
Quality-Oriented Handling of Exceptions in Web-Service-
Based Cooperative Processes

Ulrike Greiner, Erhard Rahm

Department of Computer Science, University of Leipzig
{greiner, rahm}@informatik.uni-leipzig.de

Abstract: Web services are increasingly used to integrate heterogeneous and au-
tonomous applications in cross-organizational cooperations. A key problem is to
support a high execution quality of complex cooperative processes, e.g. in e-busi-
ness or health care. One important aspect that has received little attention so far
is the dynamic handling of exceptions during process execution. To address this
problem, we propose a rule-based approach to automatically control and enforce
quality constraints for web-service-based cooperative processes.

1 Introduction

The cooperation of companies and organizations leads to a rise of cooperative business
processes integrating autonomous and heterogeneous applications of different organi-
zations. Web services are increasingly used to facilitate such an application integration.
Web services encapsulate applications and provide a machine-readable, XML-based in-
terface for application calls [1], hence allowing the service providers to preserve their
autonomy. Currently, web services typically realize only simple functions such as da-
tabase queries. However, they can also be used to encapsulate complex legacy applica-
tions or entire workflows. To implement real-world cooperative processes a large
number of web services of different complexity and from independent providers may
have to be integrated. For instance, in a collaborative fulfillment process different part-
ners cooperate to fulfill a customer’s order (e.g. for assembling a PC) according to spec-
ified delivery time and other quality constraints. Other examples include treatment of a
patient by different physicians and hospitals or a travel-booking process containing sev-
eral services for booking a flight, hotel, etc. Ensuring that such processes reliably serve
their purpose is challenging due to the high degree of autonomy and heterogeneity of
the cooperation partners. It implies achieving a high quality of web service execution
which is affected by various quality characteristics on services such as response time,
cost, location, or constraints on service input and output parameters (e.g., price limits,
product configurations or delivery deadlines).

Supporting quality of service for web services has found considerable interest re-
cently. Several studies focus on the dynamic selection of the best provider for a partic-
ular web service (e.g. [2],[3]), others on dynamic resource management (e.g., load
balancing) to support sufficiently fast web service execution (e.g. [2],[4]). [5] proposes
the use of semantic service descriptions, e.g. to improve dynamic service selection. Sev-
eral researchers studied cooperative business processes in the form of interorganization-

al workflows (e.g. [6],[7],[8],[9]) assuming a tight coupling between the cooperation
partners. Newer studies address web-service-based cooperative processes (e.g.
[10],[11],[12]) which offer more autonomy for the partners. However, most approaches
lack flexible exception handling mechanisms to support the execution quality of coop-
erative processes. BPEL4WS (Business Process Execution Language for Web Services)
is a proposed standard for defining business processes by integration of web services
[12]. It supports a basic exception handling by checking whether predefined fault mes-
sages or time-outs occur for web services at particular process steps. Such exceptions
are to be handled by calling compensating or alternative services. However, exceptions
that are not covered by fault messages (e.g., violations of quality constraints) and which
not only occur at predefined process steps cannot be handled adequately. Hence, a more
flexible exception handling approach is needed to adequately support the execution
quality and robustness of cooperative processes.

We present a new approach to dynamic exception handling in web-service-based
processes that supports the specification of quality constraints for services, in addition
to conditions a service may offer itself. A rule-based approach is used to handle excep-
tions such as the violation of constraints or other events (e.g. service faults) occurring
during process execution. In section 2 we give an overview of the Web-Flow architec-
ture implementing the new exception handling approach within a dedicated component
that can be used together with different web service process engines. Section 3 presents
a classification of the quality constraints to be supported. Dynamic exception handling
is discussed in section 4; section 5 closes with an outlook on future work.

2 Web-Flow Architecture

The Web-Flow system aims at offering quality support for cooperative business pro-
cesses integrating web services available locally or provided by external partners. It
separates monitoring and exception handling functionality within a dedicated compo-
nent, MaX (Monitoring and eXception handling). This is to allow a generic solution that
can be used in combination with different process execution engines for definition and
execution of cooperative processes (see Fig. 1). The process execution engine uses a
web service environment to call local and external web services encapsulating simple
application programs or entire workflows. Alternatively, external services may be
called over the process engine of the partner. Services are assumed to provide a WSDL
(Web Service Description Language, [13]) interface, if necessary through a wrapper
(e.g. for workflows).

