
Automatic forecasting of design anti-patterns in
software source code

 Lukasz Pu lawski

Institute of Informatics, Warsaw University,
Banacha 2, 02-097 Warszawa, Poland,

Lukasz.Pulawski@mimuw.edu.pl

Abstract. The paper presents a framework for automatic inferring knowl-
edge about reasons for the appearance of anti-patterns in the program
source code during its development. Experiments carried out on histo-
ries of development of few open-source java projects shown that we can
efficiently detect temporal patterns, which are indicators of likely ap-
pearance of future anti-pattern.
The approach presented in this paper uses expert knowledge (formal
description of anti-patterns) to automatically produce extra knowledge
(with machine learning algorithm) about the evolution of bad structures
in the program source code. The research can be used to build scal-
able and adaptive tools, which warns development teams about the fact
that system architecture is drifting in the wrong direction, before this is
reported by typical static source code analysis tools.
Key words: Software evolution, temporal patterns, software design anti-
pattern, machine learning

Introduction

Software development is a long-lasting process, which involves many developers.
The main outcome of it is a system source code, which may consist of thousands
of entities, such as files, classes or methods. Some of them may have certain bad
properties, which make them more prone to defects, harder to understand or
maintain. There are tools which can automatically asses entities and check if
they are ill-structured. Such tools are of great help when planning refactoring or
doing a code review. Their disadvantage is that such analysis can only be done
post factum: once there is a problem in the software, the tool can tell where to
find it. This paper presents a framework for the identification of a few well known
defects in program source code structures, which addresses this problem. It is a
semi-automated approach which detects frequent indicators of bad structures in
the software code, before they actually appear.

On a high level, it can be seen as a framework which takes expert knowledge
about bad design concepts as an input, analyses the evolution of software and,
with usage of artificial intelligence algorithm, produces extra knowledge about
how such ill-structured elements of source code evolve over time and where they
come from.

Reminder of this paper

Section 1 provides a concise description of notions related to software devel-
opment process, which are referred to in this research. Section 2 gives a short
introduction to classification - a typical issue in machine learning, which is used
in this research. Section 3 describes proposed framework in more detail. In sec-
tions 3.3 and 3.4 you will find a report about the data used in the experiments
and selected results. Finally, sections 4, and 5 compare research presented herein
with related approaches, and give some concluding comments and plans for the
future work.

1 Software development

In a collaborative software development environments, where many developers
are working on the same program for a long time, usually two important systems
are used: Source Code Management system (SCM for short) and Issue Tracker
(IT), in order to keep the process under control.

SCM is typically one central source code management server, which keeps the
current version of the program source code. It allows developers to apply their
changes to a common source base in a transactional manner. Such atomic changes
are called commits or check-ins. Every check-in is stored in the SCM with infor-
mation about the author, the time, a message and a list of modifications in the
source code.

IT is a system which stores information about all tasks, called issues, done or
planned during the development of the system. One special type of such issue
is bug, which represents a defect found in the software. The tasks in IT have
their lifecycle, which consist of several steps, such as creation, assignment to
the responsible person, resolution of the problem and, eventually, closure of the
issue. All such actions are recorded by IT. Therefore, one can treat IT as a log of
history of the system development, because all tasks done in it must be recorded
in detail by IT.

Similarly, SCM can be viewed at as a record of the same history, but from
different perspective. It stores record of all changes done to the source code. It is
common practice to put an identifier of a task from IT to a message of commit
done to SCM. If this is followed, two different views on the system development
history become “synchronized”. Thus, on the one hand, when looking at a history
of a file in SCM, one can check what tasks entailed a modification in the file.
On the other hand, when looking at a task, one can check what modifications
in the source code were necessary to complete it. The synchronization is an
additional portion of information, which can be used to infer more knowledge
about software evolution (e.g. one can check how many bugs were fixed in certain
source files).

In the research presented herein I treat software development process as a
temporal stream of events recorded by both SCM and IT, which are synchronised
in the way described above.

1.1 Call graph

Formally, call graph is as directed multigraph CG =< V,E >, where V is a set
of all subroutines in the program source code, and edge < f, g > belongs to E
iff f calls g. In object-oriented languages, subroutines are methods of classes.
Therefore, the definition can be rephrased and expressed on class level: V is a
set of all classes in the program source code and < f, g > belongs to E iff f
has a method that calls some method in g. Unless stated otherwise, this paper
considers call graph on class level (i.e. according to the latter definition).

