
Universal Query Language

Piotr Wi±niewski and Krzysztof Stencel

Faculty of Mathematics and Computer Science
Nicolaus Copernicus University
Chopina 12/18, 87-100 Toru«

{pikonrad,stencel}@mat.umk.pl

Abstract. In the prequel paper we introduced the Uni�ed State Model
(USM), i.e. a single model that allowed conveying objects of popular
programming languages and databases. That model exploited and em-
phasized common properties of all these objects. We showed mappings
between those popular data models and USM. Our natural next research
goal is the Uni�ed Query Language (UQL). UQL is intended to be a
minimalistic and elegant query language that allows expressing queries
of major query languages. We plan to build a concise set of operators
and show its coverage for mentioned languages' constructs. In this paper
we present our initial e�orts towards UQL. We present a set of language
operators. We also provide a number of redolent examples of queries
expressed in UQL.

1 Introduction

Our research originates from the so called object-relational impedance mismatch
[1�3]. The relational model proposed in [4] eventually became dominant in data
storage and nothing seems be a sign of a change in this respect. On the other
hand already for a couple of decades applications are mainly written using object-
oriented methods [5]. It soon turned out that object methods encounter nontriv-
ial di�culties with the persistent relational data storage. Problems of impedance
mismatch manifest themselves as (1) the mismatch of the data models, (2) the
mismatch of the binding time, (3) the mismatch of the lifecycle. The impedance
mismatch is not only related to the abovementioned paradigms. It also occurs
when trying to interconnect object-oriented programming languages and other
database systems like XML stores [6].

In our prequel paper [7] we focused on the mismatch of data models. We
analysed data models of major programming languages and database systems.
Using results of this analyses we proposed the Uni�ed State Model (USM) that
allows smooth mapping of the analysed data models. The conclusion of [7] is that
although there are minor discrepancies, data models of modern object-oriented
programming languages (e.g. Java and Python) and relational databases are
noteworthy similar. Thus the object-relational mapping systems for such lan-
guages are feasible. The software market contains a number of proofs of this
statement (e.g. Hibernate [8] for Java, LINQ [9] for .NET language family,
django-models [10] for Python).

Having the data model of major programming and storage environments
(USM), we were naturally tempted to pose a new research question. Is it pos-
sible to de�ne a Universal Query Language (UQL) on the USM? UQL should
subsume query languages for models that were subsumed by USM. This will sup-
ply evidence that also mapping queries between major programming and storage
systems is a not miracle but a natural consequence of numerous similarities.

In this paper we show initial results of our research, i.e. a preliminary list
of UQL operators and a number of representative examples of queries and their
expression in UQL. Of course, the naturalness of the example mapping prove
nothing. However, it suggests that building UQL is feasible. The next genuine
step will be to establish a full set of UQL operators and to develop proofs that
UQL subsumes query part of SQL, OQL [11], SQBL [12] and XQuery [13].

In fact, the success of Hibernate, observed on the market place, and object-
relational mapping systems show that after C++ ceased to be the programming
language of the �rst choice in favour of e.g. Java, Python and the C#, the
development of object-relation mapping became signi�cantly easier.

The paper is organized as follows. In Section 2 we sketch basic de�nitions
of the Universal State Model (USM). Section 3 enumerates operators of the
preliminary version of the Universal Query Language (UQL). In Section 4 we
show a number of example queries and disccus their smooth mapping to UQL.
Section 5 concludes.

2 Universal State Model

In this Section we remind some de�nition of the Uni�ed State Model (USM) in-
troduced in [7]. The Universal Query Language proposed in this paper processes
objects of USM.

We use the following symbols. V is a set of atomic values. We assume that
it contains all simple values. N ⊂ V is a set of external names of objects with a
chosen value η ∈ N to tag nameless objects. External names are used by design-
ers and programmers to access objects. Nameless objects can only be accessed
through object references. I ⊂ V is a set of identities with a chosen value nil ∈ I
to represent empty identi�er/address. We assume that N ∩ I = ∅.

