
Rough Set Methods and Submodular Functions

Hung Son Nguyen and Wojciech Świeboda

Institute of Mathematics, The University of Warsaw,
Banacha 2, 02-097, Warsaw Poland

Abstract. In this article we discuss the connection of Rough Set meth-
ods and submodular functions. We show that discernibility measure used
in reduct calculation is submodular and provides a bridge between cer-
tain methods from Rough Set theory and Submodular Function theory.

1 Introduction

In this article, we aim to highlight connections between Rough Set Theory and
Submodular Function Theory. Rough Set problems (such as finding reducts,
inference of decision rules, discretizing numeric attributes) are all based on ap-
proximating indiscernibility relation (in the product space U × U , where U is
a universe of objects). In this paper we only focus on the problem of finding a
single, possibly short (decision) reduct, which is one of fundamental problems
in Rough Set theory. One of natural measures of “goodness” of approximation
induced by a subset of attributes in a decision system is a discern measure which
we introduce in the first subsection. This function is submodular, hence the ap-
proximation of indiscernibility relation may be considered within the framework
of Submodular Function optimization. We will discuss maximization methods
that only utilize three properties of discern measure: submodularity, monotonic-
ity and the ease of computation using lazy evaluations. We will also highlight the
potential of applying certain Rough Set Methods to other Submodular Function
optimization problems by describing an example computational problem, whose
aim is to optimize (using lazy evaluations) a submodular function which takes
as the argument a subset of attributes from an information (or decision) system
which contains several default values. We point out the fact that optimizations
of this kind can be performed for very large datasets using an SQL interface.

2 Rough Sets and Submodularity

2.1 Rough Sets

Rough Set Theory[10],[12] was introduced by Pawlak as a tool for concept ap-
proximation under uncertainty. The general idea is to provide (or derive from
data) lower and upper approximations of a concept.

In this subsection we briefly review fundamental notions of Rough Set The-
ory: information and decision systems and decision reducts.

2 Hung Son Nguyen and Wojciech Świeboda

An information system is a pair A = (U,A), where the set U denotes the
universe of objects and A is the set of attributes, i.e. mappings of the form:
a : U → Va. Va is called the value set of attribute a.

A decision system is an information system D = (U,A ∪ {d}) where d is a
distinguished decision attribute. The remaining attributes are called conditions
or conditional attributes. An example decision system is shown in Table (a).

For a subset of attributes B ⊆ A we define (on U × U) B-indiscernibility
relation IND(B) as follows:

(x, y) ∈ IND(B) ⇐⇒ ∀a ∈ A a(x) = a(y)

IND(B) is an equivalence relation and hence defines a partitioning of U
into equivalence classes which we denote by [x]B (x ∈ U). The complement of
IND(B) in U ×U is called discernibility relation, denoted DISC(B). The lower
and upper approximations of a concept X (using attributes from B) are defined
by

LB(X) =
{
x ∈ U : [x]IND(B) ⊆ X

}
and

UB(X) =
{
x ∈ U : [x]IND(B) ∩X 6= ∅

}
.

In general, reducts are minimal subsets of attributes contain necessary infor-
mation about all attributes. Below we remind just two definitions.

– A reduct is a minimal set of attributes R ⊆ A such that IND(R) ⊆ IND(A).
– A decision-relative reduct is a minimal set of attributes R ⊆ A such that
IND(R) ⊆ IND({dec})∪IND(A). In other words, it is a minimal subset of
attributes which suffices to discern all pairs of objects belonging to different
decision classes.

We proceed with two definitions that will come in handy in reduct calculation.
A conflict is a pair of objects belonging to different decision classes. We define

conflicts : 2U → R+ so that for X ⊆ U :

conflicts(X) =
1

2
|{(x, y) ∈ X ×X : dec(x) 6= dec(y)}|

We define c : 2A → R+ as follows. For B ⊆ A:

c(B) =
∑

conflicts([x]B)

where the summation is taken over all equivalence classes of partitioning in-
duced by IND(B). Function c is a natural extension of the definition of con-
flicts function to subsets of attributes. Subset of attributes B ⊆ A is a reduct if
c(B) = c(A).