1.2 Inheritance tree

In programming languages with single inheritance1, the Inheritance tree is a
tree which contains all classes defined in the program source code. Each class
is represented by a node, and the node of A is a parent of the node of B iff B
inherits directly from A. Predicate INH(a, b) denotes that class a is a subclass
of class b.

1.3 Software metrics

Source code metrics are well-known tools for static code analysis. Formally, a
source code metric is a function defined on a set of source code units, such as
files, classes or methods, with numeric values. They measure the complexity of
source code units and thus provide information about potentially ill-structured
parts of the code, which may be error-prone or hard to maintain. The correlation
between high (read: improper) values of source code metrics and the number of
defects in the corresponding source code units has been widely analysed and
proved to be true ([8], [11]). We will use the following notion: If c is a code
entity and m is a metric, then m(c) denotes the value of metric m for entity c.
When evolution of c over time is considered, m(crev) denotes value of metric m
on version of entity c from revision rev. When c is obvious from the context,
these values are just written as m and mrev.

In the research presented herein I used the following metrics: Class data
abstraction coupling (denoted by Da), Class fan-out complexity (FanOut), Class
fan-in complexity (FanIn), Cyclomatic complexity (Cycl), Number of effective
lines class (NCSSc), Depth of inheritance tree (DIT) and Number of methods
(NM). Detailed descriptions of these metrics can be found in [8], [11], [12], [15],
[1] or [14].

1.4 Design (anti-)patterns

In software engineering, design pattern is a frequently used, universal resolution
of commonly occurring problems in software design. This concept is not strictly

1 This research is limited only to programs written in Java, which has only single
inheritance.

formalised - it is rather an idea how to approach certain problems. However,
in many cases it can be approximated in a formal model build from elements
such as values of source code metrics and structures in program call graph and
inheritance tree.

Similarly, design anti-pattern is a frequently used, wrong resolution of certain
types of problems in software design, which has well-known disadvantages.

2 Classification

Classification is one of the problems in machine learning, in which artificial
intelligence algorithm, given a description of an object (usually as a set of values
of attributes), has to assign it to one of several possible categories (called decision
classes). Typically, data for classification is represented in a decision table, in
which rows represent objects (also called instances), columns represent attributes
and each cell gives value of the attribute for a given object.

There are many classification algorithms, which will not be discussed here,
because this research uses them as a tool to build description of patterns in
the software evolution process. More detailed information can be found in [13].
However, a few important aspects must be mentioned. Typically, in order to have
a good quality of classification, the decision table has to have certain properties:

– The set of objects must be large enough, because otherwise there is a risk of
overfitness ([13]).

– It should be balanced. i.e. each decision class should be represented equally
among all objects, at least approximately. Otherwise the algorithm could find
rules describing one decision class, but not necessarily those which discern
it from other classes.

3 Framework

This section shortly describes the algorithm used to automatically infer knowl-
edge about temporal patterns which lead to the appearance of anti-patterns in
the software code.

The idea behind the algorithm is depicted in diagram 1. There are two main
sources of data. One is the history of software evolution stored in the synchro-
nized SCM and IT. The other input is the human expert knowledge represented
as a formal description of anti-patterns in terms of elements of call graph, inher-
itance tree, defect statistics and values of metrics. They are presented in table 1.
The output of the algorithm is a formal description of rules which characterise
early indicators of evolution which is likely to end up in an anti-pattern.

The algorithm works as follows: Single run of it is dedicated to analyse the
evolution of one and only one type of anti-pattern. First, raw data from SCM and
IT logs is transferred into a more convenient form: for each revision from SCM
a complete call graph, inheritance tree, values of metrics for source code entities

IT
+
SCM

Formal description of evolution anti-patterns

call graph evolution

metrics timeseries

defect statistics

inheritance tree evolution

instances of anti-patterns

machine learning algorithm

adaptative algorithm

Formal description of static anti-patternsinput knowledge

output knowledge

data structural representation

Fig. 1. Framework presented conceptually in the diagram

and statistics of resolved defects in it are computed.2 This representation will be
called structural. In the next step, all appearances of the analysed anti-pattern
are identified in the most recent revision of the source code. Finally, a decision
table is built, in which evolution of each identified instance of anti-pattern is
represented by one row. This is done in order to run a classification algorithm,
which outputs rules, that characterise the evolution of anti-pattern. A formal
description of evolution anti-patterns is described in section 3.4.

