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Abstract. In this paper we study the complexity of Hornets, an alge-
braic extension of object nets. We define a restricted class: safe, elemen-
tary Hornets, to guarantee finite state spaces. It will turn out, that the
reachability problem for this class requires exponential space, which is
a major increase when compared to safe, elementary object nets, which
require polynomial space.
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1 Hornets: Higher-Order Object Nets

In this paper we study the algebraic extension of object nets, called Hornets.
Hornets are a generalisation of object nets [KR03,KR04,KBH09], which follow
the nets-within-nets paradigm as proposed by Valk [Val91,Val03]. With object
nets we study Petri nets where the tokens are nets again, i.e. we have a nested
marking. Events are also nested. We have three different kinds of events – as
illustrated by the following example:

1. System-autonomous: The system net transition t̂ fires autonomously, which
moves the net-token from p̂1 to p̂2 without changing its marking.

2. Object-autonomous: The object net fires transition t1 “moving” the black
token from q1 to q2. The object net remains at its location p̂1.

3. Synchronisation: Whenever we add matching synchronisation inscriptions at
the system net transition t̂ and the object net transition t1, then both must
fire synchronously: The object net is moved to p̂2 and the black token moves
from q1 to q2 inside. Whenever synchronisation is specified, autonomous
actions are forbidden.

For Hornets we extend object-nets with algebraic concepts that allow to
modify the structure of the net-tokens as a result of a firing transition. This is
a generalisation of the approach of algebraic nets [Rei91], where algebraic data
types replace the anonymous black tokens.



Example 1. We consider a Hornet with two workflow nets N1 and N2 as tokens
– cf. Figure 1. To model a run-time adaption, we combine N1 and N2 resulting
in the net N3 = (N1‖N2). This modification is modelled by transition t of the
Hornets in Fig. 1. In a binding α with x 7→ N1 and y 7→ N2 the transition
t is enabled. Assume that (x‖y) evaluates to N3 for α. If t fires it removes the
two net-tokens from p and q and generates one new net-token on place r. The
net-token on r has the structure of N3 and its marking is obtained as a transfer
from the token on v in N1 and the token on s in N2 into N3. This transfer is
possible since all the places of N1 and N2 are also places in N3 and tokens can
be transferred in the obvious way.
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Fig. 1. Modification of the net-token’s structure

The use of algebraic operations in Hornets relates them to algebraic higher-
order (AHO) systems [HEM05], which are restricted to two-levelled systems
but have a greater flexibility for the operations on net-tokens, since each net
transformation is allowed. There is also a relationship to Nested Nets [Lom08],
which are used for adaptive systems.

It is not hard to prove that the general Hornet formalism is Turing-complete.
In [KB09] we have proven that there are several possibilities to simulate counter
programs: One could use the nesting to encode counters. Another possibility is
to encode counters in the algebraic structure of the net operators.

In this paper we like to study the complexity that arises due the algebraic
structure. Therefore, we restrict Hornets to guarantee that the system has a
finite state space. First, we allow at most one token on each place, which results
in the class of safe Hornets. However this restriction does not guarantee finite
state spaces, since we have the nesting depth as a second source of undecidability
[KBH09]. Second, we restrict the universe of object nets to finite sets. Finally,
we restrict the nesting depth and introduce the class of elementary Hornets,
which have a two-levelled nesting structure. This is done in analogy to the class of



elemtary object net systems (Eos) [KR04], which are the two-level specialisation
of general object nets [KR04,KBH09].

If we rule out these sources of complexity the main origin of complexity is
the use of algebraic transformations, which are still allowed for safe, elementary
Hornets. As a result we obtain the class of safe, elementary Hornets – in
analogy to the class of safe Eos [KBH10].

We have shown in [KBH10,KBH11] that most problems for safe Eos are
PSpace-complete. More precisely: All problems that are expressible in LTL or
CTL, which includes reachability and liveness, are PSpace-complete. This means
that with respect to these problems safe Eos are no more complex than p/t nets.

In this presentation we will show that safe, elementary Hornets are beyond
PSpace. It is well known that “the reachability problem requires exponential
space” in the case of bounded p/t nets [Lip76]. We obtain that the reachability
problem for safe, elementary Hornets requires exponential space, too. We step
from polynomial space (as in the case of safe Eos) to exponential space in the
case of safe elementary Hornets.

