Retrieval of optimal subspace clusters set for an effective
similarity search in a high-dimensional spaces

(© Ivan Sudos
Saint-Petersburg State University
Saint-Petersburg
iv.teh.adr@gmail.com

Abstract

High dimensional data is often analysed
resorting to its distribution properties in sub-
spaces. Subspace clustering is a powerfull
method for elicication of high dimensional
data features. The result of subspace clus-
tering can be an essential base for building
indexing structures and further data search.
However, a high number of subspaces and
data instances can conceal a high number of
subspace clusters some of which are difficult
to analyse within search algorithm. This
paper presents a model of generic indexing
approach based on detected subspace clusters
and the way to find an optimal set of clus-
ters to have an acceptable tradeoff between
search speed and relevance.

1 Introduction
Search and clustering are two most extensive prob-
lems of data analysis in high dimensional spaces.
Since the roots of complexity that occurs in this
domain were established, plenty of particular aspects
have been elicited and regarded so far. Many of
approaches for solving high-dimensional problems
regard only these particular complexity aspects, as it
is quite sophisticated and practice detached to solve
the problem in general. In recent twenty years a
number of solutions have been proposed to solve
certain problems of searching and clustering in high
dimensional spaces. Clustering and indexing are
strongly associated with each other in high dimen-
sional spaces: resolving of indexing problems can
cause the need to resolve clustering problems.
Regarding only search and clustering problems
we will refer to a high-dimensional vector space as a
search space. The general challenge for search and
clustering in high dimensional spaces is called “curse

Proceedings of the 14th All-Russian Conference
”Digital Libraries: Advanced Methods and
Technologies, Digital Collections” — RCDL-2012,
Pereslavl Zalesskii, Russia, October 15-18, 2012.

136

of dimensionality” first stated by R. Bellman [1]. It
has two key aspects. The first one lies within the
following fact: if the number of dimensions grows
the information under analysis in the search space
become cumbersome. And the second one is the
metric related problem: in high dimensions we often
can’t state that two vectors are similar or different.

In most of cases we usually can’t build reliable
algorithm and data structures (indexes) to handle
exact match search with acceptable latency. Here
in the first place we consider approximate similarity
search.

Most of the approaches to search and indexing
problems can be divided into following categories:

1. Low-dimensional algorithms adaptations, like
ones that use R-trees. Here we try to fix
some particular problems of search algorithm
for low-dimensional search spaces to make it
somehow feasible in high-dimensional space.
However, it tends to work acceptable for
relatevely low number of dimensions (doesn’t
exceed dozens)

Data distribution based algorithms. These
alorithms take into account distribution’s prop-
erties of the data. Number of them proceed
dimensional reduction techniques like principal
component analysis or subspace clustering to
fight the curse of dimensionality.

Random projection based algorithms. These
algorithms tries to decrease the volume of
scanned information in a search space by
grouping it’s elements with a degree of ran-
domnicity. Some realizations of locally sensi-
tive hashing [16] relates to this category.

All of the approaches in one way or another try
to solve the curse of dimensionality. This implies
they try to reduce time comlexity of search or
increase relevance, or do the both. In this paper
we consider the second category of solutions. Here
we have a point of contact with clustering problem.
Analysis of data distribution is closely related to
clusteing. Clustering in high dimensions have several
approaches and each approach apart can use its

own cluster model. This paper stays only on
subspace and projection clustering approches [2].
In accordance with [2], subspace clustering aims
to find all clusters in all possible subspaces and
projection clustering assignes each vector to exactly
one subspace cluster. For example, a set of photos
can be placed to one cluster if projection clustering
algorithm finds no difference in their color hystogram
characteristics. At the mean time, a subspace
clustering algorithm will form(if any exists) clusters
for all possible characteristics: hystograms, shapes,
gradients etc. Despite it looks not so flexible as
principal component analysis methods that can detect
arbitrary manifolds or just clusters in not axis-parallel
dimensions, subspace clustering have one important
advantage: locality property [3]. It means that
subspace clustering algorithms can determine a set
of relevant dimensions (relevant subspace) locally
for each part of the search space or subset of data
vectors.