3.1 Detailed description of the algorithm

Definitions This section defines notions used in the following paragraphs.
rev stands for the current, most recent revision of the analysed source code.

For the following definitions we assume that revision rev is fixed.
Anti-pattern is a set of classes, which has certain properties that can be ex-

pressed in terms of the elements of structural representation. Detailed description
of particular anti-patterns analysed in this research is given in section 3.4. For
the following definitions we assume that there is a fixed instance of anti-pattern
AP at revision rev.

revstart is the first revision, in which AP can be observed. Obviously revstart ≤
rev.

revbefore is the last revision, in which AP is not observed and at least one
of classes from AP is present in the SCM. If there is no such revision, then
revbefore ← 0, in other cases revbefore < revstart.

revinit is the first revision, which is not greater than revbefore and in which
either of the classes of AP were present in the SCM.

Evolution of AP , denoted by EAP is a sequence of all revisions {revn}n={1...k}
in which at least one of the classes from AP was modified, such that rev1 =
revinit, revk = revbefore and revl−1 < revl, for each l. Conceptually, it is a time

2 In fact this can be implemented in a more efficient manner, if data is collected during
software development. For details see chapter 3.2

period between revinit and revbefore revisions, in which the source of all classes
belonging to AP was evolving just before they become an instance of an anti-
pattern. Note that in this research we only consider cases where revbefore > 0
and revinit < revbefore, that is, where evolution of AP is a non-empty sequence
of revisions. Figure 2 depicts all definitions given above.

Class1

Class2 Class3

Class1

Class2 Class3Class2

rev revrev revstartinit beforeEvolution period

Class1

Class2

Fig. 2. Notions in pattern evolution

Algorithm All experiments, though aimed at detecting different anti-patterns,
followed the same scheme. An approach for a single anti-pattern is described in
meta-algorithm 1 and explained in more detail in the following paragraphs. The
goal of it is to provide a decision table (see section 2), which can be analysed
by classification algorithm in order to detect temporal patterns which frequently
lead to the appearance of an anti-pattern in the source code. Conceptually, it
provides a description of the whole evolution period of the anti-patterns, and
encapsulates it in a single row of the decision table per instance of the anti-
pattern.

Algorithm 1 Global meta-algorithm(rev)

Require: rev - revision of system source code
Ensure: DT - decision table for machine learning algorithm

1: DT ← empty decision table ;
2: CG←BUILD-CALL-GRAPH(rev);
3: IT ← BUILD-INHERITANCE-TREE(rev);
4: M ← COMPUTE-METRICS(rev);
5: SAP ← FIND-ANTIPATTERNS(M , CG, IT);

6: for all AP ∈ SAP do
7: EAP ← Evolution of AP {as described in section 3.1}
8: positive object← DT-OBJ(EAP , AP);
9: k ← length of EAP ;

10: NON AP ← RANDOM-COLLABORATION(k);
11: ENON AP ← Evolution of NON AP {as described in section 3.1}
12: negative object← DT-OBJ(ENON AP , NON AP)
13: Add positive object and negative object to DT
14: end for
15: return DT

In the first step (lines 2 - 4) the algorithm reads all files at a given revision
from SCM and IT, and transforms it into structural representation. This allows
to find occurrences of anti-patterns (line 5).

The next step (line 7), which is repeated for every identified instance of the
anti-pattern, builds the history of all classes which comprise it. That is, it takes
all revisions from the evolution period (from revinit to revbefore) and for each
revision it computes values of metrics for all classes. Additionally, it checks if
either of the classes belonged to any other anti-pattern, different than AP . All
data built in th is step is then used to build an object of decision table (line 8).
This is, represented by routine DT-OBJ, described in section 3.1.

Lines 9 - 12 in the algorithm create another object in the decision table, which
has similar properties to AP but is not an instance of the same anti-pattern.
This is done by picking at random a set of classes (NON AP), which has the
following properties: 1) Power of NON AP is equal to the power of AP , 2) each
class in NON AP has at least k revisions in its history, where k is the length
of EAP , 3) NON AP is not an instance of the same anti-pattern as AP . The
motivation for this part is to have a balanced decision table (see section 2). This
is ensured because there are two decision classes (“Anti-pattern” and “Not-anti-
pattern”) and for every object belonging to the former (positive object) there is
one object which belongs to the latter (negative object).