For a subset of attributes B ⊆ A we define

discern(B) = c(∅)− c(B)

Rough Set Methods and Submodular Functions 3

Let I denote the indicator function. In the formula above:

c(∅) =
1

2

∑
(x,y)∈U×U

I (d(x) 6= d(y))

c(B) =
1

2

∑
(x,y)∈U×U

I (d(x) 6= d(y) ∧ (x, y) ∈ IND(B))

Please notice that:

discern(B) = c(∅)− c(B)

=
1

2

∑
(x,y)∈U×U

I (d(x) 6= d(y))

− 1

2

∑
(x,y)∈U×U

I (d(x) 6= d(y) ∧ (x, y) ∈ IND(B))

=
1

2

∑
(x,y)∈U×U

I (d(x) 6= d(y))

− 1

2

∑
(x,y)∈U×U

I (d(x) 6= d(y) ∧ ∀a ∈ B : a(x) = a(y))

=
1

2

∑
(x,y)∈U×U

I (d(x) 6= d(y) ∧ ∃a ∈ B : a(x) 6= a(y))

=
1

2
|DISC({d}) \ IND(B)|

Function discern is closely related to decision reducts – R ⊂ A is a decision
reduct if it a minimal subset of attributes with discern(R) = discern(A). A well
known method for calculating short decision reducts is Maximal Discernibility
heuristic (or Johnson’s heuristic) [9], [2]. This method iteratively extends a set of
attributes in a greedy fashion, picking in each step the attribute with the largest
marginal discern.

2.2 Submodular Functions

Let Ω be a finite set. A set function f : 2Ω 7→ R is submodular [1] if it satisfies
any of the three following equivalent properties:

– For T ⊂ S ⊂ Ω and x ∈ S \ T : f(T ∪ {x})− f(T) ≥ f(S ∪ {x})− f(S).
– For T, S ⊂ Ω: f(T) + f(S) ≥ f(T ∪ S) + f(T ∩ S).
– for T ⊂ Ω and x, y ∈ Ω \T : f(T ∪{x}) + f(T ∪{y}) ≥ f(T ∪{x, y}) + f(T).

The first of these formulations can be naturally interpreted as “diminishing
returns” property.

4 Hung Son Nguyen and Wojciech Świeboda

Submodular functions naturally arise within the context of various combi-
natorial optimization problems and Machine Learning problems. Maximization
problems involving submodular functions are usually NP-hard (see [6] and ref-
erences therein), although several heuristics (with provable bounds) have been
proposed in the literature.

A notable characteristic of several of these algorithms is that they may use
lazy evaluation, i.e. they may update the value of the function f upon inclusion
of an additional element. Another property often stressed for some algorithms is
whether they are suited for optimization of arbitrary submodular functions or
monotone submodular functions.

2.3 Discernibility and Submodularity

Lemma 1. Let D = (U,A∪{d}) be a decision system. Set function discern : 2A 7→ R
is a monotone increasing submodular function.

Proof. Recall that:

discern(B) =
1

2

∑
(x,y)∈U×U

I (d(x) 6= d(y) ∧ ∃a ∈ B : a(x) 6= a(y))

Please notice that an unordered pair {x, y} either does not contribute to discern(T),
or is counted in discern(T) exactly twice.

– Notice that for T, S ⊂ A:

discern(T) =
∑
x,y∈U

I (d(x) 6= d(y) ∧ ∃a ∈ T : a(x) 6= a(y))

≤
∑
x,y∈U

I (d(x) 6= d(y) ∧ ∃a ∈ T ∪ S : a(x) 6= a(y))

= discern(T ∪ S)

Hence discern is monotone.
– We will show that discern(T)+discern(S) ≥ discern(T∪S)+discern(T∩S).

Let us first consider an unordered pair of objects {x, y} which is counted at
least once in discern(T ∪ S) + discern(T ∩ S). It follows that this pair is
discerned by an attribute a ∈ T ∪ S, hence it is counted at least once in
discern(T)+discern(S). If a pair (x, y) is counted twice in discern(T ∩S)+
discern(T ∪S), then it is counted by discern(T ∩S), and hence it is counted
twice in discern(T) + discern(S). Therefore discern is submodular. �

Please also notice that discern(B) is a function of the partitioning of objects
induced by IND(B). In implementation of algorithms we explicitly keep the
partitioning IND(B) and further subdivide (shatter) it into IND(B ∪ {a})
when needed (i.e. when an algorithm requests the value of discern(B ∪ {a}).
This property of certain submodular functions is in fact exploited by several
optimization algorithms that use lazy evaluation.

Rough Set Methods and Submodular Functions 5

In fact, in order to calculate discern(B), it suffices to know the cardinalities of
partitions in partitioning of d induced by IND(B) (see Figure 2 and the example
in the next section). In other words, it suffices to determine the appropriate
contingency table (pivot table or cross tabulation).

3 Application of Rough Set methods to Submodular
Function Optimization

In this section we provide an example method previously applied in Rough Set
Theory that can be applied to other submodular functions.

We will focus on submodular functions f with the following two properties:

– f depends on an underlying (fixed) decision or information system and the
argument of f is a subset of attributes of this decision (information) system.