Our goal is to understand how clustering results
can be coupled with similarity search in high-
dimensional spaces. This paper introduce a generic
approach to utilize detected subspace -clustering
within search. We state a key optimization problem
that allows to find the best tradeoff between search
relevance and speed. The implies selection of the
best subset of subspace clusters that can provide the
best relevance with a guaranteed retrieval minimal
complexity.

2 Related works

Many of works were presented on indexing and
clustering apart. Applications of clustering for
building a search index are implicitly described in
works about nearest neighbours in high dimensional
spaces. Some works show how subspace clustering
results can be used as base for tree-like index
structures. Although a link between parameters of
detected clusters and efficiency of nearest neighbours
search is not presented. Several papers regard a
subspace clustering process quality from the point of
view of data redundancy.

Here we first state the optimization problem that
arises when index structure is based on detected
subspace clusters. The problem links search ef-
fectivity (speed and relevance) and properties of
detected clusters. Thereby our work aims to link
subspace clustering and nearest neighbour search.
Index structures can be based on detected subspace
clusters in various ways, however an existing index-
ing approaches don’t consider affects of underlying
clustering.

Some papers that considers indexing and cluster-
ing problems in high dimensional spaces are reported
below.

137

Indexing: [5] introduces Bregman ball trees in-
dex structure that is reconsideration of ball trees
using Bregman divergence instead of classic metric.
Though it is not supposed to be used in high di-
mensions it introduces a feasible concept of applying
Bregman divergences to known indexing structures
instead of metrices.

Having distance functions like Bregman diver-
gences in use, the search can be more complicated.
The computational difficulty of such functions is
higher then simle functions like Euclid metric. This
aspect is taken into account in this paper.

X-tree [6] is spacial tree based on hyper rect-
angle partitioning of search space shows how well
known low-dimensional index structure R-tree can be
adapted for relatevly high number of dimensions by
rejecting rectangles overlaping. However X-tree have
its capability limits. This is an example of case when
taking into account all dimensions simultaneously
leads to index structure size of the same order as the
data.

Clustering: The clustering techincs used in this
paper refer to projection and subspace clustering.
The key survey on clustering algorithms in high
dimensions was conducted in [2]. Algorithms are cat-
egorized and compared. Main groups distinguished
are: Axis-parallel subspace and projection clustering,
Arbitrary oriented subspaces clustering and Pattern
based clustering. We are also interested in description
of particular algorithms of subspace and projection
clustering and clustering models they use [3]. A
surevey compares different subspace clustering per-
formance. Clustering quality evalutation is regarded
along with results of proposed optimization problem
solution [7].

Clustering within indexing A recent work [4]
shows us how we can build tree-like indexing
structure in high dimensional space atop known
clusters set. This work doesn’t imply special
method of clusterization and thus doesn’t regard how
clustering influences on efficiency of search. Though
this search approach helps to evaluate clustering
results experimentally.

3 Subspace clustering and similarity search

The common goal of indexing is to prune search
space by compression and/or elicit relations between
parts of the data (trees and space partitioning).
Such approaches as Locally sensitive hashing and
VA-files are compression [8] techinques that allows
to approximat a group of near vectors with a
single object. These techniques suffer a curse of
dimensionality as well in high dimensional spaces.
Locally sensitive hashing leads to low relevancse

due to distance invisibility. Space partitioning is
not feasible since a number of hyperrectangles can
exceed or become close to the number of data
vectors and the search will be not less complex
as and exhaustive bypass through all the data.
Clustering suffers from distanse invisibility in high
dimensions as it was described above. In our model
we consider subspace clustering as a solution to
proceed data compression to be used as a base of
indexing structure. This considiration is maximally
abstracted from the complete indexing structure and
the algorithm of similarity search. Thus we assume
that a search algorithm and an index structure
operates a set of objects that represent grouped
(clustered) data and perform retrieval on the smaller
space thus with smaller precision. This requires
a function that calculates relevance of the cluster
for a query ¢ and this function should avoid full
scan of cluster members as it leads to an exhaustive
search. So far search algorithm is assumed to do the
following:

e Consider subspace clusters as a primary result
of data compression.

e Use some approximate fast enough distance
function to calculate relevance of the given
subspace cluster with respect to a given query
vector g.

e Find the most relevant cluster(s) and take them
into the furhter consideration.

The following considerations show how subspace
clustering features affect the tradeoff between search
speed and relevance.