Creation of a row in decision table Routine DT-OBJ builds one object
in the DT, based on information about the evolution of the anti-pattern AP
(or random collaboration NON AP) over period E. It works according to the
following scheme:

– For each metric m, and every class C ∈ AP (respectively: NON AP) cre-
ate the following attributes: maxrev∈E{m(Crev)} (maximum value of met-
ric), avgrev∈E{m(Crev)} (average value of metric), maxrev∈E{m(Crev)} −
minrev∈E{m(Crev))} (amplitude of metric). Since the number of classes in
the analysed anti-pattern is fixed, this always gives 3 × (number of metrics)
× (number of classes) numeric attributes.

– for every type of analysed anti-pattern (see table 1) different than AP , add
one boolean attribute which indicates if at least one class in AP (NON AP)
belongs to it. The motivation for the introduction of these attributes is a
hypothesis that certain anti-patterns tend to appear in the same area of
code consecutively one after other.

– Eventually, give the object a decision attribute, which is “Anti-pattern” for
AP and ‘‘Not-anti-pattern” for NON AP .

3.2 Identification of anti-patterns

Identification of anti-pattern, represented by FIND-ANITPATTERNS routine is
done by simple scanning structural representation for a set of classes with certain
properties. The list of analysed anti-patterns together with the description of
how they were identified is given in table 1. The algorithm to find occurrences
of anti-patterns in the code has been taken from [17].

Table 1. List of analysed anti-patterns

Anti-
pattern

Description Formal description of anti-pattern

God
object

Object which imple-
ments too much func-
tionality

(c) : NM(c) > 30 ∧NCSS(c) > 1000

Base
bean

A class with utility
methods used by its
subclasses

(c) : NM(c) > 30∧|{(x, c) ∈ CG : INH(x, c)}| > 20

YoYo Too large inheritance
tree of one class

(c1, c2, . . . c6) : INH(ci, ci+1), i = 1 . . . 5

Buggy3The class with many
defects

Top 2% classes which contain most defects identified
in IT. The anti-pattern consist of only this class

Scalability Since raw data used in this research has a significant size (thou-
sands of source files, thousands of revisions) scalability of the framework is an
important aspect. The algorithm to build a structural representation is designed
in such a way, that it can build it adaptively. Note that software development
process has good locality property: At one commit usually only a small num-
ber of files is modified. Therefore, in order to rebuild structural representation,
source code parsing can be limited to only these classes which are defined in the
modified files. Once this is done, any changes in the inheritance tree and related
metrics (DIT) need to be applied only to classes which inherit from modified
ones.

3.3 Data for experiments

Table 2 presents a list of particular datasets used in the experiments. Each
row defines what portion of project development history was downloaded from
respective JIRA (issue tracker) and SVN (source code management) servers and
transformed into datasets used in the experiment.

3.4 Results

The decision table constructed in the way described above was analysed with an
exhaustive algorithm in RSES system. It produces a rule-based classifier with the
use of rough-sets methods (see [13]). The general concept of constructing rule-
based classifiers in RSES is based on the extension of approximation spaces,
as defined in e.g. [16]. Inferred rules were tested with a 5-fold cross validation

3 This is not exactly an anti-pattern according to the definition given above. Never-
theless, this category of classes was also considered in the experiment to find out if
the algorithm can identify frequent evolution patterns that make source code units
contain many defects.

Table 2. Datasets used in the experiments

Dataset JIRA JIRA project Issues range SVN approximate revisions range

Jboss [9] JBAS 6500 - 7700 [10] 85000-100000
Myfaces [5] MYFACES 1400 - 2100 [6] 440000-890000

Axis2 [5] AXIS2 4400 - 4700 [6] 550000-950000
Derby [5] DERBY 2500 - 4500 [6] 520000-900000

Hadoop [5] HADOOP 5000 - 6800 [6] 730000-960000
Geronimo [5] GERONIMO 4500 - 5500 [6] 730000-980000

Struts1 [5] STR 2200 - 3200 [6] 400000-750000

method. Standard voting was a strategy used to resolve conflicts when a new ob-
ject was classified. For details about implementation of classification algorithms
please see [3].

