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Abstract. Parsing Expression Grammar (PEG) is a way to define a
recursive-descent parser with limited backtracking. Its properties are use-
ful in many applications. In spite of its apparent similarity to Extended
Backus-Naur Form (EBNF), PEG often defines quite a different lan-
guage, sometimes difficult to describe exactly. However, a recent result
by Medeiros shows that an EBNF grammar having the LL(1) property
can be transcribed verbatim into a PEG that not only defines the same
language, but also parses the input in exactly the same way. We show
that such transcription is possible for a wider class of EBNF grammars,
which is interesting because the backtracking of PEG is often a conve-
nient way to circumvent just the LL(1) restriction.

1 Introduction

Parsing Expression Grammar (PEG), as introduced by Ford [1, 2], is a way to
define a recursive-descent parser with limited backtracking. The parser does not
require a separate ”lexer” to preprocess the input, and the limited backtracking
lifts the LL(1) restriction usually imposed by top-down parsers. These properties
are useful in many applications. However, PEG is not well understood as a
language specification tool. In [3], the author tried to find the language defined
by a given parsing expression. Unfortunately, it was only possible to obtain some
approximations that became more and more difficult as the complexity of the
expression increased.

Instead of trying to find out what a given PEG does, one can try to construct
a PEG parser recognizing a given language. This approach has been explored
by Medeiros in [4]. He shows the construction of PEGs for languages defined
by regular expressions, as well as right-linear, LL(1) and LL(k) context-free
grammars. As shown there, any context-free grammar with LL(1) property can
be directly interpreted as PEG, with the unordered choice ”|” replaced by the
ordered choice ”/”. Unfortunately, this is not of much use when we employ PEG
just in order to circumvent the LL(1) restriction. But it turns out that the result
from [4] can be extended to a wider class of grammars. As an example, take the
following EBNF grammar:

Literal → DecimalLiteral | BinaryLiteral
DecimalLiteral → [0-9]∗ "." [0-9]∗

BinaryLiteral → [01]+ "B"

This grammar is not LL(1), and not even LL(k) for any k: both DecimalLiteral
and BinaryLiteral may start with any number of zeros and ones. A classical
top-down parser constructed from this grammar cannot choose between these



alternatives of Literal by looking at any predefined number of characters ahead.
But, treated as a PEG parser, this grammar recognizes exactly the language
defined by its EBNF interpretation.

To see how it happens, suppose the PEG parser is presented with the input
”10B”. It performs a series of calls Literal → DecimalLiteral → [0-9]∗, consum-
ing ”10”, after which it fails to recognize ".", backtracks, and proceeds to try
BinaryLiteral. Parsing procedure for the nonterminal DecimalLiteral has here
the same overall effect as if it was a terminal: it explores the input ahead, and
either consumes the recognized portion, or backtracks and in effect does nothing.
In fact, the grammar above would be LL(1) if DecimalLiteral and BinaryLiteral
were terminals, corresponding to tokens produced by a lexer.

In the following, we try to answer this question: given an EBNF grammar,
when can I transcribe it directly into PEG and obtain a correct parser?

2 Some Notation

We consider a finite alphabet Σ of letters. A finite string of letters is a word.
The string of 0 letters is called the empty word and is denoted by ε. The set of
all words is Σ∗. A subset of Σ∗ is a language.

As usual, we write XY to mean the concatenation of languages X and Y ,
that is, the set of all words xy where x ∈ X and y ∈ Y .

For x, y ∈ Σ∗, x is a prefix of y if y = xu for some u ∈ Σ∗. We write x ≤ y
to mean that x is a prefix of y. For X ⊆ Σ∗, the set of all prefixes of x ∈ X is
denoted by Pref(X).

A relation R on E is a subset of E×E. As usual, we write R(e) to mean the
set of all e′ such that (e, e′) ∈ R, and R(E) to mean the union of R(e) for all
e ∈ E ⊆ E. The transitive and reflexive closure of R is denoted by R∗, and the
product of relations R and S by R× S.