Cooperative processes may be specified according to two major cooperation mod-
els. In a simple cooperation model, a cooperative process corresponds to a workflow
whose activities may refer to external web services. Thus, the providers of the integrat-
ed services do not know the overall process. In a complex cooperation model, the in-
volved partners agree on a cooperative process (including the services used and the
order in which they are called). The partners have an equivalent functionality and inter-
act in a peer-to-peer fashion. This implies a reduced autonomy because changes on the
cooperative process have to be coordinated between the partners. Web-Flow is to sup-
port both cooperation models: the first model can be supported by using the web service

functionality, the second by exploiting the direct communication between process en-
gines (Fig. 1). Initially we focus on the simple cooperation model with one partner con-
trolling the cooperative process. This approach supports maximal autonomy for service
providers but implies that quality monitoring and exception handling have largely to be
performed by the node controlling the cooperative process.

The Web-Flow MaX component has four core parts:
- The constraint and rule definition part is used to specify quality constraints for

service calls and exception handling rules for events occurring during process exe-
cution. The specification has to be done manually, e.g. during process definition.

- The constraint and event monitoring checks whether called services violate any
quality constraint or whether any other event (e.g., a fault message or a specific
database update) occurs.

- The exception handling part uses the specified rules to determine whether an event
constitutes an exception and how the exception should be handled. The main goal
of the exception handling is to successfully continue the cooperative process so
that quality constraints are met to the largest extent possible. This may require
actions such as execution of additional services or adapting the process to com-
pensate for the effects of the exception.

- A logging component records all events and exceptions together with the per-
formed handling. The goal is to use this data for process optimization, in particular
to provide recommendations for a manual exception handling and to eventually
provide input for defining new exception handling rules.

Further components of the architecture are the web service search to use service direc-
tories for finding appropriate providers for a task to be executed, and the Web-Flow
metadata repository maintaining metadata such as constraints and rules for quality
monitoring and exception handling. Information about the cooperative processes and

Fig. 1. Web-Flow architecture

Web Service Environment

UDDI Directory

Web services

Web-Flow MaX
Partner 1

Web-Flow
Metadata

Editor Runtime

Process Execution Engine

Partner 3

Web-Flow MaX

Process Engine

Wrapper
Workflow System

Constraint and Event
Monitoring

Logging

Web Service Search

Constraint and Rule
Definition

Rule-based Exception
Handling

Process
Database

Web Service
Environment

Partner 2

the used services can be derived from the process database.
The Web-Flow MaX component uses a multilevel approach for exception handling.

First, exception handling may take place at the site where a web service is executed, ei-
ther by the web service itself or by the Web-Flow MaX component of the partner. For
instance, a web service searching for offers in a particular price range may check the
offers before returning them and perform a new search if no suitable results are found.
Such mechanisms are typically invisible for the service user but require a sophisticated
web service which cannot always be assumed. Therefore, additional levels of exception
handling take place in the cooperative process and by the Web-Flow MaX component
of the site invoking a remote web service. The Web-Flow MaX exception handling is
largely independent of the respective web service implementations (i.e., can also be
used for legacy applications wrapped as web services) and process specifications and
thus enables enforcement of general exception handling policies.

A rule-based approach has the advantage that the standard process definition is
clearly separated from the exception rules, therefore facilitating the readability and
maintenance of both. Furthermore, necessary actions are not derived until an exception
really occurs, so changes in business policies, laws, etc. can be taken into account with-
out changes in the process definition.

3 Quality Constraints

Based on an analysis of different cooperative business process scenarios and on previ-
ous constraint classifications (e.g., [2]) we have identified several types of web-service-
related quality constraints to be supported in Web-Flow:

- Metadata constraints refer to conditions on the description of web services, e.g. on
the services’ UDDI (Universal Description, Discovery and Integration, [14]) or
WSDL metadata. Such constraints can restrict many different aspects, e.g. the pro-
vider of a service (specific companies, specific geographic locations,...) or a fee
that may have to be paid for using a service (cost constraint).

