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Abstract. Representation theory is a branch of mathematics whose original pur-
pose was to represent information about abstract algebraic structures by means of
methods of linear algebra (usually, by linear transformations and matrices). Rota
in his famous “Foundations” defined a representation of a locally finite partially
ordered set (poset) P in terms of a module over a ring A, which can be further ex-
tended to an associative A-algebra called incidence algebra of P . He applied this
construction to solve a number of important problems in combinatorics. Our goal
in this paper is to apply Rota’s construction of incidence algebras to (arbitrary)
Pawlak information systems. To be more precise, we analyse both incidence al-
gebras and information systems in the context of granular computing. Therefore,
starting from objects and an indiscernibility relation, we focus our attention upon
information granules (i.e. equivalence classes) and a corresponding incidence al-
gebra; finally, we discuss a lattice of closed ideals of this algebra (whose maximal
elements serve as a representation of information granules). In this way we obtain
a (partially ordered) set of maximal (closed) ideals which is isomorphic to the set
of information granules of a Pawlak information system (also equipped with a
natural information order).

1 Introduction

Representation theory is a branch of mathematics which studies abstract algebraic struc-
tures by means of methods of linear algebra, with special emphasis put upon vector
spaces and linear transformations. Roughly speaking, since the 1930s when Noether
gave to the theory its modern settings, studying representations of an algebra has been
actually studying modules over this algebra. In the paper we focus our attention on
partially ordered sets (posets) regarded as abstract algebraic structures and incidence
algebras regarded as their linear algebraic counterparts. To be more precise, in repre-
sentation theory representations of posets are studied by means of modules of corre-
sponding incidence algebras. The concept of an incidence algebra understood as an
associative algebra over a ring, which corresponds to a poset, has been introduced by
Rota in Foundations I. However, Rota actually established an incidence algebra a fun-
damental concept in combinatorics rather than in representation theory. The primary
object of his study was a Möbius function of a given poset P , that is a special element



of the incidence algebra INC(P ) of P ; it turned out that the Möbius function was a
fundamental invariant of posets. In contrast to his approach, in the present paper we
are not interested in combinatorial properties of posets and their incidence algebras, but
in their mutual relationships and possible applications to data analysis. For this reason
we simplify a bit also representation theory and we focus our attention on special fea-
tures of incidence algebras proved by Rota in [3]. Thus, in what follows, we discuss
objects and the corresponding incidence ring, then we focus on equivalence classes of
indiscernible objects (information granules) and the corresponding incidence algebra,
and finally we shortly discuss a lattice of ideals of these rings whose elements (closed
ideals) may serve as a representation of information granules.

2 Rough Sets and Granular Computing

In this section we recall basic concepts from rough sets, however, we frame the presen-
tation so as to fit the granular computing approach to data. Generally speaking, granu-
lar computing is a paradigm of (or better still, theoretical perspective on) information
processing. It focuses on the idea that the knowledge which is present in data can be
processed at various levels of resolution or scales; in other words, at various levels of
granulation. Therefore in this section, while considering a partition of a set of objects
(induced by an indiscernibility relation), we make further steps and equip this partition
(regarded as a set of information granules) with some additional structure (e.g. order),
which would reflect the information about objects on the level of granules (i.e. at a
lower resolution).

Definition 1 (Information System). A quadruple I = 〈U,Att, V al, f〉 is called an
information system, where

– U is a non–empty finite set of objects;
– Att is a non–empty finite set of attributes;
– V al =

⋃
A∈Att V alA, where V alA is a (non-empty) value–domain of the attribute

A;
– f : U × Att → P(V al) is an information function, such that for all A ∈ Att and
a ∈ U , f(a,A) ⊆ V alA.

If f(a,A) 6= ∅ for all a ∈ U and A ∈ Att, then the information system I is called
complete; otherwise, it is called incomplete. If f(a,A) is a singleton (i.e. {val}, where
val ∈ V alA), for all a ∈ U and A ∈ Att, then it is called deterministic.

Usually, an information system is supposed to be complete and deterministic. However,
in what follows by an information system it is meant a system without any additional
requirements.