3 The Grammar

We consider a grammar G over the alphabet Σ that will be interpreted as either
PEG or EBNF. The grammar is a set of rules of the form A 7→ e, where e is
a syntax expression and A is the name given to it. The expression e has one of
these forms:

– e1 e2 (Sequence),
– e1|e2 (Choice),

where each of e1, e2 is an expression name, a letter from Σ, or ε. The set of all
names appearing in the rules is denoted by N . For A ∈ N , e(A) is the expression
e in A 7→ e. We define E = N ∪Σ ∪ ε.

When G is interpreted as PEG, the rule A 7→ e is a definition A ← e of
parsing expression e, and e1|e2 is the ordered choice. When G is interpreted as
EBNF, the rule is a production A→ e, and e1|e2 is the unordered choice.
For obvious reasons, we assume G to be free from left recursion.

This grammar is reduced to bare bones in order to simplify the reasoning.
Any full EBNF grammar or PEG without predicates can be reduced to such
form by steps like these:



– Replacing [a1-an] by a1|a2| . . . |an;
– Rewriting e1e2e3 and e1|e2|e3 as e1(e2e3) respectively e1|(e2|e3) and intro-

ducing new names for expressions in parentheses;
– Replacing e+ by ee∗;
– Replacing e∗ by A 7→ eA | ε.

3.1 The PEG Interpretation

When G is interpreted as PEG, the elements of E are parsing procedures that
can call each other recursively. In general, parsing procedure is applied to a
string from Σ∗ at a position indicated by some ”cursor”. It tries to recognize
a portion of the string ahead of the cursor. If it succeeds, it ”consumes” the
recognized portion by advancing the cursor and returns ”success”; otherwise, it
returns ”failure” and does not consume anything (does not advance the cursor).
The action of different procedures is as follows:

– ε: Indicate success without consuming any input.
– a ∈ Σ: If the text ahead starts with a, consume it and return success.

Otherwise return failure.
– A 7→ e1 e2: Call e1. If it succeeded, call e2 and return success if e2 succeeded.

If e1 or e2 failed, reset cursor as it was before the invocation of e1 and return
failure.

– A 7→ e1|e2: Call e1. Return success if it succeeded. Otherwise call expression
e2 and return success if e2 succeeded or failure if it failed.

Backtracking occurs in the Sequence expression. If e1 succeeds and consumes
some input, and then e2 fails, the cursor is moved back to where it was before
trying e1. If this Sequence was called as the first alternative in a Choice, Choice
has an opportunity to try another alternative on the same input. However, the
backtracking is limited: once e1 in the Choice e1|e2 succeeded, e2 will never be
tried on the same input, even if the parse fails later on.

Following [4], we define formally the action of a parsing procedure with the
help of relation PEG ⊆ E×Σ∗ × {Σ∗ ∪ fail}. For e ∈ E and x, y ∈ Σ∗:

– [e] xy PEG y means: ”e applied to input xy consumes x and returns success”,
– [e] x PEG fail means: ”e applied to input x returns failure”.

The relation itself is defined using the method of ”natural semantics”: [e] x PEG X
holds if and only if it can be proved using the inference rules in Figure 1. The
rules come from [4], but were modified by integrating the step e(A) ⇒ A into
the last four rules.

The proof tree of [e] x PEG X, when followed from bottom up, mimics pro-
cedure calls in the process of parsing the string x. Rule seq.1p with Z = fail
corresponds to backtracking in Sequence, and rule choice.2p to calling e2 after
e1 failed.

According to Lemma 2.3.1 in [4], a proof of [e] x PEG X exists if and only
if there exists the corresponding derivation ⇒G in the formal definition of PEG
given by Ford in [2]. According to [2], such derivation exists if the grammar
is ”well-formed”. Grammar G is well-formed because it contains neither left
recursion nor iteration. This gives the following fact:

Lemma 1. For every e ∈ E and w ∈ Σ∗, there exists a proof of either
[e] w PEG fail or [e] w PEG y where w = xy.