– f(B) is determined by the contingency table of attributes from B ∪ {d}.

Examples of such functions are previously mentioned discern, Entropy of a
partition, and Gini index[11].

In various data mining applications one faces an optimization problem in
which the dataset at hand contains numerous default values. For example, in
Data Mining Cup 2009, more than 90% attribute values had the same default
value (zero). Another potential area is text mining, where Boolean model of
Information Retrieval (and Vector Space Model) usually lead to a representation
of a collection of documents which is sparse.

When mining huge data repositories, the data may be stored in a relational
database and only accessed through SQL queries. A convenient data represen-
tation that can handle optimization of functions mentioned earlier is in terms
of EAV (entity-attribute-value) triples, rather than tables, which often leads to
data compression. Table (b) shows EAV representation system from Table (a)
in which attribute values MSc (a1), High (a2), Yes (a3) and Neutral (a4) are
regarded as default values (and hence omitted). We assume that values of the
decision attribute are stored in a separate table.

Suppose that an optimization algorithm performs calculation of f(B ∪ {a}).
When the data set is represented (compressed) in EAV format, determining the
partitioning of objects induced by IND(B ∪ {a}) can be greatly simplified if
the partitioning of objects induced by IND(B) is known beforehand. It suffices
to update partition identifiers of objects without missing values on attribute a.
Figure 1 illustrates this step.

Partitioning of d induced by IND(B ∪ {a}) suffices to determine the value
of f(B ∪ {a}), since the value of f(B ∪ {a}) only depends on the contingency
table of attributes from B ∪ {a}.

Let us refer to Figure 2 for an illustration (for function discern). Upon deter-
mining the contingency table (which counts decision values in each partition),
c({a1, a3}) is the number of conflicting pairs within each partition, i.e.:

c({a1, a3}) = 2 ∗ 1 + 0 ∗ 1 + 1 ∗ 1 + 0 ∗ 1 + 1 ∗ 0 = 3

6 Hung Son Nguyen and Wojciech Świeboda

Similarly, there are 4 objects with decision A and 4 objects with decision R,
hence c(∅) = 4 ∗ 4. Finally, discern({a1, a3}) = c(∅)− c({a1, a3}) = 13.

In [13] we have demonstrated a SAS implementation of the greedy heuristic
(for short decision reduct calculation) working on large and sparse data sets.

Diploma Experience French Reference Decision

x1 MBA Medium Yes Excellent Accept
x2 MBA Low Yes Neutral Reject
x3 MCE Low Yes Good Reject
x4 MSc High Yes Neutral Accept
x5 MSc Medium Yes Neutral Reject
x6 MSc High Yes Excellent Accept
x7 MBA High No Good Accept
x8 MCE Low No Excellent Reject

(a)

obj. attr. value

x1 a1 MBA
x1 a2 Medium
x1 a4 Excellent
x2 a1 MBA
x2 a2 Low
x3 a1 MCE
x3 a2 Low
x3 a4 Good
x5 a2 Medium
x6 a4 Excellent
x7 a1 MBA
x7 a3 No
x7 a4 Good
x8 a1 MCE
x8 a2 Low
x8 a3 No
x8 a4 Excellent

(b)

Table 1: Example decision table (a) and EAV representation of this decision
table (b).

4 Application of Submodular Functions in Rough Set
Theory

In Table 2 we provide interpretation of several submodular function optimization
problems in terms of decision systems. The table follows the outline given in [6],
although we narrow the exposure to maximization problems and to algorithms
that solve constrained problems (discern, Entropy and Gini index are all mono-
tone). All problems mentioned in this table have approximate solvers available
in an open source package SFO[6] for Matlab. Furthermore, most algorithms
mentioned in the table use lazy evaluations and have provable approximation
bounds. We further provide interpretations or potential applications of these
problems in terms of decision systems.

Rough Set Methods and Submodular Functions 7

Partition 1

Partition 2

Partition 3

Partition 1

Partition 2

Partition 3

Partition 4

Partition 5

Fig. 1: Determining a subpartitioning induced by indiscernibility relation of a
sparse decision system.

8 Hung Son Nguyen and Wojciech Świeboda

Partition 1

Partition 2

Partition 3

Partition 4

Partition 5

Fig. 2: Calculating discern using a contingency table.

Rough Set Methods and Submodular Functions 9

Table 2: A subset of algorithms implemented in [6] and their interpretations or
potential applications in terms of decision systems.