Let the subspace cluster ¢ = {V, S} be any subset
V' of data vectors so that maximum deviation in the
subspace S of any v € V from the rest of V is
less then given threshold h and V' contains not less
elements then p. So that the cluster is considered
to be any clot of vectors in the any subspace with
boundered parameters of density and a number of
elements.

The first consideration is the measure of data
compression provided with subspace clustering. The
general assumption about query is that it is an
uniformely distributed vector in the search space.
We assume that the complexity of search algorithm
is monotonic non-decreasing function f(N,q) of N
where N is a number of objects in the search space
and ¢ is a query vector. Since subspace clustering
compression is performed N depicts a number of
detected subspace clusters to be used by search
algorithm. Without respect to the retrieval algorithm
we assume the need to calculate relevance of a
random detected cluster for a query ¢. So Q(g,c) is a
function that calculates relevance of ¢ with respect to
q. Let Q € O(g(|V], dim(S))).

138

The second consideration is the measure of
relevance of detected clusters. Again, suppose
we have an uniformly distributed query ¢. Let
C ={cy...cn} will be the set of detected subspace
clusters. Each subspace cluster ¢; represents a
pair {O;,S;} of set of vectors it contains: V =
{v1...v;} and a set of dimensions S = {d;...d;}
that determines a subspace. Let introduce a relevance
of a given cluster c of size & for a given query q:

1
U;; dist(q,v)

R(C, Q) = Rdim(C, q) L

The right side represents a product of: subspace
relevance function Raim(c,q) that represents a rele-
vance of subspace where the data forms cluster ¢
by the average inverted distance from a query to a
member v of the cluster. We accept the Manhattan
distance function and Euclidean distance function
here as they were prooved [9] to be the only suit-
able for a distance measurment in high dimensional
spaces.

Relevance calculation of cluster ¢ with respect to
query ¢ should avoid iteration through all cluster’s
members. The relevance calculation function is sup-
posed to be approximate. Having this consideration
we introduce an approximate cluster relevance as

Rapprox(c7 Q) = Rdim (C, q)Q(Q q)

where Q(c,q) is an approximate distance func-
tion. Let denote complexity of it as g(|V],|S]) =
94(JV1,15],V,S). In further we will show an
examples of this functions.

The general idea of this paper is to understand
how the set of detected clusters should be selected to
obtain the required search speed and relevance ratio.
Denote the set of all the possible subspace clusters
for a given search space as C. The subset C* of C
is an argument of optimization and the optimization
problem is to obtain such C* that will produce the
best (in terms of retrieval speed and relevance) result
for a random query q. The first optimization problem:

E(R(c*,q)) — max

c* = arg max Rapprox(¢; q)
N < Nmax

Egy(IV].Ish) < va

6]

The first optimization problem’s goal is to maxi-
mize mean relevance of the most suitable cluster
determined by a given relevance calculation function
R.pprox for a random query q. The constraints are to
keep the number of objects under analysis (subspace
clusters) below the given bound N,.x and keep cal-
culation complexity of the Rapprox in @ given bounds.

Let’s introduce another optimization problem:
min R(c",q) = Ruin

¢* = argmax Rapprox (€, q)
ceC

N — min
E(gq(IV1,]s])) — min

)
Vq

The second one’s goal is to find the simplest
clusters set that keeps relevance rate in the given
bounds. The latest problem is off less interest as
it is difficult to user to assign relevance constraints
apriori. The stated problems implies calculation
of mean relevance calculation, though it is near
impossible to perform for a whole search space.
The introduction of mean relevance denotes the
following:

The goal of optimization is to select a subset of
subspace clusters such that the mean value of real
relevance of given cluster for given query is the highest
when the approximate relevance value is the highest.

This Optimization problems can be formulated
for a low dimensional spaces as well. Though the
abcence of the need to take into account subspace
and simple mechanisms of query point classification
(like MBR []) lead to the simple solution as
regarding only the set of clusters that satisfy given
density and size. For a high dimensions the most
principal difference is a number of possible subspace
clusters.

The number of detected clusters in all subspaces
can be significantly bigger then in a low dimensional
space.