Interpretation of results Rules produced by the classification algorithm
might be difficult to understand by an unexperienced person, because they are
expressed in the attribute logic. However, certain human-readable interpreta-
tions can be derived from them. There are two types of attributes in the de-
cision table: those representing aggregated values of metrics, and those related
to existence of anti-pattern. As the latter are just a boolean attributes which
represent appearance (or not) of a certain anti-pattern X, each can be expressed
directly as ,,anti-pattern X was (not) found previously in this source unit”. For
metric-related attributes, examples of such interpretations are given in table 3

Table 3. Interpretation of evolution patterns

Conditions Interpretation

min(m) is low and both max(m) and
mrevend are high and avg(m) is low

,,Value of metric m was low, until it grown
rapidly”

avg(m) is low and amp(m) is low ,,Value of metric m was constantly low”

avg(m) is medium and amp(m) is high ,,Value of metric m was changing in wide
scope”

Please note that table 3 contains just examples and not a complete list. Ad-
ditional rules can be easily deducted by analogy or duality. Note also that ,,low”,
,,medium” and ,,high” terms used in the table are in fact numeric parameters
of the experiment, which were given concrete values (per metric) when it was
carried out.

Clearly, the interpretations given in table 3 are just approximations of sequen-
tial patterns which occur during the evolution period. Approximations, which
might not always be true. This limitation can be overcame, when the proposed
approach is implemented in a real software development environment, since data
about values of metrics can be collected at every revision. Then it is obviously

very easy to say, with arbitrary confidence, if e.g. ,,value of the metric remains
low”. However, results of experiments show that even this very simple approxi-
mate model is sufficient to produce reasonable results.

Examples of anti-patterns and their representation This section gives a
few interesting examples of knowledge which is taken from rules inferred on the
data described in table 2. The machine learning algorithm actually outputs a
formal description of detected evolution anti-patterns in a form of decision rules
([3]). In this paragraph, these rules have been translated into natural language
for better comprehensibility.

Anti-pattern Base bean may evolve to God object. The Rule is: “Evolution
period of God object contains revisions which satisfy formal description of Base
bean”. The opposite direction (evolution from God object to Base bean) is less
likely.

In the YoYo pattern it is usually the case that classes at the top and at
the botton of inheritance tree are changed most (c1 and c6 have largest NCSS
metric amplitude), whereas intermediary classes tend to be stable in terms of
size (again, amplitude of NCSS).

The YoYo pattern frequently evolves in such a way that it starts with a
base class, which becomes large and relatively complex (large maximum and
amplitude of NCSS and Cycl metrics for c1), and it gradually has more and
more derived classes, which are usually compact and not complex (maximum
and amplitude of NCSS and Cycl for classes c1, . . . , c4 is limited).

Base beans and God classes are frequently among the most defect-prone
classes in the system (Evolution period of anti-pattern “Buggy” contains versions
which satisfy formal definition of either Base bean or God class).

4 Related work

Temporal patterns in software evolution have been studied by many researchers.
A common approach for the study focused on case studies done by human ex-
pert ([19], [2]). In some cases observation and characterisation of these patterns
was made by human based on visualisation of the evolution depicted in special
diagrams ([7] , [4]).The difference of approach presented is that it focuses on an
automatic inferring of knowledge about temporal patterns in the software devel-
opment process. A stress is put on the attempt to take “intelligent” work from
human expert to an artificial intelligence algorithm to the maximum possible
extent.

In [18] authors also address problem of mining temporal patterns in the
software development log. The difference is that the unit of time presented in
this paper is a release (version) of software. My research focuses on commit-time
patterns and therefore can be used to react almost immediately to appearance
of bad structures, especially that model can be built in an adaptive way.

5 Conclusion

The paper presents a framework, which has been experimentally proven to be
efficient in automatically discovering new knowledge about evolution patterns
in the software development process. Note that all examples given in section
3.4 are not human-driven case studies, but interpretations of rules automati-
cally produced by the computer. It means that the concept proposed herein can
help software developers and architects in non-trivial tasks related to detecting
bad quality indicators. The concept of detecting static anti-patterns is based
on existing research [17], but the research presented herein contains two novel
approaches: the adaptive algorithm for constructing a Structural representation
and a framework for automatic detection of evolution patterns. This gives op-
portunity to use the approach in large scale software systems.