The language for object description in an information system 〈U,Att, V al, f〉 is
the descriptor language LDesc [8]; its primitive formulas (atoms) are descriptors of the
form [A = val], where A ∈ Att and val ∈ V alA, which is read as an attribute A has a
value val:

α ::= [A = val] | ¬α | α ∧ β | α ∨ β
The set of atoms is denoted byΦ, andFDesc denotes the set of all well-formed formulas.



Definition 2 (LDesc Model). Let LDesc be a descriptor language over an information
system 〈U,Att, V al, f〉. Then 〈U, v〉 is a model, where v : U×Φ→ {0, 1} is a function
assigning to each pair (a, p), where a ∈ U and p ∈ Φ, a truth value. We usually write
v(a, p) = 1 (or va(p) = 1), which is read as for the object a, p is true. Let us define:

– va([A = val]) = 1 if val ∈ f(a,A), and 0 otherwise.

As usual, the function v is extended to every formula α ∈ FDesc in the standard way.

It is worth noticing that in the case of an incomplete information system, if f(a,A) = ∅,
then va([A = val]) = 0 for all values val ∈ V alA.

With each object a ∈ U we associate the set of atoms of LDesc which are true for
the object a:

|a|LDesc
= {p ∈ Φ | va(p) = 1}

Whenever the context of an information system and the descriptor language over this
system is clear, we shall omit the subscript and simply write |a|. The sets of this form
induce a preorder on the set of objects U :

a ≤ b iff |a| ⊆ |b|,

for all a, b ∈ U . Intuitively, a ≤ b means that we have more pieces of information
about the object b than about a. As usual, when we have the same knowledge about two
objects, then these objects are indiscernible, denoted by a IND b:

a IND b iff a ≤ b and b ≤ a.

Clearly, IND is an equivalence relation.

Proposition 1. Let 〈U,Att, V al, f〉 be a complete and deterministic information sys-
tem. Then ≤ and IND coincide.

As usual, the partition of U induced by IND is denoted by U/IND. The proposition
above tells that in the case of a complete information system, the quotient set U/IND
inherits no order (different than the identity) from the preordered set (U,≤). However,
in the case of incomplete and nondeterministic systems there is non-trivial inheritance
of information. Let [a]IND ∈ U/IND denote the equivalence class induced by a, then
let us define ≤ on U/IND (by abuse of notation we use the same symbol as for U ):

[a]IND ≤ [b]IND iff a ≤ b.

Proposition 2. Let 〈U,Att, V al, f〉 be an information system. Then (U/IND,≤) is a
partially ordered set.

Actually, any preordered set P = (U,≤) can be viewed as a partially ordered set
U/IND with the order inherited from P . Furthermore, for finite sets the preordered
set P can be viewed as a pair (U/IND, γ), where γ : U/IND → N returns the num-
ber of elements of a given equivalence class. The following proposition comes from [1].

Proposition 3. Let P = (U,≤) and P ′ = (U ′,≤′) be two finite preordered sets. Sets
P and P ′ will be isomorphic if there exists an isomorphism f of partially ordered sets
(U/IND, γ) and (U ′/IND′, γ′) such that γ = f ◦ γ′.



In consequence, in the case of a finite preordered set P = (U,≤), we can pass between
P and its representation (U/IND, γ) forth and back by means of a partially ordered
set (U/IND,≤) without any loss of information.

Example 1. Let us consider a simple example of a data table describing patients and
their mammography test results and the medical diagnosis concerning cancer (as de-
picted by Fig. 1). This information system is nondeterministic and for the object 5 we
have

v5([Test result = Positive]) = v5([Test result = Negative]) = 1.

In consequence, the relations ≤ and IND are given by

≤= {(1, 1), (2, 2), (1, 2), (1, 5), (2, 1), (2, 5), (3, 3), (4, 4), (3, 4),

(3, 5), (4, 3), (4, 5), (5, 5)},

IND = {(1, 1), (2, 2), (1, 2), (2, 1), (3, 3), (4, 4), (3, 4), (4, 3), (5, 5)},

respectively. The quotient set U/IND is equal to {[1]IND, [3]IND, [5]IND}, where
[1]IND = [2]IND = {1, 2}, [3]IND = [4]IND = {3, 4} and [5]IND = {5}. Because
these two relations are different we obtain a non-trivial poset (U/IND,≤), depicted in
Fig. 1.