For any set S we denote by S∗ =
⊕

t∈N S, i.e. the set of all �nite sequence
of elements of S.

De�nition. A state of an object of the level 0 is a triple (i, n, v) ∈ I ×N × V .
By O0 we mean the set of all states of the level 0. This set is also denoted by S0.

De�nition. Let t ∈ N be a positive natural number and assume that we have
de�ned states of objects of the level k for all k < t and St−1 denotes the set of
all states of objects of the levels lesser than t. A state of an object of the level t
is a triple (i, n, L) 6∈ St−1 where i ∈ I, n ∈ N and L ∈ S∗t−1 is a �nite sequence
of elements of St−1 and L /∈ S∗t−2. We assume that S−1 = ∅. The set of all states
of objects of the level t will be denoted by Ot. By St = Ot ∪ St−1 we denote the

set of all states of objects of the levels not greater than t. Members of the list L
will be called states of subobjects of the object state o.

Each object has a name, an identi�er and a value. This value can be simple
(like in objects of the level 0) or be a list of objects. According to the above
de�nition an object of level t > 0, i.e. a member of Ot, has at least one subobject
of level t−1. Therefore, the level of an object is the maximum subobject nesting
depth in this object.

De�nition. S∞ is the set of all states of objects of all natural levels.

In [7] we have formally de�ned the notion of proper states. In a proper state no
object identity is repeated and all object references are valid, i.e. there are no
dangling pointer objects.

Since in Section 4 we use SQL queries to illustrate concepts of UQL, below we
also remind some information on the mapping between USM and the relational
model presented in [7]. Our analysis of the relational data model is based on the
multi-set extended relational algebra [14].

Let R be a relational schema, also called the type of a relation denoted by
dom(R) such that dom(R) = dom(A1) × ... × dom(An), where dom(A) ⊂ V is
some domain.

We de�ne a tuple of a relation of type dom(R) as a state of an object o =
(i, R, o1, ..., on) such that for k = 1, ..., n ok = (ik, Ak, vk) is an atomic object
such that vk ∈ dom(Ak). In particular, a tuple o ∈ O1 is a state of the �rst level.
Let us recall a de�nition from [7]:

De�nition. The tuples o = (i, R, o1, ..., on), o
′ = (i′, R, o′1, ..., o

′
n) shall be called

relationally equal if for all k = 1, ..., n it holds that vk = v′k.

Let us consider the table emp with �ve columns empno, firstname, lastname,
salary, and deptno. The two object states o and o′ represent the tuple (1, "Jan",
"Kowalski", 2) of this table. Although they are di�erent, they are relationally
equal:

o = (i, emp, {
(i0, empno, 1)
(i1, firstname, ”Jan”)
(i2, lastname, ”Kowalski”)
(i3, deptno, 2)
(i4, salary, 3000)
}) ∈ S1

o′ = (i′, person, {
(i′0, empno, 1)
(i′1, firstname, ”Jan”)
(i′2, lastname, ”Kowalski”)
(i′3, deptno, 2)
(i′4, salary, 3000)
}) ∈ S1

Next we deal with relations that are de�ned by Grefen [14] as multisets of tuples.
The state of a relation R is any object (i, R, T), where T is a sequence of tuples
of the type R.

De�nition. Let the states o = (i, R, T) ∈ O2 and o
′ = (i′, R, T ′) ∈ O2 be of the

second level, where T and T ′ are sequences of states of the �rst level. Assume
also that o ≈R o′. States o and o′ are called relationally equal i� |T | = |T ′| and
there is a permutation p of the sequence T , such that for each t = 1, ..., |T | the
states of the tuples p(T)t and T

′
t are relationally equal.

Note that states of the second level from the above de�nition model multisets
of tuples and the relational equality of states de�ned above is an equivalence
relation.