2 Elementary Hornets

A multiset m on the set D is a mapping m : D → N. Multisets can also be
represented as a formal sum in the form m =

∑n
i=1 xi, where xi ∈ D.

Multiset addition is defined component-wise: (m1+m2)(d) := m1(d)+m2(d).
The empty multiset 0 is defined as 0(d) = 0 for all d ∈ D. Multiset-difference
m1 −m2 is defined by (m1 −m2)(d) := max(m1(d)−m2(d), 0).

The cardinality of a multiset is |m| := ∑
d∈D m(d). A multiset m is finite if

|m| < ∞. The set of all finite multisets over the set D is denoted MS (D).
Multiset notations are used for sets as well. The meaning will be apparent

from its use.
Any mapping f : D → D′ extends to a multiset-homomorphism f ♯ : MS (D) →

MS (D′) by f ♯ (
∑n

i=1 xi) =
∑n

i=1 f(xi).

Net-Algebras We define the algebraic structure of object nets. For a general
introduction of algebraic specifications cf. [EM85].

Let K be a set of net-types (kinds). A (many-sorted) specification (Σ,X,E)
consists of a signature Σ, a family of variables X = (Xk)k∈K , and a family of
axioms E = (Ek)k∈K .

A signature is a disjoint family Σ = (Σk1···kn,k)k1,··· ,kn,k∈K of operators. The
set of terms of type k over a signature Σ and variables X is denoted T

k
Σ(X).

We use (many-sorted) predicate logic, where the terms are generated by a
signature Σ and formulae are defined by a family of predicates Ψ = (Ψn)n∈N. The
set of formulae is denoted PLΓ , where Γ = (Σ,X,E, Ψ) is the logic structure.

Let Σ be a signature over K. A net-algebra assigns to each type k ∈ K

a set Nk of object nets. Each object N ∈ Nk, k ∈ K net is a p/t net N =
(PN , TN ,preN ,postN ). We identify N with

⋃
k∈K Nk in the following. We as-

sume the family N = (Nk)k∈K to be disjoint.



The nodes of the object nets in Nk are not disjoint, since the firing rule allows
to transfer tokens between net tokens within the same set Nk. Such a transfer
is possible, if we assume that all nets N ∈ Nk have the same set of places Pk. In
the example of Fig. 1 the object nets N1, N2, and N3 must belong to the same
type since otherwise it would be impossible to transfer the markings in N1 and
N2 to the generated N3.

In general, Pk is not finite. Since we like each object net to be finite in some
sense, we require that the transitions TN of each N ∈ Nk use only a finite subset
of Pk, i.e. ∀N ∈ N : |•TN ∪ TN

•| < ∞.
The family of object nets N is the universe of the algebra. A net-algebra

(N , I) assigns to each constant σ ∈ Σλ,k an object net σI ∈ Nk and to each
operator σ ∈ Σk1···kn,k with n > 0 a mapping σI : (Nk1

× · · · × Nkn
) → Nk.

A net-algebra is called finite if Pk is a finite set for each k ∈ K.
A variable assignment α = (αk : Xk → Nk)k∈K maps each variable onto

an element of the algebra. For a variable assignment α the evaluation of a term
t ∈ T

k
Σ(X) is uniquely defined and will be denoted as α(t).

A net-algebra, such that all axioms of (Σ,X,E) are valid, is called net-theory.

System Net Assume we have a fixed logic Γ = (Σ,X,E, Ψ) and a net-theory
(N , I). An elementary higher-order object net (Hornet) is composed of a sys-

tem net N̂ and the set of object nets N . W.l.o.g. we assume N̂ 6∈ N . To guaran-
tee finite state spaces for elementary Hornets, we require that the net-theory
(N , I) is finite, i.e. each place universe Pk is finite.