- Execution constraints refer to conditions on the physical execution of web ser-
vices, in particular response time limits or maximal number of re-trials for failed
executions. Response time constraints specify the maximal waiting time for an
answer from a service either as a fixed point in time (date) or as a time interval.

- Input constraints pose conditions on the input parameters of a web service call.
- Result constraints specify conditions on the result of a web service execution.

These conditions typically refer to the XML documents returned by a service.
They can be used to check whether the delivery time or price for a product is in an
acceptable range or whether a returned product configuration matches the user
requirements.

Metadata constraints refer to rather static information, which is specified when a ser-
vice is registered. These constraints are primarily useful for service selection, i.e. to find
a suitable service during process execution or after an exception has occurred. The other
types of constraints are more dynamic in the sense that they refer to information related
to the actual execution of web services (not only specification). They are of primary rel-

evance for dynamic exception handling.
There are several additional properties which characterize quality constraints and

their use:

- Monitoring: Dynamic quality constraints (response time, input, result constraints)
may either be monitored at the consumer side or at the provider side of a service.
The first alternative is typical for a simple cooperation model preserving a high
autonomy of service providers. A complex cooperation model may support both
approaches.

- Strictness: Constraints may be mandatory or only desirable (high vs. low strict-
ness). A service violating a constraint of the latter type may thus still be useful.

- Scope: Quality constraints typically refer to a particular service or a service opera-
tion, but may also relate to a particular process or user. In addition, there may be
global constraints applying to several or all services, e.g. to enforce company-
wide regulations on eligible service providers / cooperation partners or to specify a
default value for maximal response times. Moreover, a constraint may be context-
dependent, i.e. it should only apply if a service is used in a process under certain
conditions, e.g. depending on preceding service calls. For instance, in a medical
context the allowed ranges for a blood value may depend on the drugs applied
beforehand.

In Web-Flow, a declarative XML-based specification has been defined for each type of
quality constraint. Constraints are specified as logical comparison predicates which can
be combined to a more complex condition using boolean AND, OR and NOT operators.
The XML fragment in Fig. 2 shows an operation-specific result constraint that specifies
that the price for a reserved hotel room has to be less or equal than the maximal price
specified by the user. To check this constraint the output document of the operation has

<service name="HotelSearchService">
<operation operationName="hotelReservation">
<resultConstraint name="RC1"

scope="HotelSearchService:hotelReservation"
strictness="high">

<parameterCondition>
<lessEqual>
<leftOperand>
<xPathQuery>/hotelDetails/maximumPrice</xPathQuery>
<parameter name="hotelReservationRequest" type="Input"/>

</leftOperand>
<rightOperand>
<xPathQuery> /reservation/reservationDetails/price</xPathQuery>
<parameter name="hotelReservationResponse" type="Output"/>

</rightOperand>
</lessEqual>

</parameterCondition>
</resultConstraint>

</operation>
...
</service>

Fig. 2. Sample result constraint

to be compared to the input document previously used to call the web service. Therefore
the data of the input document has to be stored until the service returns a response and
the constraint can be evaluated. The xPathQuery tag specifies which part of the docu-
ment specified by the parameter tag has to be used for evaluation.

All quality constraints are defined in the constraint and rule definition component
of the Web-Flow MaX and are maintained in the Web-Flow metadata repository. Ser-
vice and operation specific quality constraints are saved in the Web-Flow extended ser-
vice description (*.wesd). Process specific constraints are part of the Web-Flow
extended process description (*.wepd) of a cooperative process. Global constraints are
maintained separately.

4 Dynamic Exception Handling

Dynamic exception handling in Web-Flow is based on a rule-based approach using
Event-Condition-Action (ECA) rules (as e.g. used in active database systems [15]).
Events that may result in an exception include time-outs, web service calls, reception of
web service output or fault messages, or manual notifications by e-mail or phone call.
Furthermore, database updates (e.g., in a database with customer data or appointments)
can also be events. Events are detected by the constraint and event monitoring of the
Web-Flow MaX component. It observes all messages that are sent or received by the
process engine during process execution.