(empty.1p)
[ε] x PEG x

(letter.1p)
[a] ax PEG x

(letter.2p)
b ̸= a

[b] ax PEG fail
(letter.3p)

[a] ε PEG fail

(seq.1p)
[e1] xyz

PEG yz [e2] yz
PEG Z e(A) = e1e2

[A] xyz PEG Z

(seq.2p)
[e1] x

PEG fail e(A) = e1e2

[A] x PEG fail

(choice.1p)
[e1] xy

PEG y e(A) = e1|e2
[A] xy PEG y

(choice.2p)
[e1] x

PEG fail [e2] xy
PEG Y e(A) = e1|e2

[A] xy PEG Y

where Y denotes y or fail and Z denotes z or fail.

Fig. 1. PEG semantics

3.2 The CFG Interpretation

The grammar G with ” 7→” interpreted as ”→” corresponds quite exactly to the
traditional Context-Free Grammar (CFG), so we shall speak of its interpretation
as CFG. Traditionally, CFG is a mechanism for generating words:

– ε generates empty word.
– a ∈ Σ generates itself.
– A 7→ e1e2 generates any word generated by e1 followed by any word

generated by e2.
– A 7→ e1|e2 generates any word generated by e1 or e2.

The language L(e) of e ∈ E is the set of all words that can be generated by e.

(empty.1c)
[ε] x CFG x

(letter.1c)
[a] ax CFG x

(seq.1c)
[e1] xyz

CFG yz [e2] yz
CFG z e(A) = e1e2

[A] xyz CFG z

(choice.1c)
[e1] xy

CFG y e(A) = e1|e2
[A] xy CFG y

(choice.2c)
[e2] xy

CFG y e(A) = e1|e2
[A] xy CFG y

Fig. 2. CFG semantics

Following [4], we define formally the meaning of a CFG using relation CFG 
similar to PEG . The relation is defined in the way similar to PEG : [e] x CFG y holds



if and only if it can be proved using the inference rules in Figure 2. Again, these
rules come from [4] and were modified by integrating the step e(A) ⇒ A into
the last three.

The proof tree of [e] x CFG y, when followed from bottom up, mimics proce-
dure calls in an imagined recursive-descent parser processing the string x. The
procedures correspond to elements of E, and the procedure for Choice always
chooses the correct alternative, either by full backtracking or by an oracle.

It can be verified that L(e) = {x ∈ Σ∗ : [e] xy CFG y for some y ∈ Σ∗}. It
can also be verified that if x ∈ L(e), [e] xy CFG y holds for every y ∈ Σ∗.

4 When Are the Two Interpretations Equivalent?

The following has been proved as Lemma 4.3.1 in [4]:

Proposition 1. For any e ∈ E and x, y ∈ Σ∗, [e] xy PEG y implies [e] xy CFG y.

Proof. We spell out the proof sketched in [4]. It is by induction on the height of
the proof tree.

(Induction base) Suppose the proof of [e] xy PEG y consists of one step. Then it
has to be the proof of [ε] x PEG x or [a] ax PEG x using empty.1p or letter.1p,
respectively. But then, [ε] x CFG x respectively [a] ax CFG x by empty.1c or
letter.1c.

