
Supporting Visual Editors using
Reference Attributed Grammars

Niklas Fors

Department of Computer Science, Lund University, Lund, Sweden
niklas.fors@cs.lth.se

Abstract. Reference attributed grammars (RAGs) extend Knuth’s at-
tribute grammars with references. These references can be used to extend
the abstract syntax tree to a graph. We investigate how RAGs can be
used for implementing tools for visual languages. Programs in those lan-
guages can often be expressed as graphs.

1 Introduction

For certain applications domain-specific languages (DSLs) play an important
role, since they can make it easier to solve problems in the domain in a more
concise way than a general purpose language (GPL) [1]. DSLs are especially ad-
vantageous when the language user is a domain expert and not a programmer.
Other advantages of DSLs over GPLs are easier domain analysis and optimiza-
tions [2]. However, there are several difficulties with DSLs as well. Developing
DSLs often require compiler implementation knowledge, which is not necessary
when creating a library. It is also desirable that the domain is well-understood,
where abstractions are more likely to remain stable. Limited resources for creat-
ing and maintaining a DSL can be a problem, especially for small communities.

A DSL user may want different tools, such as a batch compiler and an in-
tegrated development environment (IDE). Such tools often share analysis, and
reusing specification between them can reduce the implementation effort and
help to keep the tools consistent with each other. One tool aiming for reuse of
language and compiler specification is JastAdd [3], which we use in our research.

Often, new insights and knowledge about a particular domain arise over time,
leading to new abstractions in the DSL. In such cases, the language developer
typically wishes to extend the existing DSL in a backward compatible way. Jas-
tAdd has proven to be useful for extending languages; compilers for complex
languages like Java and Modelica have successfully been implemented and ex-
tended with new language constructs [4,5].

In several domains, a visual notation is preferable to a textual notation, which
can increase the accessibility for non-programmers. Such languages are called
domain-specific visual languages (DSVLs). Some languages, such as Modelica [6],
support both a textual and a visual syntax. This allows the software engineer
and the domain expert to use the most convenient notation.



We want to investigate how the metacompilation system JastAdd, and its
formalism reference attributed grammars [7], can be used for implementing tools
for visual languages in general, and DSVLs in particular.

2 Background

There are several ways for defining the semantics, that is the meaning, of a pro-
gramming language. Examples include denotational semantics [8,9], operational
semantics [10,11] and attribute grammars [12].

In this work, we will use reference attributed grammars (RAGs), which is
an extension to Knuth’s attribute grammars [12]. RAGs allow the value of an
attribute to be a reference to a node in the abstract syntax tree. For example,
an identifier usage may have a reference attribute that refers to its declaration.
The usage node can use this reference attribute to access attributes from the
declaration node, for example, to obtain the type of the declaration. Using ref-
erence attributes, a graph can be superimposed on the AST, which can be used
to model graph-based languages. Since graphs can be cyclic, the support of cir-
cular reference attributes [13] in JastAdd can be helpful, which solve circular
attribute definitions using fixed-point iteration. Earlier work has shown that cir-
cular reference attributes are practical and provide a concise definition for the
implementation of control-flow and data-flow for Java programs [14]. Other at-
tribute grammar system supporting reference attributes include Silver [15] and
Kiama [16].

For visual languages, there are several ways to define the syntax of a language.
There is, however, no consensus on what formalism to use, in contrast to textual
languages, where Chomsky’s context-free grammars are widely used. Examples of
formalisms are graph grammars [17,18,19], metamodeling [20,21] and constraint
multiset grammars [22].

Erwig [23] proposed a separation of the concrete and abstract syntax for a
visual language, and defined the semantics on the latter. The abstract syntax was
modeled as a directed labeled multi-graph (there can be several edges between
two nodes). Our approach differs from Erwig in that the base structure is the
AST compared to a graph, and instead we use reference attributes to extend
the AST to a graph. We also use RAGs to define the semantics. We think that
a tree is practical when a textual syntax is desired, since it is straightforward
to serialize and easy to create new concrete syntaxes. Rekers et al. [19] also
suggest a separation between the concrete syntax and abstract syntax for visual
languages.

Another related work is reusable visual patterns by Schmidt et al. [24], im-
plemented with attribute grammars, but without use of RAGs. These patterns
are predefined, and examples are lists, tables, sets, lines etc. The language de-
veloper can choose among the patterns and use the ones that matches the visual
language, and can customize visual properties for the patterns. If a pattern is
missing, a new can be added by defining attribute equations.