3 UQL Operators

In this Section we introduce operators of the Universal Query Language (UQL).
Let SS be the set of all functions Q : S→ S. Queries of UQL are functions from
the set SS. These functions are compositions of UQL operators de�ned below.

3.1 Renaming

The operator as gives an object a new name:

as : N → SS

as(n)((i, n′, v)) = (i, n, v)

3.2 Flattening

For a complex object the operator flat replaces its subjects with the contents
of these subobjects. If the argument complex object is simple or has any simple
subjects, flat returns an empty object. Assume o = (i, n, (o1, o2, . . . , ok)). If for
all t = 1 . . . k ot 6∈ O0 and ot = (it, nt, (ot,1, . . . , ot,jt), then

flat(o) = (i, n, (o1,1, o1,2, . . . , o1,j1 , o2,1, . . . , ok,jk))

Otherwise:
flat(o) = (i, n, nil)

3.3 Mapping

The purpose of the operatormap is the application of a function to all subobjects
of the given object. The functor map : SS → SS is de�ned as follows. Let
f : S→ S be the function to be applied. Then:

map(f)(o) =

{
(i, n, (f(o1), . . . , f(on)) if o = (i, n, (o1, o2, . . . , ok)) 6∈ O0

(i, n, nil) if o ∈ O0.

3.4 Evaluating

Given a function on simple values we can apply it to the simple values stored
inside an object. We introduce a family of functors eval. For a given natural t
evalt maps any function f : V t → V to the query evalt(f) such that:

evalt(f)(i, n, (o1, . . . , ok)) =

 (i′, η, f(v1, . . . , vt)) if k = t and
oj = (ij , nj , vj) ∈ O0

(i′, η,nil) otherwise.

3.5 Getting k-th subobject

Let o = (i, n, (o1, o2, . . . , ot)) be a state of an object. We de�ne:

takek(i, n, (o1, . . . , ot)) =

{
ok if k < t and
(i′, η,nil) otherwise.

For k = 1 we will use notation takeF irst instead of take1.

3.6 Filtering

Filtering is also performed by a functor. Assume a function p : S → V that
returns Boolean values. Then:

filter(p)(o = (i, n, (o1, o2, . . . , ok))) = (i, n, (oi1 , oi2 , . . . , oi′k))

where the sequence (oi1 , oi2 , . . . , oi′k) is the subsequence of (o1, o2, . . . , ok) com-
posed of all objects oj such that eval1(p(oj)) = true.

3.7 Nesting

The operator nest creates a new nameless object and puts the argument object
into it:

nest(o) = (i′, η, o)

3.8 Cloning

The operator clonet for natural t > 1 duplicates the state of the given object
t times. This operator does not preserve the propriety of the object since the
clones will have repeated identities inside. The operator clonet : SS → SS is
de�ned as follows:

clonet(o = (i, n, x)) = (i′, n, ((i1, n, x1), . . . , (in, n, xt)))

where x1, x2, . . . , xt are fresh object identi�ers.

3.9 Product

Let o = (i, n, (o1, ..., ot)), o
′ = (i′, n′, (o′1, ..., o

′
t′)) be complex objects. The cross

product operator is de�ned as follows:

cross(o, o′) = (i, η, ((o11, ..., o1t′ , ..., ott′), where ojk = (ijk, η, (oj , o
′
k))

3.10 Grouping

Let ≈ be an equivalence relation on a subset of states S ⊂ S∞. Let o =
(i, n, (o1, ..., ot)) be a complex object such that {o1, ..., ot} ⊂ S. The operator
abstract is de�ned as follows:

abstract≈(o) = (i′, n, (u1, ..., uk))

where uj = (ij , n, (oj1, ..., ojtj)) and the following conditions are satis�ed:

a. The sequence (oj1, ..., ojtj) is a subsequence of (o1, ..., ot) for all j = 1, . . . , k
and the sequence o11, ..., ok1 is a subsequence of (o1, ..., ot).

b. The items in (oj1, ..., ojtj) are pairwise related with respect to ≈.
c. For any j 6= j′ and m,m′ it is true that ojm 6≈ oj′m′ .