(Induction step) Assume that for every proof tree for [e] xy PEG y of height n ≥ 1
exists a proof of [e] xy CFG y. Consider a proof tree for [e] xy PEG y of height
n+ 1. Its last step must be one of these:

– [A] xyz PEG x derived from [e1] xyz
PEG yz, [e2] yz

PEG z, and e(A) = e1e2
using seq.1p. By induction hypothesis, [e1] xyz

CFG yz and [e2] yz
CFG z, so

[A] xy CFG x follows from seq.1c.
– [A] xy PEG x derived from [e1] xy

PEG y and e(A) = e1e2 using choice.1p.
By induction hypothesis, [e1] xy

CFG y, so [A] xy CFG x follows from choice.1c.
– [A] xy PEG x derived from [e1] xy

PEG fail, [e2] xy
PEG y, and e(A) = e1e2

using choice.2p. By induction hypothesis, [e2] xy
CFG y, so [A] xy CFG x

follows from choice.2c. ⊓⊔

Known examples show that the reverse of Proposition 1 is, in general, not
true. We intend to formulate some conditions under which the reverse does hold.
The problem is complicated by another known fact, namely that [e] xy PEG y
does not imply [e] xy PEG y′ for every y′ ∈ Σ∗: the action of e depends on the
string ahead. We have to consider the action of e in relation to the entire input
string.

Let $, the end-of-text marker, be a letter that does not appear in any rules.
Define some S ∈ N as the starting rule of the grammar. As L(e) does not depend
on the input ahead, we have [S] w$ CFG $ if and only if w ∈ L(S). We note that
every partial result in the proof tree of [S] w$ CFG $ has the form [e] xy$ CFG y$
for some e ∈ E and x, y ∈ Σ∗.

For A ∈ N , define Tail(A) to be any string that appears ahead of the ”CFG
parser” just after it completed the call to A while processing some w ∈ L(S).
Formally, y$ ∈ Tail(A) if there exists a proof tree for [S] w$ CFG $ that contains
[A] xy$ CFG y$ as a partial result.



Proposition 2. If every Choice A 7→ e1|e2 ∈ G satisfies

L(e1) ∩ Pref(L(e2)Tail(A)) = ∅, (1)

there exists a proof of [S] w$ PEG $ for each w ∈ L(S). Moreover, for every
partial result [e] xy$ CFG y$ in the proof tree of [S] w$ CFG $ there exists a proof
of [e] xy$ PEG y$.

Proof. Take any w ∈ L(S). It means there exists proof tree for [S] w$ CFG $. We
are going to show that for each partial result [e] xy$ CFG y$ in that tree there
exists a proof of [e] xy$ PEG $. We show it using induction on the height of the
proof tree.

(Induction base) Suppose the proof of the partial result [e] xy$ CFG y$ consists
of one step. Then it has to be the proof of [ε] x$ CFG x$ or [a] ax$ CFG x$
using empty.1c or letter.1c, respectively. But then, [ε] x$ PEG x$ respectively
[a] ax$ PEG x$ by empty.1p or letter.1p.

(Induction step) Assume that for every partial result [e] xy$ CFG y$ that has
proof tree of height n ≥ 1 there exists a proof of [e] xy$ PEG y$. Consider a
partial result [e] xy$ CFG y$ with proof tree of height n + 1. Its last step must
be one of these:

– [A] xyz$ CFG z$ derived from [e1] xyz$ CFG yz$, [e2] yz$ CFG z$, and
e(A) = e1e2 using seq.1c. By induction hypothesis, [e1] xyz$

PEG yz$ and
[e2] yz$

PEG z$, so [A] xyz$ PEG z$ follows from seq.1p.
– [A] xy$ CFG y$ derived from [e1] xy$ CFG y$ and e(A) = e1|e2 using

choice.1c. By induction hypothesis, [e1] xy$ PEG y$, so [A] xy$ PEG y$
follows from choice.1p.