The system net is a net N̂ = (P̂ , T̂ ,pre,post, Ĝ), where each arc is labelled

with a multiset of terms: pre,post : T̂ → (P̂ → MS (TΣ(X))). Each transition

is labelled by a guard predicate Ĝ : T̂ → PLΓ . The places of the system net are
typed by the function d : P̂ → K. As a typing constraint we have that each arc
inscription has to be a multiset of term of kind assigned to the arc’s place:

pre(t̂)(p̂), post(t̂)(p̂) ∈ MS (T
d(p̂)
Σ (X)) (1)

For each variable binding α we obtain the evaluated functions preα,postα :

T̂ → (P̂ → MS (N )) in the obvious way.

Nested Markings Since the tokens of an elementary Hornets are instances of
object nets a marking is a nested multiset of the form:

µ =

n∑

i=1

p̂i[Ni,Mi] where p̂i ∈ P̂ , Ni ∈ Nd(p̂i),Mi ∈ MS (PNi
), n ∈ N

Each addend p̂i[Ni,Mi] denotes a net-token on the place p̂i that has the structure
of the object net Ni and the marking Mi ∈ MS (PNi

).1 The set of all nested
multisets is denoted as M. We define the partial order ⊑ on nested multisets by
setting µ1 ⊑ µ2 iff ∃µ : µ2 = µ1 + µ.

1 For Eos the net structure of a net-token is uniquely determined by the place. So,
we do not include the object net Ni in µ for Eos.



The projection Π1 abstracts from the substructure of all net-tokens:

Π1
N

(∑n

i=1
p̂i[Ni,Mi]

)
:=

∑n

i=1
1N (Ni) · p̂i (2)

where the indicator function 1N is defined as: 1N (Ni) = 1 iff Ni = N .

The projection Π2
N (µ) is the multiset of all object nets in the marking:

Π2
N

(∑n

i=1
p̂i[Ni,Mi]

)
:=

∑n

i=1
Ni (3)

The projection Π2
k is the sum of all net-tokens’ markings (of the same type

k ∈ K) ignoring their local distribution within the system net:

Π2
k

(∑n

i=1
p̂i[Ni,Mi]

)
:=

∑n

i=1
1k(p̂i) ·Mi (4)

where the indicator function 1k is defined as: 1k(p̂i) = 1 iff d(p̂) = k.

Synchronisation The transitions in an Hornet are labelled with synchronisation
inscriptions. We assume a fixed set of channels C = (Ck)k∈K .

– The function family l̂α = (l̂kα)k∈K defines the synchronisation constraints.

Each transition of the system net is labelled with a multiset l̂k(t̂) = (e1, c1)+
· · · + (en, cn), where the expression ei ∈ T

k
Σ(X) describes the called object

net and ci ∈ Ck is a channel. Each variable assignment α generates the
function l̂kα(t̂)(N):

l̂kα(t̂)(N) :=
∑

1≤i≤n

α(ei)=N

ci for l̂k(t̂) =
∑

1≤i≤n
(ei, ci) (5)

Each function l̂kα(t̂)(N) assigns for each object net N a multiset of channels.
The intention is that t̂ fires synchronously with a multiset ϑ(N) of object
net transitions with matching multiset of labels.

– For each N ∈ Nk the function lN assigns to each transition t ∈ TN ei-
ther a channel c ∈ Ck or ⊥k, whenever t fires without synchronisation, i.e.
autonously.

Definition 1 (Elementary Hornet). Assume a fixed many-sorted predicate

logic Γ = (Σ,X,E, Ψ). An elementary Hornet is a tuple EH = (N̂ ,N , I, d, l, µ0)
such that:

1. N̂ is an algebraic net, called the system net.

2. (N , I) is a finite net-theory for the logic Γ .

3. d : P̂ → K is the typing of the system net places.

4. l = (l̂, lN )N∈N is the labelling.

5. µ0 ∈ M is the initial marking.



Events The synchronisation labelling generates the set of system events Θ:
The labelling introduces three cases of events:

1. Synchronised firing: There is at least one object net that has to be synchro-
nised, i.e. there is a N such that l̂(t̂)(N) is not empty.
Such an event is a pair θ = t̂α[ϑ], where t̂ is a system net transition, α is a
variable binding, and ϑ is a function that maps each object net to a multiset
of its transitions, i.e. ϑ ∈ MS (TN ). It is required that τ̂ and ϑ(N) have

matching multisets of labels, i.e. l̂(t̂)(N) = l
♯
N (ϑ(N)) for all N ∈ N .

