).

In the case of a given execution of the protocol's step, the Intruder is the sending
message party (Send(αijkj ) ∈ Pι) we have to adapt the knowledge condition of the

run de�nition in the following manner. If Know(αijkj ) = {X | X ` Mess(αijkj )},
then, the Condition 2 of the de�nition 1 takes the form::

∃
X∈Know(α

ij
kj

)
[X ⊆ Knowj−1

Send(α
ij
kj

)
∪Gen(αijkj )].

This condition says that in order to execute each step and send a message to the
Intruder it is enough to compose a sent message in one of the possible ways.

The corresponding chains for the Example 2 take the following form:

α1
1 = (GNAA , S1

1 ,K
NA
ι ), α2

1 = (PNAι , S2
1 ,K

NA
B ),

α1
2 = (P

〈NA·NB〉KA
ι , S1

2 ,K
NB
A ), α2

2 = (PNAB , GNBB , S2
2 ,K

〈NA·NB〉KA
ι ),

α1
3 = (PNBA , S1

3 ,K
NB
ι ), α2

3 = (PNBι , S2
3).

4.2 Correct chains of states and new approach for veri�cation

Now we proceed to de�ne the sequences consisting of the states de�ned above
that represent true executions of the protocols in the computer networks. This
de�nition will refer to the de�nition of the runs of the third section.

Let Π be the base space consisting of the users and their attributes (identi-
�ers, nonces, cryptographic keys, etc..). We have to consider all the executions
of the protocol in this space and all state's chains for all executions. Under the
set of all these chains we de�ne a correct chain of states that represents the real
executions of the protocol in the network.

De�nition 3. We call the sequence of the protocol's states: s = s1, s2, . . . a
correct chain of states i� the following conditions holds:

3 The formal de�nition can be found in the work [19].

9



1. if si = Skj for some j, k then j = 1 ∨ ∃t<i(st = Skj−1) and

PreCond(Skj ) ⊆ {s1, . . . , si−1} ∧ PostCond(Skj ) ⊆ {si+1, . . .},
2. if si = GXU , then ∀t 6=i(st 6= GXU ),
3. if si = PXU , then ∃t<i(st = GXU ∨ st = KX

U ).

As you can see the de�nition of the considered chains is based on the de�nition
of runs.

The �rst point guarantees a suitable dependence of the order of carrying out
the individual steps of a given execution. Points 2 and 3 guarantee a proper
dependence of the users' knowledge necessary to execute the individual steps.

Our new proposed concept of veri�cation is as follows. The input data consists
of the generated set of chains representing the steps of the executions in the given,
investigated space of executions. On an empty stack we �rstly put a chain that
represents one of the initial steps of executions (chains inserted into stack are
labeled as explored). Next we build the limited tree of chains by adding only those
unused chains conditions of which match the conditions introduced in De�nition
3. Simultaneous creating and searching through the tree ends up in two cases.
Firstly if we �nd the path of the attack, which is derived to the output. Secondly
if we utilize chains, then we return the output information about the lack of the
attack. Although the time complexity of the algorithm is exponential due to
the number of executions and steps, we have obtained very good experimental
results as the constructed chains are very short. The space complexity is linear
due to the parameters mentioned above. As the results presented below show, it
seems that currently the presented approach is one of the most e�cient.

5 Experimental results

To the veri�cation we have modeled and veri�ed three protocols: NSPK, NSPKL,
and the untimed version of the WMF Protocol. The experimental results ob-
tained by us are very promising. In all cases, the times of the encoding as well
as of the direct veri�cation of the obtained model are smaller than 1 ms. The
attention needs to be drawn to the fact that the hitherto methods dealt dif-
ferently with the veri�cation of the secure and unsecured protocols. In most
cases the veri�cation of the secure protocols are quicker. In the case of the Ver-
ICS tool [16, 20] the quicker results of the unsecured protocols were obtained.
In both of these cases so far, our solution has been giving the results just as
quickly. It is also worth underlining that in our approach the veri�cation using
a backward induction (backtracking) may be performed just as easily. In this
case, the experimental results, however, do not di�er from the forward method
of veri�cation.

In the published results, a division of the times of the veri�cation into the
encoding time and the time of the direct veri�cation of the encoded model is per-
formed. The best results of veri�cation with the AVISPA tool (graph planning)
are close to zero (less than 10 ms). However, in the process of the automatic
veri�cation the coding time needs to be noted as well. In this case, the times are
approximately several-several hundred milliseconds.

10



We have compared our results to the best ones known to us obtained from
the AVISPA ([2, 3]) and VerICS Tool [16, 20]. The table below shows that in all
cases, when it comes to coding as well as verifying, our method in the case of
veri�ed protocols is better.

Obviously, many more experiments need to be carried out to fully compare
our method with the AVISPA, VerICS or the other tools. The research in this
area is still in the making, and in the near future we expect the results for other
protocols, and the optimization of our method as well as the implementation.

The computer used to perform the experiments was equipped with the pro-
cessor Intel Pentium D (3000 MHz), 2 GB main memory, and the operating
system Linux. In the table, we marked the time of the model's encoding with
the EnT. The SolT stands for the time of its direct veri�cation. TheNA means
we do not have the access to the veri�cation times of the protocol. All the times
shown below are expressed in milliseconds.

AVISPA VerICS Chains
Protocol EnT (ms) SolT (ms) EnT (ms) SolT (ms) EnT (ms) SolT (ms)

NSPK 90 <10 <1 36 <1 <1

NSPKLowe 90 <10 <1 960 <1 <1

UnT_WMF NA NA <1 32 <1 <1

Table 1. Comparison of experimental results.