– [A] xy$ CFG y$, derived from [e2] xy$ CFG y$ and e(A) = e1|e2 using
choice.2c. By induction hypothesis, [e2] xy$

PEG y$. But, to use choice.2p
we also need to verify that [e1] xy$

PEG fail.
Assume that (1) holds for A and suppose that there is no proof of
[e1] xy$ PEG fail. According to Lemma 1, there exists a proof of
[e1] uv$ PEG v$ where uv$ = xy$. According to Proposition 1, there ex-
ists a proof of [e1] uv$

CFG v$, so u ∈ L(e1). From [e2] xy$
CFG y$ follows

x ∈ L(e2). From [A] xy$ CFG y$ follows y$ ∈ Tail(A). From uv$ = xy$
follows u ≤ xy, so u ∈ Pref(L(e2)Tail(A)), which contradicts (1). We must
thus conclude that there exists a proof of [e1] xy$

PEG fail, so there exists a
proof of [A] xy$ PEG y$ using choice.2p.

The proof of [S] w$ PEG $ exists as a special case of the above. ⊓⊔

The consequence of Propositions 1 and 2 is:

Proposition 3. The two interpretations of G are equivalent if every Choice
A 7→ e1|e2 ∈ G satisfies (1). They are equivalent not only by accepting the same
language, but also by parsing the input in the same way.

Note that the condition is sufficient, but not necessary. Unfortunately, (1) is
not easy to check. The languages appearing in it are context-free languages. The
problems of inclusion and emptiness of intersection are in general undecidable



for these languages, so one has to consider special cases, or use a conservative ap-
proximation. In fact, condition (1) is identical to the ”general semi disjointness”
considered by Schmitz in [6]; he checks it using an own grammar approximation
method.

As it will be seen, the LL(1) property implies (1), which accounts for the
result obtained in [4]. We are going to look for a weaker property that still
implies (1). One can think of the LL(1) property as approximating words by
their one-letter prefixes. We generalize this to approximating words by prefixes
of arbitrary lengths.

5 Prefix Covers

We say that Y ⊆ Σ∗ is a prefix cover of X ⊆ Σ∗, and write Y ⊑ X if each
nonempty word in X has a nonempty prefix in Y .

Lemma 2. For any X,Y, Z ⊆ Σ∗:

(a) If X ⊑ Y and Y ⊑ Z then X ⊑ Z.
(b) If PX ⊑ X and PY ⊑ Y then PX ∪ PY ⊑ X ∪ Y .
(c) If ε /∈ X and PX ⊑ X then PX ⊑ XY .
(d) If ε ∈ X, PX ⊑ X, and PY ⊑ Y then PX ∪ PY ⊑ XY .

Proof. (a) Follows from the transitivity of ≤.
(b) If x ̸= ε is in X, it has a nonempty prefix in PX . If it is in Y , it has a
nonempty prefix in PY .
(c) If ε /∈ X, each x ∈ XY has a nonempty prefix in X This, in turn, has a
nonempty prefix in PX .
(d) If ε ∈ X, we have XY = (X − ε)Y ∪ Y . From (c) we have PX ⊑ (X − ε)Y .
The stated result follows from (b). ⊓⊔

6 Prefix Disjointness

We say that X ⊆ Σ∗ and Y ⊆ Σ∗ are prefix-disjoint, and write X≍ Y to mean
that for all nonempty x ∈ X and y ∈ Y neither x ≤ y nor y ≤ x.

One can easily see that prefix-disjoint languages are disjoint, but the reverse
is in general not true.

Lemma 3. Let X ⊆ Σ+ and Y ⊆ Σ∗. For any PX ⊑ X and PY ⊑ Y , PX≍ PY

implies X ∩ Pref(Y ) = ∅.

Proof. Let X,Y,PX ,PY be as stated. Suppose that X ∩ Pref(Y ) ̸= ∅, so there
exists x such that x ∈ X, x ∈ Pref(Y ). Since x ̸= ε, we have x = uv for some
nonempty u ∈ PX and v ∈ Σ∗. As x ∈ Pref(Y ), we have xt ∈ Y for some
t ∈ Σ∗. As xt ̸= ε, we have xt = pq for some nonempty p ∈ PY , q ∈ Σ∗. This
gives uvt = pq; this means either u ≤ p or p ≤ u, which contradicts PX≍ PY .