The intended meaning is that τ̂ fires synchronously with all the object net
transitions ϑ(N), N ∈ N .

2. System-autonomous firing: The transition t̂ of the system net fires autonomously,
whenever l̂(t̂) is the empty multiset 0.
We consider system-autonomous firing as a special case of synchronised firing
generated by the function ϑid , defined as ϑid(N) = 0 for all N ∈ N .

3. Object-autonomous firing: An object net transition t in N fires autonomously,
whenever lN (t) = ⊥k.
Object-autonomous events are denoted as id p̂,N [ϑt], where ϑt(N

′) = {t}
if N = N ′ and 0 otherwise. The meaning is that in object net N fires t

autonomously within the place p̂.
For the sake of uniformity we define for an arbitrary binding α:

preα(id p̂,N )(p̂′)(N ′) = postα(id p̂,N )(p̂′)(N ′) =

{
1 if p̂′ = p̂ ∧N ′ = N

0 otherwise.

The set of all events generated by the labelling l is Θl := Θ1 ∪Θ1:

Θ1 :=
{
τ̂α[ϑ] | ∀N ∈ N : l̂α(t̂)(N) = l

♯
N (ϑ(N))

}

Θ2 :=
{
id p̂,N [ϑt] | p̂ ∈ P̂ , N ∈ Nd(p̂), t ∈ TN

} (6)

Firing Rule A system event θ = τ̂α[ϑ] removes net-tokens together with their
individual internal markings. Firing the event replaces a nested multiset λ ∈ M
that is part of the current marking µ, i.e. λ ⊑ µ, by the nested multiset ρ.
The enabling condition is expressed by the enabling predicate φEH (or just φ

whenever EH is clear from the context):

φ(τ̂α[ϑ], λ, ρ) ⇐⇒ ∀k ∈ K :
∀p̂ ∈ d−1(k) : ∀N ∈ Nk : Π1

N (λ)(p̂) = preα(τ̂)(p̂)(N) ∧
∀p̂ ∈ d−1(k) : ∀N ∈ Nk : Π1

N (ρ)(p̂) = postα(τ̂)(p̂)(N) ∧
Π2

k(λ) ≥
∑

N∈Nk
pre

♯
N (ϑ(N)) ∧

Π2
k(ρ) = Π2

k(λ) +
∑

N∈Nk
post

♯
N (ϑ(N))− pre

♯
N (ϑ(N))

(7)

The predicate φ has the following meaning: Conjunct (1) states that the
removed sub-marking λ contains on p̂ the right number of net-tokens, that are
removed by τ̂ . Conjunct (2) states that generated sub-marking ρ contains on p̂



the right number of net-tokens, that are generated by τ̂ . Conjunct (3) states that
the sub-marking λ enables all synchronised transitions ϑ(N) in the object N .
Conjunct (4) states that the marking of each object net N is changed according
to the firing of the synchronised transitions ϑ(N).

Note, that conjunct (1) and (2) assures that only net-tokens relevant for the
firing are included in λ and ρ. Conditions (3) and (4) allow for additonal tokens
in the net-tokens.

For system-autonomous events t̂α[ϑid ] the enabling predicate φ can be sim-
plified further: Conjunct (3) is always true since preN (ϑid(N)) = 0. Conjunct
(4) simplifies to Π2

k(ρ) = Π2
k(λ), which means that no token of the object nets

get lost when a system-autonomous events fires.
Analogously, for an object-autonomous event τ̂ [ϑt] we have an idle-transition

τ̂ = id p̂,N and ϑ = ϑt for some t. Conjunct (1) and (2) simplify to Π1
N ′(λ) =

p̂ = Π1
N ′(ρ) for N ′ = N and to Π1

N ′(λ) = 0 = Π1
N ′(ρ) otherwise. This means

that λ = p̂[M ], M enables t, and ρ = p̂[M − preN (t̂) + postN (t̂)].

Definition 2 (Firing Rule). Let EH be an elementary Hornet and µ, µ′ ∈
M markings.

– The event τ̂α[ϑ] is enabled in µ for the mode (λ, ρ) ∈ M2 iff λ ⊑ µ ∧
φ(τ̂ [ϑ], λ, ρ) holds and the guard Ĝ(t) holds, i.e. E |=α

I Ĝ(τ̂).