Greedy algorithm [8] Constrained maximization (originally for solving the un-
capacitated location problem). For a constant cost func-
tion it is similar to MD heuristic, although the stopping
criterion is different – the algorithm approximately solves
A∗ = argmaxAF (A) with C(A) ≤ B for a cost function
C and specified budget B.
Costs associated with attributes can be naturally inter-
preted within the context of test-cost-sensitive learning.

CELF [7] It solves (approximately) the same optimization problem
as the greedy algorithm, although it utilizes greedy and
cost-agnostic greedy algorithms.

pSPIEL [3] Similar to the formulation above, with C(A) being the
cost of the cheapest path connecting nodes A in a graph.
An example problem that calls for a graph structure may
be as follows: A decision system corresponds to a de-
terministic phenomena such that different attributes are
measured/collected in different locations. How to choose
a set of attributes sufficient to determine the decision so
that the overall distance needed to traverse in order to
collect values of attributes from this reduct is (not far
from) minimal?

SATURATE [4] Approximately solve A∗ = argmax|A|≤kminiFi(A)
A potential application is determining a joint (approx-
imate) reduct in a decision system with multiple deci-
sion variables, or an approximate reduct in a multiclass
decision system such that misclassification is not overly
disproportionate between classes.

eSPASS [5] Approximately solving max|A1∪...∪Ak|≤mminiF (Ai).
This algorithm can be used to find a set of k disjoint
approximate reducts or k.

5 Conclusions

In this article we presented the connection between Rough Set theory methods
and methods from Submodular Function theory. The key (although very sim-
ple) observation is that discernibility is a monotone submodular function. We
have briefly discussed an example method previously developed in Rough Set
theory framework (i.e., lazy evaluation of discernibility when the data set con-
tains numerous default values) and discussed its application to other submodular
functions. We have also provided the interpretation or potential applications of
several submodular function maximization problems in terms of Rough Set The-
ory and decision systems.

An example specific problem which to our knowledge has not been previously
addressed is as follows: Find a set of k disjoint decision reducts of a decision sys-

10 Hung Son Nguyen and Wojciech Świeboda

tem D = (U,A∪ {d}). eSPASS algorithm mentioned in [5] gives an approximate
solution to this problem.

Acknowledgement:

This work is partially supported by the National Centre for Research and Devel-
opment (NCBiR) under Grant No. SP/I/1/77065/10 by the Strategic scientific
research and experimental development program: ”Interdisciplinary System for
Interactive Scientific and Scientific-Technical Information”.

References

1. Fujishige, S. Submodular Functions and Optimization, Elsevier, 2005.
2. Johnson, D., S. Approximation algorithms for combinatorial problems In Journal

of Computer and System Sciences, 9:256–278, 1974.
3. Krause, A., Guestrin, C., Gupta, A., Kleinberg, J. Near-optimal sensor placements:

Maximizing information while minimizing communication cost. In IPSN, 2006.
4. Krause, A., Singh, A., Guestrin, C. Near-optimal sensor placements in Gaussian

processes: Theory, efficient algorithms and empirical studies. In JMLR, volume 9,
2008.

5. Krause, A., Rajagopal, R., Gupta, A., Guestrin, C. Simultaneous placement and
scheduling of sensors. In Information Processing in Sensor Networks, 2009.

6. Krause, A. SFO: A Toolbox for Submodular Function Optimization In Journal of
Machine Learning Research, 11:1141–1144, 2010.

7. Leskovec, J., Krause, A., Guestrin, C., Faloutsos, C., VanBriesen, J., Glance, N.
Cost-effective outbreak detection in networks. In KDD, 2007.

8. Nemhauser, G., Wolsey, L., Fisher, M. An analysis of the approximations for
maximizing submodular set functions In Mathematical Programming, 14:265–294,
1978.

9. Nguyen, H. S.: Approximate Boolean Reasoning: Foundations and Applications in
Data Mining. Transactions on Rough Sets: Volume 5, 2006, pages. 334–506 (2006)

10. Pawlak, Z. Rough Sets. Theoretical Aspects of Reasoning about Data. Springer,
Formerly Kluwer Academic Publishers, Boston, Dordrecht, London, 1991.

11. Bassem Sayrafi, Dirk Van Gucht, and Marc Gyssens. Measures in databases and
datamining. Tech. Report TR602, Indiana University Computer Science, 2004.

12. Komorowski, J., Pawlak, Z., Polkowski, L., Skowron, A. Rough Sets: A Tuto-
rial In Rough Fuzzy Hybridization: A New Trend in Decision-Making, pages 3–98.
Springer, Heidelberg, 1998.

13. Świeboda, W., Nguyen, H. S. Mining large and sparse data sets with Rough Sets.
In Proceedings of CS&P, 2010.