Patient Test result Cancer
1 Positive No
2 Positive No
3 Negative No
4 Negative No
5 Positive, Negative No

Fig. 1. A data table (i.e. information system) corresponding to the mammography test.

γ([5]IND) = 1

γ([1]IND) = 2

-

γ([3]IND) = 2

�

Fig. 2. Hasse diagram of (U/IND,≤).



Intuitively, the set U/IND consists of basic information granules induced by an
information system 〈U,Att, V al, f〉. Thus the poset (U/IND, γ) actually represents
information encoded by 〈U,Att, V al, f〉 from granular perspective. As said earlier, we
can regard (U/IND,≤) as (U,≤) presented at a lower resolution.

3 Incidence Algebras

Incidence algebras were introduced by Rota in [10] and elaborated in [3]. In order to
make the presentation self-contained we recall some basic concepts from algebra (and
only them) useful for a better understanding of the paper.

Definition 3 (Module). A left module M over a ring A consists of an Abelian group
(M,+) and an operation ∗ : A×M →M such that for all r, s ∈ A and a, b ∈M we
have:

1. r ∗ (a+ b) = r ∗ a+ r ∗ b,
2. (r + s) ∗ a = r ∗ a+ s ∗ a,
3. (r ∗ s) ∗ a = r ∗ (s ∗ a),
4. 1 ∗ a = a if A has a multiplicative identity 1.

A right A-module M is defined similarly, only the ring acts on the right; if A is com-
mutative, then left A-modules are the same as right A-modules and are simply called
A-modules.

Definition 4 (Associative Algebra). Let A be a fixed commutative ring. An associative
A-algebra is an additive Abelian group M which has the structure of both a ring and
an A-module in such a way that ring multiplication is A-bilinear:

r ∗ (a ∗ b) = (r ∗ a) ∗ b = a ∗ (r ∗ b),

for all r ∈ A and a, b ∈M .

In other words, an A-algebra is an A-module equipped with the operation of multipli-
cation (convolution) ∗ :M ×M →M of elements of M such that the above equations
hold. By the standard abuse of notation, we have used the same symbol ∗ for multipli-
cation by scalars (i.e. r ∗ a, r ∈ A and a ∈ M ) and multiplication (convolution) of
elements of M (i.e. a ∗ b, a, b ∈ M ). Obviously, the context always makes clear the
meaning of the symbol ∗.

Definition 5 (Ideal). A subset I ⊆ M will be called a left ideal of A-algebra if the
following conditions hold:

– a+ b ∈ I , for all a, b ∈ I ,
– r ∗ a ∈ I , for all r ∈ A and a ∈ I ,
– a ∗ b ∈ I , for all a ∈M and b ∈ I .

In other words, a left ideal I ⊆ M is closed under addition, multiplication by scalars,
and left multiplication by arbitrary elements of M . Replacing a ∗ b ∈ I by b ∗ a ∈ I
we define a right ideal. A two-sided ideal is a subset that is both a left and a right ideal.
Usually a two-sided ideal is referred to as an ideal.



Definition 6 (Product of Ideals). Let I and J be ideals in a ring A. The ideal product
is defined by

IJ = {
∑

aibi | ai ∈ I, bi ∈ J}.

Let P = (U,≤) be a locally finite partially ordered set (poset), that is the relation
≤ is a reflexive, transitive and antisymmetric, such that every interval [a, b] = {c ∈
U | a ≤ c ≤ b} is finite.

Definition 7 (Incidence Algebra). An incidence algebra INCA(P ) of a locally finite
partially ordered set P = (U,≤) is a set of all functions f : U × U → A, where A is a
commutative ring with multiplicative identity such that

f(a, b) = 0 if a 6≤ b.