– An event τ̂α[ϑ] that is enabled in µ can fire: µ
τ̂α[ϑ](λ,ρ)−−−−−−→

EH

µ′.

– The resulting successor marking is defined as µ′ = µ− λ+ ρ.

Note, that the firing rule has no a-priori decision how to distribute the mark-
ing on the generated net-tokens. Therefore we need the mode (λ, ρ) to formulate
the firing of τ̂α[ϑ] in a functional way.

3 Boundedness for Safe Elementary Hornets

A Hornet is safe iff each place p̂ in the system net carries at most one token
and each net-token carries at most one token on each place p in all reachable
markings µ. Since we are interested in safe Hornets in the following, we do not
use arc weights greater than 1.

Since all nets N ∈ Nk have the same set of places Pk, there is an upper
bound for the cardinality of Nk.

Lemma 1. For each k ∈ K we have |Nk| ≤ 2(2
4|Pk|).

Proof. Note, that each common set of places Pk is finite for elementary Hor-

nets. Each possible transition t chooses a subset of Pk for the preset •t and
another subset for the postset t•. We identify t with the pair (•t, t•). A tran-
sition is an element from Tk := P(Pk) × P(Pk). We have |Tk| = 2|Pk| · 2|Pk| =
(2|Pk|)2 = 22|Pk| different transitions.

To each transition t ∈ TN , N ∈ Nk the partial function lN assigns either a
channel c ∈ Ck or ⊥k.



The set of labelled transitions is LTk := Tk × (Ck ∪ {⊥k})) and we have
|LTk| = |Tk × (Ck ∪ {⊥k}))| = 22|Pk| · (|Ck|+ 1) different labelled transitions.

We cannot use more channels than we have transitions in the object net, i.e.
we could use at most |Tk| ≤ 22|Pk| different channels from Ck ∪ {⊥k}. Thus, we
have:

|LTk| = 22|Pk| · (|Ck|+ 1) ≤ 22|Pk| · 22|Pk| ≤ 24|Pk|

Since each object net N in Nk is characterised by its set of labelled transitions

and there are |P(LTk)| = 2|LTk| subsets of LTk, we have at most 2(2
4|Pk|) different

object nets. qed.

In the following we identify an object net with a subset of LTk.

Lemma 2. A safe Hornet has a finite reachability set.

Proof. Each reachable marking is of the form µ =
∑n

i=1 p̂i[Ni,Mi]. Since each
each object net N ∈ Nk is safe, we know that each net-token has at most 2|Pk|

different markings Mi Furthermore, we know |Nk| ≤ 2(2
4|Pk|). Assume that m is

the maximum of all |Pk|. Then we have at most 2(2
4m) · 2m different net-tokens

[N,M ].
Each system net place p̂ is either unmarked or marked with one of these

net-tokens. Therefore, we have at most
(
1 + 2(2

4m) · 2m
)|P̂ |

different markings

in the safe Hornet. qed.

It can be shown that for each elementary Hornet EH there exists an Eos

OS (EH ) with the simulation property: µ
∗−−→

EH

µ′ ⇐⇒ µ
∗−−−−−→

OS(EH )
µ′. The

construction of OS (EH ) results in a quite drastic increase in the size of Eos,
since we add new elements for each object net in the Hornet. By Lemma 1
the size of the Eos grows double exponentially in Pk. Therefore, the simulation
by OS (EH ) is only good for showing undecidability by giving a reduction from
Hornets to Eos (Since we know that the reachability problem for Eos is un-
decidable [Köh07], we obtain another undecidability proof for Hornets.), but
not for studying complexity bounds.

In the following we study the complexity of the reachability problem for safe
elementary Hornets.

4 Encoding of Elementary Hornets

To encode a p/t net, we encode the pre-and the post-matrix, which can be stored
in O(|P | · |T |) bits. The size of an elementary Hornet is more involved, since
we have to store the algebra and the net-tokens:

Lemma 3. Let EH = (N̂ ,N , I, d, l, µ0) an elementary Hornet with µ0 =∑n
i=1 p̂i[Ni,Mi]. Assume that the net algebra can be encoded in s(I) space. Then,

EH can be encoded in s(EH) := s(N̂) + s(I) + s(µ0) space, where:

s(N̂) ∈ O
(
|P̂ | · |T̂ |

)
and s(µ0) ∈ O

(
|P̂ | · (mN (µ0) ·mP +m2

P )
)



with mP := max{|Pk| : k ∈ K} and mN (µ0) := max{s(N) | N ∈ Π2
N (µ0)}.