That is because of 2¢ number of all possible
subspaces for a d-dimensional space. If all possible
subspace clusters are considered, the relevance of the
search is supposed to be higher since it is possible
to pick up the nearest cluster for a given query gq.
But in this case N can be significantly high and
bypass complexity of all the clusters can approach
the complexity of an exhaustive search. The other
tradeoff can be observed when dealing with subspace
clusters in a relativly high dimensional subspaces.
The relevance of this clusters can be higher but it is
hard to analyse accessory of ¢ to these clusters since
there are a lot of attributes to be taken into account.

The rest of paper is dedicated to analysing
the internal structure of functions presented in a
optimization problems and possible algorithmical
solutions for a stated problems.

3.1 Dimensionality effects on relevance

R4im (C) was introduced as a function that reflects
relevance of subspace where cluster C is detected.
R4im (C) have a direct impact on the search relevance
of the given cluster. Most of papers [2], [6] [9]
that tries to evaluate subspace or projection cluster-
ing omit details of subspace impact on clustering

139

quality. The are three known groups of methods
for automatical evaluation of cluster dimensionality
relevance:

e Rate subspaces and thus subspace clusters
higher if their dimensionality is higher [10], [2]

e Introduce generic cost function K(O,S) that
rates relevancy of given subspace cluster (O, S)
[10], [11]

e Measure cluster separability within a given
subspace. [9] That means subspace cluster
(0, S) is rated higher if each vector in O is far
enough from any other vector in subspace S
that is not in the cluster.

The first approach is fair enough in case of the
nearest neighbour retrieval: the user is interested in
matching all the coordinates of given query vector
q until certain subset of dimensions is not specified.
In that case dimension clustering relevance can be
determined as R(c) = R(S,0) =|S|.

The second approach can be used to assign
weight to particular dimensions or vectors. This
approach is senseble in case of specific origins of the
data. Let’s regard a vectors in a finite dimensional
vector space that are obtained by orthogonal projec-
tion of time-series data in an infinite dimensionsal
space. Then the user can be interested in a uniform
sample in time. At the other side sequental dense
subset of times can be more relevant. In these cases
K can be denoted as

0<i<N n
(variance multiplied n) or
n
K =
(0.5) = "
correspondently.

The third way to introduce K is generally
refers to automatic detection of relevant dimensions
for a given subset of vectors. The one way is
proposed in [9]. To detect the most relevant set
of dimensions for a given vector v, one have to
compose distribution function of distances ®(d) =
P(dist(vg,v) < d),d € ® where v is a random
vector from a vector space. This approach requires
computation of distribution function that in turn
requires itaratibreon over the whole search space.
The are two drawbacks here. It is rather heavy
operation to compute distribution function for a
single vector and have a O(N?) cost. And the
second drawback is that most of subspace/projection
clustering algorithms imply detection of relevant
vectors themselves and can expose this information
both with subspace cluster.

3.2 Cluster geometry effect on relevance

Influence of cluster geometry on distance to a query
point is studied in this section. Distance function is
used to evaluate relevance of the clusters with respect
to a query. The relevance function was introduced
above as Rapprox(¢,q) = Raim(c,q)Q(c,¢). And
the Q(c,q) is the approximate classificatoin function
used to mitigate relevance calculation time. The
Idea is to find out what clusters is suitable to be
evaluated with Q. Some shapes of clusters causes
the situation when () determines them as relevant
)
when *<———— turns out to be low. A Bregman
divergence can be used as a measure of accessory
to the cluster. A Bregman divergence [12] distance
functions such as Mahalanobis distance [13] can be
calculated using only mean vector of the cluster and
covariance matrix that can be significantly faster than
bypassing all the cluster’s members. For this purpose
mean and covariance matrix should be stored along
with the object that represents subspace cluster.

Another variant of @ is an indicator function
of Minimal Boundaring Rectangle (MBR) accessory.
This function is generally simpler to be calculated
though for a relatively high-dimensonal hyper rect-
angles can be very inaccurate as the volume of
hyperrectangle increases exponentially as number of
dimensions grows.

3.3 Examples

Having determined possible approximated relevance
functions we will give some examples that reflects 1.

Example 1 Let’s have
Rapprox(c, @) = (IS1(q, MBR(c))) ",

where I(q, MBR(C)) = 1 if ¢ belongs to the
minimal boundaring rectangle that contains ¢ and
I(q, MBR(C)) = 0 otherwise. S is the set of sub-
space dimensions as was intoduced above. Assume
there is query ¢ and it falls into two minimal bound-
aring rectangles in 2 different subspaces as depicted
at figure 3.3. These rectangles bound 2 subspace
clusters.