Of course, the sum and multiplication by scalars of these functions are defined in the
standard way:

(f + g)(a, b) = f(a, b) + g(a, b) and (r ∗ f)(a, b) = r ∗ f(a, b)

for all f, g ∈ IncA(P ), a, b ∈ U and r ∈ A. Formally, it means that IncA(P ) is an
A-module, which can be made an A-algebra by the addition of convolution, justifying
the term incidence algebra:

(f ∗ g)(a, b) =
∑

c:a≤c≤b

f(a, c)g(c, b)

If a 6≤ b, then there will be no c such that a ≤ c ≤ b and (f ∗ g)(a, b) = 0; such a
sum we shall call degenerated. It is also worth noting that if P is finite and we present
f ∈ IncA(P ) as n× n matrix mf , where n is the number of elements of U , with (a, b)
entry f(a, b), then the operation of convolution will be the standard multiplication of
matrices.

Definition 8 (Standard Topology). The standard topology on an incidence algebra
INC(P ) of a locally finite partially ordered set P = (U,≤) is defined as follows: A
sequence f1, f2, f3, . . . converges to a function f if and only if fn(a, b) converges to
f(a, b) in the field A for every a, b ∈ U , when n goes to the infinity.

When studying of incidence algebras, a special role is played by ideals. When P is
finite, then any two-sided ideal I is closed, i.e. I is a closed set in the standard topology.
The following propositions proved by Rota in [3] are of special importance.

Proposition 4. In a locally finite poset P , let S(P ) be the set of all segments of P
ordered by inclusion. Then there is a natural anti-isomorphism between the lattice of
closed ideals of INC(P ) and the lattice of order ideals of S(P ).

Since the proposition actually reveals the structure of closed ideals, let us sketch a proof
(whose full form can be found in [3]). Firstly, let us recall that an order ideal I of a poset
P = (U,≤) is a set I ⊆ U such that if a ≤ b and b ∈ I , then a ∈ I . Let J be an ideal
of INC(P ) and Z(J) be the family of all segments [a, b] such that f(a, b) = 0, for
all f ∈ J . Then Z(J) is an order ideal of S(P ). Conversely, let Z be an order ideal of
S(P ), and let J be the set of all f ∈ INC(P ) such that f(a, b) = 0 if [a, b] ∈ Z. Then
J is a closed ideal of INC(P ).



Proposition 5. The closed maximal ideals of incidence algebra INCA(P ) are those of
the form

Ja = {f ∈ INC(P ) | f(a, a) = 0}.

Actually, what is important from our perspective is a one-to-one correspondence be-
tween elements of P and maximal closed ideals of INC(P ) which have a very sim-
ple form. Therefore, we do not actually need to go into details of standard topologies
of posets. It suffices to keep in mind that Ja is a set of special functions f such that
f(a, a) = 0. The proposition above suggests how to represent the elements of P while
building the representation of P in terms of an incidence algebra; we shall come back
to this idea soon.

The following proposition comes from Stanley (see e.g. [11]) – the proof is also pre-
sented in [3] – and shows that an ordered set P is uniquely determined by its incidence
algebra.

Proposition 6. Let P and P ′ be (locally finite) partially ordered sets, and let A be a
field. If INCA(P ) and INCA(P

′) are isomorphic as A-algebras, then P and P ′ will
be isomorphic.

The concept of an incidence algebra originally introduced by Rota for partially ordered
sets can naturally be extended for preordered sets (just by replacing a poset by a pre-
ordered set in the above definitions). Belding in [2] proved that:

Proposition 7. Let P and P ′ be finite preordered sets and let A be a field. Then if
INCA(P ) and INCA(P

′) are isomorphic as A-algebras, then P and P ′ will be iso-
morphic as preordered sets.

In the case of preordered sets and rings, INCA(P ) is often referred to as an incidence
ring. To complete the presentation, let us recall the connection between incidence rings
of a preordered set and its corresponding partial order (see e.g. [5]).

Proposition 8. Let P = (U,≤) be a finite preordered set and A a commutative ring
with multiplicative identity, and P̂ = (U/IND,≤). Then INCA(P ) and INCA(P̂ )
are Morita equivalent.