3.11 Transposing

Let o = (i, n, (o1, ..., om)) be a complex state of an object, such that there
exists a number t and a name n′, such that for all j = 1, ...,m, we have
oj = (ij , n

′, (oj,1, ..., oj,t)). In other words the state o represents a two dimen-
sional m × t matrix of states of objects. We de�ne the transpose operator as
follows:

transpose(o) = (i′, n, (o1, ..., ot)),

where ok = (i′k, n
′, (o1,k, ..., ot,k)), for k = 1...t

3.12 Folding

Let o = (i, n, (o1, ..., ot)) be an complex model and f : S × S → S be a binary
operator. We de�ne fold via induction:

foldf (o = (i, n, {o1, ..., ot})) =
{
o , if t = 1
foldf ((i

′, n, (f(o1, o2), o3, ..., ot))) , if t > 1

4 Mapping example queries

In this Section we show some examples of SQL queries mapped to UQL. As we
mentioned in the introduction, we do not treat them as a proof of the quality of
UQL. However, the smoothness of the mappings in an indicator of the feasibility
of our research goal.

In order to simplify the presentation we are going to use the following nota-
tion. When two unary operators op1, op2 are applied to a pair of objects, it is
expressed as (op1 ⊗ op2)(o1, o2).

Let us assume that we have the following relational database schema with
two well-known tables:

emp: empno, firstname, lastname, salary, deptno

dept: deptno, deptname, location

Consider the following SQL query:

SELECT firstname, lastname

FROM emp

WHERE lastname = 'Schmidt'

Let us assume that the variable o represents the state of the database with the
above schema. Our example query gets the following form in UQL:

map(filtername=′firstname′∨name=′lastname′(
filter∃on:name(on)=′lastname′∧value(on)=′Schmidt′(
flatten(
filtername=′emp′(o)
)

)
)

)

Now let us consider a join. The following query is a natural join with an equality
selection:

SELECT first, lastname

FROM dept join emp using deptno

WHERE dept.deptname = 'IT'

This query is equivalent to:

SELECT e.first, e.lastname

FROM dept d, emp e

WHERE d.deptname = 'IT'

AND d.deptno = e.deptno

Let us build the mapping step by step. Again we assume that the variable o is
the state of the database. A from clause for a single table is realised as follows
(we �lter out other tables):

filtername=′tablename′(o)

Thus, the clause from dept d is mapped as (the operator as augments the
column name with d_):

map(asd_+name, filtername=′dept′(o))

Furthermore, from dept d, emp e is expressed as:

(map(asd_+name, . . .)⊗map(ase_+name, . . .))(
(filtername=′dept′ ⊗ filter′name=′emp′)(

duplicate2(o)
)

)

Now the obtained objects are glued together:

flatten(cross(. . .))

and �ltered:

filterval(d_deptno)=val(e_deptno)∧val(d_deptname)=′IT ′(. . .)

Finally, we have to select the columns that constitute the result of the query:

map(filtername=′firstname′∨name=′lastname′ ,)

Altogether, our query formulated in UQL has the following form:

map(filtername=′firstname′∨name=′lastname′ ,
f latten(cross(
(map(asd_+name, .)⊗map(ase_+name, .))(
(filtername=′dept′ ⊗ filter′name=′emp′)(

duplicate2(o)
)

)
))

)

Note that this construction of standard SPJ queries is quite regular. We start
from the from clause, then goes where and �nally select. Note that in all three
steps most of the e�ort is in fact �ltration. The process is compositional, so the
mapping of subqueries will be similarly smooth. This way we can map other
query languages:

SBQL: emp where lastname = 'Schmidt'

HQL: from emp where lastname = 'Schmidt'

SQL: SELECT * from emp where lastname = 'Schmidt'

All of these queries simply map to the following UQL query:

filtervalue(lastname)=′Schmidt′(flatten(filtername=′emp′))