The subspace cluster in the left has more
dimensions - 5, when the right one has only 3.
So that if to accept Rapprox(c,q) = 5 and thereby
take into consideration left cluster we will select the
subspace cluster (and so that the nearst neighbours)
less relevant then right cluster in terms of real
relevance. The average distance to ¢ from the right
cluster is significantly less. The solution of 1 let us
escape from such false guess and leave only the most
relevant subspace clusters in the indexing set.

140

d4
da

d4
d3

di1,d2,d3 dé

Figure 1: approximate relevance error:
Rapprox value is bigger for left picture,
however, a real relevance is bigger at right one

Example 2 Using of Mahalanobis distance as a
base for R.pprox Can lead to erroneous guesses as
well. Lets have

Qe.q) = 1/ (a — u(e))™ Cov"(e)(q — p(c))

where p(c) is a centroid of ¢ and Couv(c) is sample
covariance. This function is named Mahalanobis
distance. Let R(c) = R(S,0) = |S|. Thereby
approximate relevance function is

Rapprox(@ Q) =

(181y/ta = wt@)rCor e~ uieh) N

The situation shown at figure 2 occurs when lin-
ear classifier (like Mahalanobis distance) can’t do
reliable guess against some distributions other then
normal one. The subspace cluster at the left is less
distant in terms of Mahalanobis distance, but average
distance to a set at the right picture is less.

A o®
2
% [GQ
oqf" Q;‘ tf‘%
o s ®°
% 0o
?]

Figure 2: Mahalanobis distance relevance error

In the given examples it is possible to discard one
of two clusters regarded. To leave only the clusters
that will have the maximum relevance when selected
by maximum approximate relevance value is the goal
of 1.

4 Solution of optimization problem

The solution of the problem 1 in general case
is still open problem until there is no additional
assumptions about the query vector distibution. The
main difficulty is to calculate corresponding mean of

the relevance. In relativly low dimensional subspaces
(2-3 dimensional) the experiments shows that the
Branches and bounds method is applicable. The most
complex part is to calculate the mean calculation that
leads to multople integral sums calculations.

An approach we propose to solve 1 is based on
reduction of 1 to a well-known knapsack problem
[15]. Suppose a set of B items. Each item ¢ has
its own value v; and weight w;. Knapsack problem
implies selection of M items. The total weight of
selected items must be below threshold w and the
total value must be maximized. In case of 1 the items
are subspace clusters; The weight depicts a a value
difficulty of approximated relevance computation. To
define a value of the subspace cluster we propose
to perform a test: for each vector z within given
suspace cluster ¢; a pair

(u(z); w(x)) :

is calculated. The value v; is then taken as
v; = corr(u,w) (a correlation). Having this as
a value, corresponding knapsack problem can be
solved in common way, for example, recurrently.
This approach is to be proven, though for an
experimental data it yields results.

Another problem that uprises is how to put the
most complete set of existing subspace clusters to
a consideration. For an axis-parallel clustering it
can be performed using bottom-up approaches like
CLIQUE [3] and MAFIA [14] as they are aimed
to detect all possible clusters in all the possible
subspaces. Once the all available subspace clusters
are obtained the reduction should be proceeded: the
best clusters should be selected in accordance with 1.

Now, we can formulate an algorithm that elicit
near optimal subset of subspace clusters to be used
in indexing. For a geneneral case solution here we
propose to use our approach with knapsack problem
preceded with MAFIA algorithm.

(R(z,ci); RapprOX(Iv ci))

Algorithm 1 Clustering optimization:
Execute MAFIA algorithm to obtain full set of
subspace clusters;
for all subspace cluster c; do
calculate weight w; based on Rapprox
for all vector x in cluster ¢; do
calculate u(z) := Rapprox(%, ¢;)
calculate w(x) := R(z, ¢;)
write pair (u(x),w(x)) to array A
end for
v; := correlation(u, w)
end for
solution := SolveKnapsack(vy ... vn, w1 ... WN)
output solution