Recall that two unital rings A and A′ will be Morita equivalent if the categories of their
left modules are equivalent. In the category of commutative rings the Morita equiv-
alence is exactly an isomorphism. Of course, the operation of convolution need not
be commutative. However, Morita equivalent rings have isomorphic lattices of ideals.
Thus, since maximal (closed) ideals are supposed to serve as representation for points
according to Proposition 5, we will not loose much information when we confine our
interest to the case of partial orders and their incidence algebras.

4 A Linear Algebra of Pawlak Systems

In Sect. 2 we presented an information system I = 〈U,Att, V al, f〉 as a partially
ordered setP I = (U/IND,≤), or better still, as (U/IND, γ). In consequence, we can



associate with every information system its incidence algebra INC(I) = INC(P I).
As already mentioned, the points of P I correspond to maximal closed ideals of the
algebra INC(I). Therefore, before we will proceed in this study we introduce some
auxiliary concepts allowing us to focus attention upon these ideals. For elements a, b of
a poset P define

S(a, b) = {[c, d] | [c, d] ∈ S(P ) and a ≤ c ≤ d ≤ b},
JS(a,b) = {f ∈ INC(P ) | f(c, d) = 0 for all [c, d] ∈ S(a, b)}.

It is obvious that

Ja = JS(a,a), and a 6≤ b implies JS(a,b) = INC(P ).

Of course, JS(a,b) is a closed ideal of INC(P ) for all a, b ∈ P , as required.

Proposition 9. Let I = 〈U,Att, V al, f〉 be an information system. Then I is complete
and deterministic if and only if for all a, b ∈ U , such that a 6= b, JS(a,b) = INC(I).

The property of being deterministic and complete system can also be expressed by
means of the operation of convolution. Let us recall that convolution f ∗ g was defined
by

(f ∗ g)(a, b) =
∑

c:a≤c≤b

f(a, c)g(c, b). (1)

Hence, given that I is complete and deterministic, if a 6= b then (f ∗g)(a, b) = 0 for all
f, g. In the case a = b we obtain (f ∗ g)(a, a) = f(a, a)g(a, a). Since the underlying
ring A is commutative, we get that for such an information system I the convolution ∗
is also commutative.

Proposition 10. Let I = 〈U,Att, V al, f〉 be an information system. Then I is com-
plete and deterministic if and only if its incidence algebra INC(I) is commutative.

Thus, incompleteness or nondeterminism of an information system means that the cor-
responding algebra is not commutative. Although this case is not necessarily desirable
in data analysis, it is mathematically much more interesting than the case of complete
and deterministic systems. In what follows we analyse the non-commutative cases.

In order to make the presentation less abstract we shall take advantage of the corre-
spondence of incidence algebras with rings of square matrices (e.g. [11]), which will al-
low us to visualise some features of these algebras. In the case of a finite setP = (U,≤),
we can present P by its incidence matrix cP as usual, that is, a square matrix n × n,
where n is the number of elements of U :

cP = [cab]a,b∈U with cab =

{
1 if a ≤ b
0 if a 6≤ b

For example, the incidence matrix of (U/IND,≤) from Sect. 2 (see Fig. 1), whereU =
{[1]IND, [3]IND, [5]IND}, is given by (to simplify the matrix we omit the subscript
IND):

cP =

c[1][1] = 1 c[1][3] = 0 c[1][5] = 1
c[3][1] = 0 c[3][3] = 1 c[3][5] = 1
c[5][1] = 0 c[5][3] = 0 c[5][5] = 1





As usual, given a commutative ring A and a finite non-empty set U with n elements, we
can consider the associative algebra M(A) of all square n×nmatrices m = [mab]a,b∈U
with entries from A. As was mentioned in Sect. 3, elements of an incidence algebra
INC(P ) of a finite partially ordered set P = (U,≤), can be viewed as n×n matrices:

INC(P ) = {m = [mab]a,b∈U |mab = 0 if a 6≤ b}

In other words, INC(P ) is a subalgebra of M(A). It consists of matrices mf (labelled
by elements of INC(P )), which are consistent with the incidence matrix cP :

mf = [mab]a,b∈U with mab =

{
f(a, b) if a ≤ b
0 if a 6≤ b

That is, for a finite P we have

INC(P ) = {f : U × U → A | f(a, b) = 0 if x 6≤ y}

which is isomorphic to

{mf |mab = f(a, b) where f ∈ INC(P )}.