⊓⊔

We can now apply this result to approximate (1).



Proposition 4. The two interpretations of G are equivalent if for every Choice
A 7→ e1|e2 ∈ G:

– ε /∈ L(e1)
– There exist P1 ⊑ L(e1) and P2 ⊑ L(e2)Tail(A) such that P1≍ P2.

Proof. Consider any Choice A 7→ e1|e2 ∈ G. Assume ε /∈ L(e1) and P1, P2 as
stated. By Lemma 3, we have L(e1) ∩ Pref(L(e2)Tail(A)) = ∅, and the stated
result follows from Proposition 3. ⊓⊔

Proposition 5. The two interpretations of G are equivalent if for every Choice
A 7→ e1|e2 ∈ G:

– ε /∈ L(e1).
– If ε /∈ L(e2), there exist P1 ⊑ L(e1) and P2 ⊑ L(e2) such that P1≍ P2.
– If ε ∈ L(e2), there exist P1 ⊑ L(e1), P2 ⊑ L(e2), and PT ⊑ Tail(A) such

that P1≍ (P2 ∪ PT ).

Proof. Consider any Choice A 7→ e1 | e2 ∈ G. Assume ε /∈ L(e1), P1 ⊑ L(e1)
and P2 ⊑ L(e2). Suppose ε /∈ L(e2). By Lemma 2(c), P2 ⊑ L(e2)Tail(A), so
P1≍ P2 satisfies Proposition 4. Suppose now that ε ∈ L(e2) and PT ⊑ Tail(A).
By Lemma 2(d), P2∪PT ⊑ L(e2)Tail(A), so P1≍ P2∪PT satisfies Proposition 4.

⊓⊔

7 Extending the Classical FIRST

One can easily see that the classical First(e) and Follow(A) are prefix covers
of e and Tail(A) that consist of one-letter words. For such sets, X ≍ Y is the
same asX∩Y = ∅, so First(e1) ∩First(e2) = ∅ and First(e1) ∩ (First(e2)∪
Follow(A)) = ∅ are special cases of the last two conditions in Proposition 5.
They are exactly the LL(1) conditions.

We are now going to look at other sets that may be used instead of First(e)
and Follow(A). For A ∈ N define:

– First(A) = {e1, e2} if e(A) = e1| e2,
– First(A) = {e1} if e(A) = e1 e2 and ε /∈ L(e1),
– First(A) = {e1, e2} if e(A) = e1 e2 and ε ∈ L(e1).

For E ⊆ E, let FIRST (E) be the family of subsets of E defined as follows:

– E ∈ FIRST (E).
– If F belongs to FIRST (E), the result of replacing its member A ∈ N by

all elements of First(A) also belongs to FIRST (E).
– nothing else belongs to FIRST (E) unless its being so follows from the

above.

These definitions are illustrated in Figure 3. An arrow from e1 to e2 means
e2 ∈ First(e1). One can easily see that FIRST (E) contains the classical
First(E).



A

C D

a b X

c

B

E

d Y

c

A 7→ C |D

B 7→ EA

C 7→ a | b

D 7→ b |X

E 7→ d |Y

X 7→ cD

Y 7→ cE

FIRST (A) = {{A}, {C,D}, {a, b,D}, {C, b,X}, {a, b,X}, {a, b, c}}

FIRST (B) = {{B}, {E}, {d, Y }, {d, c}}

Fig. 3. Relation First and family FIRST

For E ⊆ E, let L(E) denote the union
∪

e∈E L(e).

Lemma 4. For each A ∈ N holds L(First(A)) ⊑ L(A).