Finally, let us consider the aggregation. The example query follows:

SELECT deptno, SUM(salary)

FROM emp

GROUP BY deptno

Like previously, at the beginning we need to select the emp objects, �atten them
and �lter out uninteresting subobjects:

selo = map(filtername=′deptno′∨name=′salary′ ,
f latten(filtername=′emp′(o))

)

In the next step we cluster resulting objects using relation dn. Two objects are
related by dn, if their subobjects deptno have the same value:

grpo = abstractdn(selo)

The subobjects of grpo contain collections of pairs, but in order to fold them
we need pairs of collections, so we transpose the matrices:

trso = map(transpose, grpo)

Then we fold �attened states:

map(takeF irst⊗ (flaten ◦ fold+), trso)

Eventually we have received a state containing a collection of pairs composed of
deptno and the sum of salary. Thus, the example aggregation query maps to:

map(takeF irst(⊗flaten ◦ fold+),
map(translate,
abstractdn(
map(filtername=′deptno′∨name=′salary′ ,
f latten(filtername=′emp′(o))

)
)

)
)

The construction of this UQL query has been stepwise and natural. We are
convinced that even complex SQL (and other QL as well) queries will smoothly
map to UQL.

5 Conclusions and future work

After successfully constructing USM (the Uni�ed State Model), i.e. the uni�ed
model for a number of major programming and storage environments, we were
naturally excited, if it is possible to build a Universal Query Language (UQL)
on the USM? UQL is planned to subsume query languages for models that were
covered by USM.

In this paper we made an initial attempt to answer this question. We pre-
sented a pilot list of UQL operators and a number of representative examples
of queries and their expression in UQL. We chose two SPJ queries and one ag-
gregate query, showed their smooth mapping to UQL and concluded that such
queries seem to map well. Of course, this proves nothing. However, it indicates
that building UQL is feasible.

The next step planned in our research it to found a �nal robust set of UQL
operator and show that UQL allows expressing the query part of SQL, OQL,
SQBL, XQuery and other interesting query languages.

References

1. Neward, T.: The Vietnam of computer science. Online (2006)
2. Neward, T.: Avoiding the quagmire. Online (2007)
3. Hughes, S.: Object relational mapping; how Vietnam can still be won. Online

(2008)
4. Codd, E.F.: A relational model of data for large shared data banks. Commun.

ACM 13 (1970) 377�387
5. Coad, P., Nicola, J.: Object-Oriented Programming. Yourdon Press (1993)
6. Laemmel, R., Meijer, E.: Revealing the X/O impedance mismatch. In Backhouse,

R., Gibbons, J., Hinze, R., Jeuring, J., eds.: Datatype-Generic Programming. Vol-
ume 4719 of Lecture Notes in Computer Science. Springer Berlin / Heidelberg
(2007) 285�367

7. Wi±niewski, P., Burza«ska, M., Stencel, K.: The impedance mismatch in light of
the uni�ed state model. Fundam. Inform. (2012, to appear)

8. O'Neil, E.J.: Object/relational mapping 2008: Hibernate and the Entity Data
Model (EDM). In Wang, J.T.L., ed.: SIGMOD Conference, ACM (2008) 1351�
1356

9. Meijer, E.: The world according to LINQ. Queue 9 (2011) 60:60�60:72
10. Forcier, J., Bissex, P., Chun, W.: Python Web Development with Django. 1 edn.

Addison-Wesley Professional (2008)
11. Cattell, R.G.G., Barry, D.K.: The Object Data Standard: ODMG 3.0. Morgan

Kaufmann (2000)
12. Card, M.: OMG next-generation object database standardization white paper.

Online (2007)
13. W3C: XQuery 1.0: An XML Query Language. (2005)
14. Grefen, P.W.P.J., de By, R.A.: A multi-set extended relational algebra - a formal

approach to a practical issue. In: ICDE, IEEE Computer Society (1994) 80�88