The optional condition part of a rule is used to check the various quality constraints
and to specify additional conditions, e.g. on Web-Flow logging information or metada-
ta, that need to hold so that an event results in an exception. This can be useful to express
context-dependent constraints. We use a query processor of a database engine to check
metadata, input and result constraints. The violation of a response time constraint can
be detected by the monitoring component if no response is received for a synchronous
service call until the deadline has expired. An execution constraint specifying a maxi-
mal number of re-trials is checked using Web-Flow logging information.

The action part specifies how an exception should be handled. Possibilities include
delegating exception handling to the respective process, manual reaction, search for an
alternative web service, invocation of a particular web service, process abort, and dy-
namic adaptation of the calling process, e.g. by adding/deleting activities. In Web-Flow,
a default rule is created for each dynamic quality constraint specifying that a user has
to be notified if the constraint is violated. These rules can be manually edited to specify
alternative automatic reactions.

Fig. 3 shows an example rule specifying that an alternative service operation (op-
eration B of service 2) should be called if the result constraint named RC1 (Fig. 2) is
violated and the service has already been called two times. Rule priorities (PRIORITY
part) are used to determine the order of rule execution if several rules apply per event
(1 = highest priority).

Event processing includes logging the event and checking all relevant rules. This is
performed as soon as an event is detected by the constraint and event monitoring com-
ponent of the Web-Flow MaX. If a rule is found for an event specifying an automatical-
ly executable action Web-Flow will execute this action. If execution fails a manual

reaction is needed.
 To reduce the dependence on manual exception handling we intend to evaluate all

logged successful exception handling steps. When an exception occurs asking for a
manual reaction (e.g. due to the default rule for quality constraints), the logged infor-
mation should be searched to present the actions taken in similar exception cases in the
past to the user. One difficulty with this step is to find appropriate metrics for similarity
of exceptions, e.g. taking into account the service called, parameter values etc.

5 Conclusion and Future Work

To support a high execution quality of web-service-based cooperative processes dy-
namic handling of exceptions is needed. The Web-Flow approach presented in this pa-
per is based on the specification of a variety of quality constraints for heterogeneous and
autonomous web services. A rule-based monitoring and exception handling component
automatically deals with many exceptions such as the violation of quality constraints or
service faults.

We are currently implementing the monitoring, exception handling and logging al-
gorithms of the Web-Flow MaX component. We intend to evaluate the approach not
only in cross-organizational processes in the e-business domain but also in distributed
health care scenarios.

Acknowledgements

This work has been supported by the German Research Association under grant
Ra 497-12.

References

1. Chappell, D.A., Jewell, T.: Java Web Services. O'Reilly & Associates, Inc. (2002)
2. Keidl, M., Seltzsam, S., Kemper, A.: Reliable Web Service Execution and Deployment in

Dynamic Environments. In: Benatallah, B., Shan, M-C. (eds.): TES 2003. Springer-Verlag,
Berlin Heidelberg (2003) 104-118

3. Schuler, C., Weber, R., Schuldt, H., Schek, H.J.: Peer-to-Peer Process Execution with Osiris.
In: Proc. of First International Conference on Service-Oriented Computing ICSOC (2003)

4. Keller, A., Ludwig, H.: The WSLA Framework: Specifying and Monitoring Service Level
Agreements for Web Services. J. Electr. Commerce Research 3 (1&2) (2003)

5. DAML-S Coalition: DAML-S: Web Service Description for the Semantic Web. In: Proc. of
the First International Semantic Web Conference (ISWC), Italy, June 2002 (2002)

EVENT reception of output message o

CONDITION violation of constraint RC1 AND # iteration > 2

ACTION callService(service2.B)

PRIORITY 3
Fig. 3. Sample exception handling rule

6. van der Aalst, W.M.P., Weske, M.: The P2P Approach to Interorganizational Workflows. In:
Proc. of CAiSE 2001 (2001) 140-156

7. Grefen, P., Aberer, K., Ludwig, H., Hoffner, Y.: CrossFlow: Cross-Organizational Work-
flow Management for Service Outsourcing in Dynamic Virtual Enterprises. In: IEEE Bull.
of the Tech. Comm. on Data Engineering 24 (1) (2001) 52-57