Proof. In case e(A) = e1| e2 we have L(A) = L(e1) ∪ L(e2) = L(e1| e2).
Each language is its own prefix cover, so L{e1, e2} ⊑ L(e1| e2).
In case e(A) = e1 e2 we have L(A) = L(e1)L(e2). Again, L(e1) ⊑ L(e1) and
L(e2) ⊑ L(e2).
If ε /∈ e1, we have, by Lemma 2(c), L{e1} ⊑ L(e1)L(e2).
If ε ∈ e1, we have, by Lemma 2(d), L{e1, e2} = L(e1)∪L(e2) ⊑ L(e1)L(e2). ⊓⊔

Lemma 5. For each F ∈ FIRST (E) holds L(F ) ⊑ L(E).

Proof. We prove the Proposition by induction on the number of replacements.

(Induction base) As each language is its own prefix cover, L(E) ⊑ L(E).

(Induction step) Assume L{e1, e2, . . . , en} ⊑ L(E). As sets are not ordered, we
can always consider replacing e1. Let First(e1) = {f1, f2}. (The proof will be
similar if First(e1) has only one element.) According to Lemma 4, L{f1, f2} ⊑
L(e1). We also have L{e2, . . . , en} ⊑ L{e2, . . . , en}. Using Lemma 2(b), we ob-
tain:

L{f1, f2, e2, . . . , en} = L{f1, f2} ∪ L{e2, . . . , en}
⊑ L(e1) ∪ L{e2, . . . , en} = L{e1, e2, . . . , en}.

From Lemma 2(a) follows L{f1, f2, e2, . . . , en} ⊑ L(E). ⊓⊔

We can apply this result directly to ε-free grammars:

Proposition 6. If none of the rules contains ε, the two interpretations of G are
equivalent if for every Choice A 7→ e1|e2 ∈ G there exist First1 ∈ FIRST (e1)
and First2 ∈ FIRST (e2) such that L(First1)≍ L(First2).



Proof. Suppose the required First1 and First2 exist. If G is ε-free, we have
ε /∈ L(e1) and ε /∈ L(e2). From Lemma 5 we have L(First1) ⊑ L(e1) and
L(First2) ⊑ L(e2). The stated result follows from Proposition 5. ⊓⊔

8 Extending the Classical FOLLOW

To handle the case when G is not ε-free, we need to find suitable prefix covers of
Tail(A). For this purpose, we borrow from [7] the definition of Follow ⊆ E× E.
For e ∈ E, define Last(e) to be the set of all A ∈ N such that:

– e(A) = e|e1 for some e1 ∈ E, or
– e(A) = e1|e for some e1 ∈ E, or
– e(A) = e1 e for some e1 ∈ E, or
– e(A) = e e1 for some e1 ∈ E where ε ∈ L(e1).

For e ∈ E, define Next(e) = {e1 ∈ E : exists A 7→ ee1 ∈ G}.
Finally, define Follow = Last∗ × Next.

Lemma 6. For each A ∈ N , L(Follow(A)) ⊑ Tail(A).

Proof. Consider some A ∈ N and y$ ∈ Tail(A). By definition, there is a proof
of [S] w$ CFG $ that contains [A] xy$ CFG y$ as one of the partial results. This
partial result must be used in a subsequent derivation. This derivation can only
result in one of the following:

(a) [A1] xy$
CFG y$ where e(A1) = A | e from [e] xy$ CFG y$ using choice.1c.

(b) [A1] xy$
CFG y$ where e(A1) = e |A from [e] xy$ CFG y$ using choice.2c.

(c) [A1] zxy$
CFG y$ where e(A1) = eA from [e] zxy$ CFG xy$ using seq.1c.

(d) [A1] xy$
CFG y$ where e(A1) = Ae from [e] εy$ CFG y$ using seq.1c.

(e) [A1] xy′y′′$ CFG y′′$ where e(A1) = AB, y′y′′ = y and y′ ̸= ε from
[B] y′y′′$ CFG y′′$ using seq.1c.