For instance, the incidence algebra of our example consists of matrices of the following
form:

mf =

f([1], [1]) ∈ A f([1], [3]) = 0 f([1], [5]) ∈ A
f([3], [1]) = 0 f([3], [3]) ∈ A f([3], [5]) ∈ A
f([5], [1]) = 0 f([5], [3]) = 0 f([5], [5]) ∈ A


As was proved by Rota [3], the elements of P are in one-to-one correspondence with
maximal elements of the lattice of the closed ideals Ja of INC(P ). Fortunately, they
have a very simple characteristic and we do not need to pay much attention to the
standard topology τ associated with the poset P . In terms of matrices, elements of Ja
have the form mf with an additional requirement that maa = f(a, a) = 0.

Given representations for points, we now find out how the partial order ≤ is related
to the maximal closed ideals. As usual, a < b means a ≤ b and a 6= b. We say that b
covers a, symbolically a� b if a < b and no element c ∈ U satisfies a < c < b. Thus,
what a Hasse diagram of P actually illustrates is the induced covering relation�. Of
course, a 6� a for all a ∈ U .

Since we deal with ideals of INC(P ), the only operation we have at hand is the
product of ideals JaJb:

JaJb = {
∑

fi ∗ gi | fi ∈ Ja, gi ∈ Jb}

Previously we introduced closed ideals of the form JS(a,b); so, let us ask when it is true
that JaJb ⊆ JS(a,b). It turns out that this inclusion holds in three simple cases:

1. If a 6≤ b, then for any element f ∈ INC(P ) it holds that f(a, b) = 0.
2. If a = b, then h(a, a) = f(a, a)g(a, a) = 0 and h(b, b) = f(b, b)g(b, b) = 0.
3. The last case is when a� b:

(f ∗ g)(a, b) = f(a, a)g(a, b) + f(a, b)g(b, b) = 0



The first case may be ruled out by the restriction that JS(a,b) 6= INC(P ). On the other
hand, the other two cases are consistent with the order of P .

In this way we obtained the following order on ideals.

Definition 9 (Order on Ideals). Let INC(P ) be an incidence algebra of finite par-
tially ordered set P over a field A. We shall say that Ja ∼ Jb if

JS(a,b) 6= INC(P ) and JaJb = JS(a,b).

Now define ≤J to be a transitive closure of ∼.

Generally, when a 6= b then for every f ∈ JaJb it will hold that f(a) = 0 = f(b),
and f(a, b) will be some value from A. However, in the case when a � b, we shall
also get that f(a, b) = 0. Thus, if a � b, then Z(JaJb) = {[a, a], [b, b], [a, b]} =
S(a, b) and hence JaJb = JS(a,b). On the other hand, if a ≤ b and a 6= b, then
{[a, a], [b, b], [a, b]} ⊆ S(a, b). But JaJb = JS(a,b) and hence S(a, b) = Z(JaJb) ⊆
{[a, a], [b, b], [a, b]}. It is possible only when a� b.

Proposition 11. Let INC(P ) be an incidence algebra of a finite partially ordered set
P over a field A. Then ≤J is a partial order on J . If we define Ja � Jb when a 6= b
and Ja ∼ Jb, then� will be a covering relation induced by ≤J .

Proposition 12. Let INC(P ) be an incidence algebra of finite partially ordered set P
over a field A, and let J be a set of closed maximal ideals equipped with ≤J . Then P
and J are isomorphic as partial orders.