6 Conclusions

In the article, we have presented a new e�cient approach for the security proto-
cols properties' veri�cation, based on the structures of chains describing actions
carried out by participants of protocols, as well as changes of their states of
knowledge. The method has been implemented. The obtained results are very
promising: the method for protocols NSPK, NSPKL as well as the untimed ver-
sion of WMF Protocol gives better results than the known veri�cation tools: the
AVISPA and VerICS. A research on further optimization of the method and its
implementation, as well as its application for other protocols is in progress. Also,
the adaptation of the method for time dependent protocols has been planned.

References

1. Amnell, T. et all: Uppaal - Now, Next, and Future, Proc. of the 4th Summer
School 'Modelling and Veri�cation of Parallel Processes' (MOVEP'00), LNCS,
2067, 99�124, Springer-Verlag, 2001.

2. Armando, A. et all: The AVISPA tool for the automated validation of internet
security protocols and applications. In Proc. of 17th Int. Conf. on Computer
Aided Veri�cation (CAV'05), vol. 3576 of LNCS, pp. 281�285. Springer, 2005.

3. Armando, A., Compagna, L.: Sat-based model-checking for security protocols
analysis. International Journal of Information Security, 7(1):3�32, 2008.

4. Basin, D. A., Wol�, B. (editors): Theorem Proving in Higher Order Logics, 16th
International Conference, TPHOLs 2003, Roma, Italy, September 8-12, 2003,
Proceedings, volume 2758 of Lecture Notes in Computer Science. Springer, 2003.

11



5. Bella, G., Massacci, F., and Paulson, L. C.: Verifying the set registration proto-
cols. IEEE Journal on Selected Areas in Communications, 20(1):77�87, 2003.

6. Bella G, Paulson L.C.: Using Isabelle to prove properties of the kerberos authen-
tication system. In H. Orman and C. Meadows, editors, Proc. of the DIMACS
Workshop on Design and Formal Veri�cation of Security Protocols, 1997.

7. Burrows, M., Abadi, M., and Needham, R. M.: A logic of authentication. ACM
Trans. Comput. Syst., 8(1):18�36, 1990.

8. E. Cohen. Taps: A �rst-order veri�er for cryptographic protocols. In CSFW
'00: Proceedings of the 13th IEEE Computer Security Foundations Workshop
(CSFW'00), page 144, Washington, DC, USA, 2000. IEEE Computer Society.

9. Corin, R., Etalle, S., Hartel, P. H., and Mader, A.: Timed model checking of
security protocols. In Proc. of the 2004 ACM Workshop on Formal Methods in
Security Engineering (FMSE'04), pages 23�32. ACM, 2004.

10. Delzanno, G., and Ganty, P.: Automatic veri�cation of time sensitive crypto-
graphic protocols.In Proc. of the 10th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS'04), volume
2988 of LNCS, pages 342�356. Springer, 2004.

11. Dolev, D. and Yao, A.: On the security of public key protocols.IEEE Transactions
on Information Theory, 29(2):198�207, 1983.

12. Evans, N., and Schneider, S.: Analysing time dependent security properties in
CSP using PVS. In Proc. of the 6th European Symposium on Research in Com-
puter Security (ESORICS'00), vol. 1895 of LNCS, pp. 222�237. Springer, 2000.

13. Gorrieri, R., Locatelli, E., and Martinelli, F.: A simple language for real-time
cryptographic protocol analysis. In Proc. of the 12th European Symposium on
Programming (ESOP'03), volume 2618 of LNCS, pages 114�128. Springer, 2003.

14. Jakubowska, G., and Penczek, W.: Is your security protocol on time? In Proc. of
FSEN'07, volume 4767 of LNCS, pages 65�80. Springer-Verlag, 2007.

15. Jakubowska, G., and Penczek, W., and Srebrny, M.: Verifying security protocols
with timestamps via translation to timed automata. In Proc. of the International
Workshop on Concurrency, Speci�cation and Programming (CS&P'05), pages
100�115. Warsaw University, 2005.

16. Kacprzak, M., et. all : Verics 2007 - a model checker for knowledge and real-time.
Fundam. Inform., 85(1-4):313�328, 2008

17. Kurkowski, M., Srebrny, M.: A Quanti�er-free First-order Knowledge Logic of
Authentication, Fund. Inform., vol. 72, pp. 263-282, IOS Press 2006.

18. Kurkowski, M., Penczek, W.: Verifying Security Protocols Modeled by Networks
of Automata, Fund. Inform., Vol. 79 (3-4), pp. 453-471, IOS Press 2007.

19. Kurkowski, M., Penczek, W.: Verifying Timed Security Protocols via Translation
to Timed Automata, Fund. Inform., vol. 93 (1-3), pp. 245-259, IOS Press 2009.

20. Kurkowski M., Penczek W.: Applying Timed Automata to Model Checking of
Security Protocols, in ed. J. Wang, Handbook of Finite State Based Models and
Applications, pp. 223�254, CRC Press, Boca Raton, USA, 2012.

21. Lowe, G.: Breaking and Fixing the Needham-Schroeder Public-key Protocol Us-
ing fdr., In TACAS, LNCS, Springer, 147-166, 1996

22. Meadows C.: The NRL protocol analyzer: An overview. Journal of Logic Pro-
gramming, 26(2):13�131, 1996.

23. Needham, R.M., Schroeder, M.D.: Using encryption for authentication in large
networks of computers. Commun. ACM, 21(12), 993-999, 1978.

24. Paulson, L. C.: Inductive analysis of the internet protocol tls. ACM Trans. Inf.
Syst. Secur., 2(3):332�351, 1999.

12