In each of the cases (a)-(d), the result is similar to the original one, and the
alternative derivations (a)-(e) apply again. We may have a chain of derivations
(a)-(d), but it must end with (e) as y must eventually be reduced. We have thus
in general a sequence of steps of this form:

[A0] xy$
CFG y$ . . . as in (a)-(d)

[A1] x1y$
CFG y$ . . . as in (a)-(d)

[A2] x2y$
CFG y$ . . . as in (a)-(d)

. . .

[An−1] xn−1y$
CFG y$ . . . as in (a)-(d)

[An] xny$
CFG y$ [B] y′y′′$ CFG y′′$ e(An+1) = AnB

[An+1] xny
′y′′$ CFG y′′$

where A0 = A and n ≥ 0. We have A1 ∈ Last(A0), A2 ∈ Last(A1), etc.,
An ∈ Last(An−1), and B ∈ Next(An), which means B ∈ Follow(A). From
[B] y′y′′$ CFG y′′$ we have y′ ∈ L(B); since y = y′y′′ and y′ ̸= ε, y$ has a
nonempty prefix in L(B) ⊆ L(Follow(A)). ⊓⊔



Proposition 7. The two interpretations of G are equivalent if for every Choice
A 7→ e1|e2 ∈ G:

– ε /∈ L(e1).
– If ε /∈ L(e2), there exist First1 ∈ FIRST (e1) and First2 ∈ FIRST (e2)

such that L(First1)≍ L(First2).
– If ε ∈ L(e2), there exist First1 ∈ FIRST (e1), First2 ∈ FIRST (e2), and

Follow ∈ FIRST (Follow(A))
such that L(First1)≍ L(First2 ∪ Follow).

Proof. Suppose the required First1, First2, and Follow exist. From Lemma 5
we have L(First1) ⊑ L(e1) and L(First2) ⊑ L(e2). From Lemmas 5 and 6 we
have L(Follow) ⊑ Tail(A). The stated result follows from Proposition 5. ⊓⊔

9 Final Remarks

We have shown that a direct transcription of an EBNF grammar to equivalent
PEG is possible for grammars outside the LL(1) class. These are the grammars
where the choice of the way to proceed is made by examining the input within
the reach of one parsing procedure instead of examining a single letter. One can
call them ”LL(1P)” grammars, the ”1P” meaning ”one procedure”. However,
checking the conditions stated by Proposition 7 is not as simple as verifying
the LL(1) property. The families FIRST can be constructed in a mechanical
way, and are presumably not very large. But, checking the disjointness of their
members may be difficult. It becomes more difficult as one moves up the graph
in Figure 3; at the top of that graph we come close to the condition (1).

If the sets First1, First2, and Follow satisfying Proposition 7 exist, the
information can be used for the improvement suggested by Mizushima et al.
in [5]. The set First1 lists the alternative parsing procedures that will be even-
tually invoked to start the processing of e1. If a procedure P ∈ First1 succeeds,
but the further processing of e1 fails, the conditions of Proposition 7 mean that
e2 is doomed to fail, unless it succeeds on empty string. But in this case, the
subsequent processing of Tail(A) will fail. One can thus insert a ”cut” operator
after P to save memoization and an unnecessary attempt at e2.

The class of EBNF grammars that can be directly transcribed to PEG in-
cludes cases where the choice of the way to proceed is made by looking at the
input within the reach of more than one parsing procedure. The following is an
example of such grammar:

InputLine → Assignment | Expression
Assignment → Name "=" Expression
Expression → Primary ([+-] Primary)∗

Primary → Name | Number
Name → [a-z]+

Number → [0-9]+

Here both alternatives of InputLine may begin with Name. It is the next proce-
dure after Name, namely one for "=", that decides whether to proceed or back-
track. This class of grammars, which may be called ”LL(2P)”, requires further
analysis. Propositions 3, 4, and 5 still apply there.



Last but not least: it appears that natural semantics, as used by Medeiros
to define the meaning of a grammar, is a very convenient tool to investigate the
grammar’s properties.
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