The easy computation brings us the following Hasse diagram of (J ,≤J) induced by
our example (Fig. 3). Summing up, when we start with an information system I we

J[5]IND
= Jc

J[1]IND
= Ja

-

J[3]IND
= Jb

�

Fig. 3. Hasse diagram of (J ,≤J).

can associate with I two incidence algebras: (1) an incidence ring INC(P ) where
P = (U,≤), and (2) an incidence algebra INC(P ′) where P ′ = (U/IND,≤). As
we know, INC(P ) and INC(P ′) are Morita equivalent. Therefore, their granular rep-
resentations given in terms of maximal closed ideals J are isomorphic. It can also be
derived from Proposition 4 in [3]: For a preordered set P = (U,≤) and the corre-
sponding poset P ′ = (U/INC,≤), their lattices of order ideals S(P ) and S(P ′) are
isomorphic, which amounts to the isomorphism of the lattices of closed ideals of inci-
dence algebras. Hence, without any loss of important information we can proceed with



INC(P ′) and use the results proved by Rota to build the corresponding partial order
defined on maximal closed ideals.

It is worth emphasising that the above representation works virtually for all struc-
tures used in rough sets. Consider e.g. a tolerance space (U, T ) where U is a set of
objects and T is a tolerance relation, that is T is symmetric and reflexive. Define

T (a) = {b ∈ U | aTb} and a ≤ b iff T (a) ⊆ T (b).

Then ≤ is a preorder and hence, as presented in the paper, we can produce two inci-
dence rings whose lattices of ideals are isomorphic. Recently, Peters [9] suggested to
use perceptual systems instead of information systems when dealing with visual infor-
mation. The special role is played there by a perceptual tolerance relation which, as in
the case of tolerance spaces, is an easy object to representation.

In the last paragraph let us sketch some possible applications of the above algebras.
As the reader may know, interaction is an emerging paradigm of models of compu-
tation. It is supposed to reflect some recent changes in technology such as multiagent
systems and object-based distributed systems [4]. However, rough set framework seems
to lack theoretical tools to deal with interactions: what we have at hand are standard set-
theoretical operations (which have already got simple interpretations). In our approach,
we not only have an intersection of ideals at hand, but also their product, which may
provide a means for modelling some kind of interaction between granules. Of course,
the product has not provided such a means, but it may provide such a tool. Nonethe-
less, it seems that to deal with the problem of interactions we must at least seek some
(conservative) enrichments of rough set framework, what we actually did in the article.

Acknowledgement. The research has partly been supported by the grant N N516 077837
from Ministry of Science and Higher Education of the Republic of Poland. Thanks to
the anonymous referee for interesting comments.

References

1. Abrams, G., Haefner, J., Del Rio, A.: Corrections and addenda to “The isomorphism prob-
lem for incidence rings”. Pacific J. of Mathematics 207 (2), 2002, 497–506.

2. Belding, W. R.: Incidence rings of pre-ordered sets. Notre Dame J. Formal Logic 14, 1973,
481–509.

3. Doubilet, P., Rota, G. C., Stanley, R. P.: On the foundations of combinatorial theory VI. The
idea of generating function. In: Proceedings of the Sixth Berkeley Symposium on Mathe-
matical Statistics and Probability (University of California, Berkeley, CA 1970/1971), Vol.
II: Probability Theory, University of California Press, Berkeley, CA 1972. 267–318

4. Goldin, D., Smolka, S. A., Wegner, P. (Eds.): Interactive Computation. The New Paradigm.
Springer 2006.

5. Haack, J.: Isomorphism of incidence rings. Illinois J. of Mathematics 28 (4), 1984, 676–
683.

6. Pawlak, Z.: Rough sets. Int. J. Computer and Information Sci. 11, 1982, 341–356.
7. Pawlak, Z.: Rough logic. Bull. Polish Acad. Sci. (Tech. Sci.) 35 (5-6), 1987, 253–258.
8. Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning about Data. Kluwer Academic

Publisher 1991.



9. Peters, J. F.: Near sets. Special theory about nearness of objects. Fundamenta Informaticae
75, 2007, 407–433.

10. Rota, G. C.: On the foundations of combinatorial theory I. Z. Wahrscheinlichkeitstheo.
Verwandte Geb. 2, 1964, 340–368.

11. Stanley, R. P.: Enumerative Combinatorics, Vol. I. Cambridge U. Press 1997.