Proof. Note, that it is sufficient to encode the system net N̂ , the net operators
in I, the typing d, the global object net place sets Pk, and the initial marking
µ0. It is not necessary to encode the object nets in N , since the object nets are
part of the current marking µ and combinatorially derived from Pk.

– The system net can be stored in O(|P̂ | · |T̂ |) bits:

The arc-inscriptions pre(t̂), post(t̂) and transition-inscriptions Ĝ(t̂) are fi-

nite and need O(|P̂ | · |T̂ |) bits. The system net labelling l̂k(t̂) are finite

expressions, too, and need O(|T̂ |) bits.

– The typing d is stored in O(|P̂ |) bits.

We encode the initial marking µ0 =
∑n

i=1 p̂i[Ni,Mi] as a list:

– Each p̂ is marked with at most one net-token: n ≤ |P̂ |.
– Each object net transition is an element from Tk := P(Pk) × P(Pk), which

needs O(|Pk|) bits. The label lN (t) of an object net transition t is stored in
O(|Pk|) bits, since |Ck ∪ {⊥k}| ≤ |TN |.
Therefore, a labelled object net transition t uses s(t) ∈ O(|Pk|) bits.

– Each object net is identified with some subset LTN = {(t1, c1), . . . , (tn, cn)}
of LTk. We encode each object N as the list code(N) := (t1, c1) · · · (tn, cn).
All in all, we need s(Ni) := |LTNi

| ·O(|Pk|) bits to store code(N).
Since each place Pk in the object net is marked with at most one token, we
can store Mi as a list of those places that are marked in Mi. We need at
most s(Mi) := |Pd(p̂i)| log(|Pd(p̂i)|) ≤ |Pd(p̂i)|2 bits for this list.
Therefore, each net-token [Ni,Mi] needs O(|LTNi

| · |Pk|+ |Pk|2) bits.
– The space needed for the initial marking µ0 =

∑n
i=1 p̂i[Ni,Mi] is:

s(µ0) =
∑n

i=1 s(Ni) + s(Mi) ∈ O(
∑n

i=1 |LTNi
| · |Pd(p̂i)|+ |Pk|2)

⊆ O(
∑n

i=1 mN (µ0) ·mP +m2
P ) ⊆ O(|P̂ | · (mN (µ0) ·mP +m2

P ))

Then, s(EH) is the sum of all components. qed.

Since s(Ni) ≤ 24mP we have mN (µ0) ≤ 24mP , which “simplifies” the estima-
tion for |µ0|:

s(µ0) ∈ O
(
|P̂ | · (mN (µ0) ·mP +m2

P )
)
⊆ O

(
|P̂ | · (22(mP+1) ·mP +m2

P )
)

But, in general 24mP is a rather rude estimation, e.g. in those cases, when only
a small subset of N is reachable.

5 Complexity of the Reachability Problem

The size |A| of a Turing machines A is the size needed to store its Turing table.
Following the presentation in [Esp98] we consider Turing machines A that start



with an empty tape as input. We say that A is exponentially bounded (w.r.t.
the size of A) if A uses at most 2|A| cells of the tape during all possible runs
starting with the empty tape.

It is well known that each TM A can be simulated by a counter program
C(A). Moreover, if A is exponentially bounded (w.r.t. the size of A), then each

counter of C(A) is bounded by 22
|A|

.

Theorem 1. The reachability problem for safe elementary Hornets requires
exponential space.

Proof. Our proof that the reachability problem for safe elementary Hornets re-
quires at least exponential space is similar to the heart of Lipton’s famous result.
Lipton has proven that acceptance of a counter program C translates into a
reachability question for a p/t net N(C). Lipton gives a construction for N(C),
which is of size O(|C|2). This proves that the reachability problem requires at

least 2
√

|C| space, i.e. exponential space.
Our goal is to simulate a counter program C by a safe, elementary Hornet

EH of size O(poly(|C|)). In this case we know that a question about a counter
program C translates into a question about EH. When C needs 2|A| space for the

counters, we have that EH needs 2
n
√

|A| space for the corresponding question,
where n is the order of the polynom poly(|C|).