6 Future work

This paper reports a preliminary results of predicting a few simple anti-patterns
in selected open-source projects, with the proposed framework. Further improve-
ments are foreseen. On one hand I plan to apply this model to detect more com-
plex anti-patterns. On the other hand, I want to develop a more sophisticated
method of constructing the decision table, so that it contains more information
about temporal patterns. Among other things, I want to enrich it with infor-
mation about duration of evolution period as well as duration and frequency of
appearances of other anti-patterns in it.

In the current approach the input knowledge, represented as a formal descrip-
tion of anti-patterns, has to be provided by a domain expert. In order to reduce
his involvement, I want to check if important features of the evolution period
can be extracted automatically by the computer. This could make the whole
framework more autonomous and enable it to adapt to different environments
(e.g. different programming styles). Similarly, interpretations of results produced
by the machine learning algorithm and their transformation to natural language
can potentially be automated.

References

1. Checkstyle tool home page. http://checkstyle.sourceforge.net/config metrics.html.

2. T. Apiwattanapong, A. Orso, and M. J. Harrold. A Differencing Algorithm for
Object-Oriented Programs. In Proceedings of the 19th IEEE international confer-
ence on Automated software engineering, pages 2–13, Washington, DC, USA, 2004.
IEEE Computer Society.

3. J. G. Bazan, M. S. Szczuka, and J. Wroblewski. A new version of rough set
exploration system. In J. J. Alpigini, J. F. Peters, J. Skowronek, and N. Zhong,
editors, Rough Sets and Current Trends in Computing, volume 2475 of Lecture
Notes in Computer Science, pages 397–404. Springer, 2002.

4. M. D’Ambros, M. Lanza, and M. Lungu. Visualizing Co-Change Information with
the Evolution Radar. IEEE Transactions on Software Engineering, 35(5):720–735,
Sept. 2009.

5. A. foundation. Issue tracker. https://issues.apache.org/jira/.
6. A. foundation. Scm. http://svn.apache.org/repos/asf/.
7. T. Girba and M. Lanza. Visualizing and Characterizing the Evolution of Class

Hierarchies, 2004.
8. M. H. Halstead. Elements of Software Science (Operating and programming systems

series). Elsevier Science Inc., New York, NY, USA, 1977.
9. JBoss. Issue tracker. https://jira.jboss.org/browse/JBAS.

10. JBoss. Scm. http://anonsvn.jboss.org/repos/jbossas/.
11. T. J. McCabe. A complexity measure. IEEE Trans. Softw. Eng., 2(4):308–320,

1976.
12. B. A. Nejmeh. Npath: a measure of execution path complexity and its applications.

Commun. ACM, 31(2):188–200, 1988.
13. Z. Pawlak and A. Skowron. Rudiments of rough sets. Information Sciences,

177(1):3–27, 2007.
14. L. Pu lawski. Software Defect Prediction Based on Source Code Metrics Time Se-

ries. In J. Peters, A. Skowron, C.-C. Chan, J. Grzymala-Busse, and W. Ziarko, ed-
itors, Transactions on Rough Sets XIII, volume 6499 of Lecture Notes in Computer
Science, chapter 7, pages 104–120. Springer Berlin / Heidelberg, Berlin, Heidelberg,
2011.

15. B. Ramamurthy and A. Melton. A synthesis of software science measures and the
cyclomatic number. IEEE Trans. Softw. Eng., 14(8):1116–1121, 1988.

16. A. Skowron, J. Stepaniuk, and R. W. Swiniarski. Approximation spaces in rough-
granular computing. Fundamenta Informaticae, 100(1-4):141–157, 2010.

17. K. Stencel and P. Wegrzynowicz. Detection of Diverse Design Pattern Variants.
In 2008 15th Asia-Pacific Software Engineering Conference, pages 25–32. IEEE,
Dec. 2008.

18. Q. Tu and M. W. Godfrey. An Integrated Approach for Studying Architectural
Evolution. In Proceedings of the 10th International Workshop on Program Com-
prehension, IWPC ’02, Washington, DC, USA, 2002. IEEE Computer Society.

19. Z. Xing and E. Stroulia. Data-mining in Support of Detecting Class Co-evolution.
In F. Maurer and G. Ruhe, editors, SEKE, pages 123–128, 2004.