8. Reichert, M., Bauer, T., Fries, T., Dadam, P.: Realisierung flexibler, unternehmensweiter
Workflow-Anwendungen mit ADEPT. In: Horster P. (ed.): Proc. Elektr. Geschäftsprozesse
- Grundlagen, Sicherheitsaspekte, Realisierungen, Anwendungen. Klagenfurt (2001) 217-
228

9. Luo, Z., Sheth, A., Kochut, K., Arpinar, B.: Exception Handling for Conflict Resolution in
Cross-Organizational Workflows. J. of Distributed and Parallel Databases 13 (2003) 271-
306

10. Casati, F., Shan, M.-C.: Dynamic and adaptive composition of e-services. Inf. Systems 26
(2001) 143-163

11. Chiu, D.K.W., Cheung, S-C., Karlapalem, K., Li, Q., Till, S.: Workflow View Driven Cross-
Organizational Interoperability in a Web-Service Environment. In: Proc. of Web Services,
E-Business, and the Semantic Web, CAiSE 2002 International Workshop, WES 2002, Can-
ada (2002) 41-56

12. Andrews, T. et al.: Business Process Execution Language for Web Services, Version 1.1,
May 2003. http://www-106.ibm.com/developerworks/library/ws-bpel/

13. Christensen, E. et al.: Web Services Description Language (WSDL) 1.1. http://www.w3.org/
TR/wsdl (2001)

14. Bellwood, T. et al.: UDDI Version 3.0, July 2002. http://www.oasis-open.org/committees/
uddi-spec/doc/tcspecs.htm (2002)

15. Paton, N. (ed.): Active Rules in Database Systems. Springer-Verlag, New York (1999)

	Quality-Oriented Handling of Exceptions in Web-Service- Based Cooperative Processes
	Ulrike Greiner, Erhard Rahm
	Department of Computer Science, University of Leipzig
	{greiner, rahm}@informatik.uni-leipzig.de
	1 Introduction
	2 Web-Flow Architecture
	Fig. 1. Web-Flow architecture

	3 Quality Constraints
	Fig. 2. Sample result constraint

	4 Dynamic Exception Handling
	Fig. 3. Sample exception handling rule

	5 Conclusion and Future Work
	1. Chappell, D.A., Jewell, T.: Java Web Services. O'Reilly & Associates, Inc. (2002)
	2. Keidl, M., Seltzsam, S., Kemper, A.: Reliable Web Service Execution and Deployment in Dynamic ...
	3. Schuler, C., Weber, R., Schuldt, H., Schek, H.J.: Peer-to-Peer Process Execution with Osiris. ...
	4. Keller, A., Ludwig, H.: The WSLA Framework: Specifying and Monitoring Service Level Agreements...
	5. DAML-S Coalition: DAML-S: Web Service Description for the Semantic Web. In: Proc. of the First...
	6. van der Aalst, W.M.P., Weske, M.: The P2P Approach to Interorganizational Workflows. In: Proc....
	7. Grefen, P., Aberer, K., Ludwig, H., Hoffner, Y.: CrossFlow: Cross-Organizational Workflow Mana...
	8. Reichert, M., Bauer, T., Fries, T., Dadam, P.: Realisierung flexibler, unternehmensweiter Work...
	9. Luo, Z., Sheth, A., Kochut, K., Arpinar, B.: Exception Handling for Conflict Resolution in Cro...
	10. Casati, F., Shan, M.-C.: Dynamic and adaptive composition of e-services. Inf. Systems 26 (200...
	11. Chiu, D.K.W., Cheung, S-C., Karlapalem, K., Li, Q., Till, S.: Workflow View Driven Cross- Org...
	12. Andrews, T. et al.: Business Process Execution Language for Web Services, Version 1.1, May 20...
	13. Christensen, E. et al.: Web Services Description Language (WSDL) 1.1. http://www.w3.org/ TR/w...
	14. Bellwood, T. et al.: UDDI Version 3.0, July 2002. http://www.oasis-open.org/committees/ uddi-...
	15. Paton, N. (ed.): Active Rules in Database Systems. Springer-Verlag, New York (1999)