The translation of counter program statements into Hornets is quite straight-
forward. For each program line l and each counter c we have a place. Places for
lines are marked with black tokens, places for counters are marked with the
net-type Int.

For the type Int we have the constant zero and the unary operator suc. The
net zero is interpreted as the object net with no transitions and suc enumerates
the next subset of LTInt.

The translation of each command into a transition is given as in the figure
below. The initial marking puts a black token at l1 for first command and one
net-token [zero,0] on each counter place.

Since we cannot use more counters than we have statements in C we have
O(|P̂ | · |T̂ |) ⊆ O(|T̂ |2) = O(|C|2), i.e. the resulting system net N̂ grows quadratic
in the size of the program C.

Each net-token [zero,0] in µ0 needs only O(|PInt|) bits, since zero is encoded
by the empty list. The marking 0 is encoded by constantly many bits. Therefore,
the initial marking needs only O(|P̂ |) ⊆ O(|C|) bits.

It remains to estimate the size of a Turing machine that the nets zero and
suc(N) (cf. Fig. 2). It is easy to construct the object net zero: simply return the
empty list. For the construction of suc(N), where N is given as a list X, we do



function suc(X: list of bit-vector):
list of bit-vector

var a, b, c : bit;
var i : bit-vector:
var Y : list of bit-vector:

begin

Y := empty-list; c := 1;

n := d-exp(|PInt|) // n = 22
4|PInt|

for i := 0 to n− 1 do

a := is-in(i,X);
(b, c) := (c ∧ a, c XOR a);
if b = 1 then Y := append(i, Y )

end;
return Y ;

end

function d-exp(n : int) : int
var x, y, i : int;

begin

n := 2n+ 1;
x := 1;
for i := 1 to n do x := 2x end

// x = 22n+1

y = 1;
for i := 1 to x do y := 2y end

// y = 22
2n+1

return y

end

Fig. 2. Listing: Net Operators Fig. 3. Listing: Bound

a binary increment: We convert the list X of labelled transitions into a binary

string a0 · · · an−1 of length n := 22
4|PInt| = |NInt|. The digits ai are computed

whenever necessary. We iterate through all indices i from 0 to n and compute
from a and the current carry c the output digit bi and the next carry bit. We
add the labelled transition with index i to the list Y . Finally, Y is the list that
encodes the resulting object net suc(N).

Note, that we cannot denote n = 22
4|PInt| directly as the limite of the for-loop,

since we need at least 24|PInt| bits to store the for-command, which is undesired
to obtain a small Hornet. Instead, we compute n by the function d-exp(|PInt|),
which needs only log(|PInt|) bits to store. With this trick the size of the programs
are within O(log(|PInt|)).

Each counter of C(A) is bounded by 22
|A|

. If we set |PInt| := |A|, then we can

generate n = 22
4|A| ≥ 22

|A|

object nets – enough to simulate the counter. With
|PInt| := |A| we obtain O(log(|PInt|)) ⊆ O(|PInt|) = O(|A|) = O(|C|).

The size of the Hornet is therefore in

O(|P̂ | · |T̂ |)+O(|P̂ |)+O(log(|PInt|)) ⊆ O(|C|2)+O(|C|)+O(log(|C|)) ⊆ O(|C|2).

This shows that EH needs 2
√

|A| space for the reachability problem. qed.

6 Conclusion

In this paper we studied the subclass of safe, elementary Hornets. While all
properties expressible in temporal logic are PSpace-complete for safe Eos, we
obtain that the reachability problem for safe, elementary Hornets needs at
least exponential space, which is also a lower bound for LTL model checking
since the reachability problem can be expressed as a LTL property.



We like to emphasise that the power of safe, elementary Hornets is only due
to the transformations of the net-algebra, since all other sources of complexity
(nesting, multiple tokens on a place, etc.) have been ruled out by the restriction
of safeness and elementariness.
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