141

5 Experiments

The proposed approached were tested using time-
series data records of daily earth temperature sets
with 17 -10° data instances and 500 thousands of
instanses, dimensionality of 200 and 20 correspon-
dently. While the first dataset was simulated, the
second one is real observation of earth temperature
since 1880 available at [17]. The MAFIA algorithm
managed to obtain 1630 subspace clusters with av-
erage dimensionality 4.6. Since our algorithm was
applied it was able to prune similarity search time
(using sequental traversal over the clusters) more
then 5 times (the maximum number of clusters was
bounded to 311) having the same search result as
without such adaptation. The other dataset initially
contained significantly less subspace clusters found
by MAFIA. While it initially contained 41 subspace
clusters in 23 subspaces (with initial dimensionality
of 20) the optimization process was aimed to bound
cluster number by 30. The performance of search
was increased near proportionally from 14.018 sec-
onds to 11.95. The both experiments shows no loss
in relevance for 100 randomly generated queries.

6 Conclusions

Using subspace clustering feasible approach to build
indexing structure though it highly depends on data
distribution. Data set can contain a large number
of subspace clusters some of them are redundant in
scope of indexing. To know how to remove re-
dundancy the corresponding relevance model should
be proposed. Our model assumes generic influences
of distribution factors on relevance and relevance
calculation and the optimization problem states com-
pression ration problem explicitly for a search in
a high dimensional spaces. If the data have no
features avaliable to proceed some redundancy re-
moval thereby resolving of optimization problem and
using subspace clustering as a base for compression
and indexing structure can be not feasible at all.
The solution of stated optimization problem in a
general case is a big challenge, though knowledge of
particular relevance calculation functions and affects
of clusters geometry can lead to a feasible particular
solution.

References

[1] R.E. Bellman. Dynamic programming. Princeton
University Press. 1957.

[2] H.P. Kriegel, P. Kroger, A. Zimek. Clustering
High-Dimensional Data: A Survey on Subspace
Clustering, Pattern-Based Clustering, and Corre-
lation Clustering. ACM Trans. Knowl. Discov.
2009.

[3] L. Parsons, E. Haque, H. Liu Subspace Clus-
tering for High Dimensional Data: A Review.
Sigkdd Explorations. 2004.

[4] S. Gunnemann, H. Kremer, D. Lenhard, T.
Seidl. Subspace Clustering for Indexing High
Dimensional Data: A Main Memory Index
based on Local Reductions and Individual Multi-

Representations. EDBT. 2011.

F. Nielsen, P. Piro, M. Barlaud. Tailored Breg-
man Ball Trees for Effective Nearest Neighbors.
EDBT. 2008.

S. Berchtold, D.A. Keim, H.P. Kriegel. The
X-tree: An Index Structure for High-Dimensional
Data VLDB. 1996.

E. Muller, S. Gunnemann, I. Assent, T. Seidl.
Evaluating Clustering in Subspace Projections of
High Dimensional Data. VLDB. 2009.

(5]

(6]

[7]

[8] N. Cristianini, J. Shawe-Taylor. An Introduction
to Support Vector Machines and other kernel-
based learning methods. Cambridge University

Press, Cambridge, UK. 2000.

A. Hinneburg, C. Aggarwal, D.A. Keim. What is
the nearest neighbor in high dimensional spaces?
VLBD. 2000.

[10] E. Muller, 1. Assent,
vant Subspace Clustering:

(9]

S. Gunnemann. Rele-
Mining the Most

142

Interesting Non-Redundant Concepts in High
Dimensional Data ICDM 2010.

[11] K. Sequeira, M. Zaki. SCHISM: A new ap-
proach for interesting subspace mining. ICDM.
2004.

[12] L. M. Bregman. The relaxation method of
finding the common points of convex sets and
its application to the solution of problems
in convex programming. USSR Computational
Mathematics and Mathematical Physics 7(3).
1967.

[13] J. Ekstrom. Mahalonobis distance beyond nor-
mal distribution. UCLA Press. 2005.

[14] S. Goil, H. Nagesh, A. Choudhary. MAFIA:
Efficient and Scalable Subspace Clustering for
Very Large Data Set. SIGMOD. 1999.

[15] M. Silvano, T. Paolo. Knapsack problems:
Algorithms and computer interpretations. Wiley-
Interscience. 1990.

[16] G.A. Indyk, P. Motwani. Similarity Search in
High Dimensions via Hashing. VLDB. 1999.

[17] Earth surface temperature measurments.

http://berkeleyearth.org/data/. 2012.