3 Research Proposal

We want to investigate how well suited RAGs are for defining the semantics
for a visual language, and how to use RAGs for semantics-dependent editor
interaction. In particular, we have the following research goals:

– Declarative semantic specification.
– Reuse of semantic specifiation.
– Semantic support in visual editor, for example, showing computed properties.
– Support languages with both a textual and visual syntax.
– Automatic incremental evaluation, using work by Söderberg et al. [25].
– Integration with other editor frameworks, such as JastGen [26].

3.1 Challenges

We have identified the following research challenges, based on experience from
the preliminary work described below.

Defining visual syntax. When defining a visual language, there should be a
way to define its syntax and the visual representation, that is, properties such
as shape and color. One way is to have a DSL supporting that and which
includes concepts such as nodes, connections and containment. To specify
how nodes can connect, constraints can be used. Attributes are one way to
specify such constraints. Another way is to use OCL as Bottoni et al. [20]
have done or create a predicate language as Esser et al. [27]. It should also
be possible to show attribute values. This can be used to show computed
properties such as cycles in graphs, inferred types, etc.
Another approach for defining the syntax is by graph grammars [19], such as

hypergraphs [17], where the visual representation is transformed to a graph,
which is then parsed. One benefit of graph grammars is that they allow both
free-hand and syntax-directed editing. However, earlier work [28] indicates
that metamodeling using GMF [21] is easier to use but less expressive than
hypergraphs, which is something we have experienced as well. We think it is
desirable that the specification format is easy to use, so it is appealing for a
software engineer.

We want to find and choose one approach and connect it to RAGs.
Model consistency. In the visual editor, we have both the view and the AST

model, and a challenge is to keep these models consistent with each other.
One way is to let the visual editor update the AST, which then informs the
view about the change and is updated accordingly. If the editor supports
both textual and visual editing, is this technique feasible? Another way is to
support bidirectional transformations [29].

Automatic layout. We want to find out how to handle layout that can be
sensitive to semantics. A language from ABB has this property, as described
below. For these languages, automatic layout must take this semantics into
consideration, in order to not inadvertently change the meaning of a diagram.



Erroneous diagrams. It can be helpful for the language user if it is possible
to temporarily have diagrams that contain errors. For example, when two
edges are being switched and it is forbidden to have more than one edge
to a node, then it may be useful to temporarily have one edge pointing to
nothing.

Undo / redo functionality. To increase the usability of editors for visual lan-
guages, functionality like undo and redo is often desirable. We would like to
generate edit operations for the AST that automatically provide support for
undo and redo functionality.

Refactoring. Another challenge is to support refactoring in visual languages
with RAGs. Is it possible to extend the work done by Schäfer et al. [30]?

3.2 Methodology

The research methodology we use is similar to design science research in informa-
tion systems. Instead of trying to understand the reality, as natural science does,
design science tries to create new innovative artifacts that have utility [31]. We
develop prototypes that are based on practical applications, as the preliminary
work with ABB demonstrates. The research contribution is the technical artifact
itself and the development of the foundations of RAGs. Design science consists
of two activities, build and evaluate, and is an iterative process; the artifact is
continuously evaluated to provide feedback to the building activity [32]. The
evaluation will include performance measurements, for example, the response
time for standard editing operations, as well as evaluation of specification size
and modularity. We develop a prototype visual language together with ABB
using RAGs, and it would be interesting to see if the engineers at ABB suc-
cessfully can experiment with new language constructs for this language in a
modular way.

3.3 Preliminary Work

We have started a collaboration with ABB, and designed a control language
based on a industrial language from ABB [33]. This language has both a textual
and a visual syntax. A diagram in the language contains blocks that are executed
periodically and connections between them that specify the data flow. One inter-
esting aspect of the language is that the semantics are influenced by the visual
placements of the blocks. The execution order of the blocks is primarily defined
by the data flow, and secondary by visual placements. To define the semantics
without visual coordinates, the visual placements are reflected in the declaration
order of the blocks in the textual syntax. We have implemented a visual editor
for this language using RAGs and the Graphical Editing Framework (GEF), an
Eclipse-based framework. A screenshot of the editor can be seen in Fig. 1, with
the corresponding textual syntax.



(a) Visual syntax

diagramtype tank-regulator(
Int refLevel, Int tolerance

=> StatusData status) {
StatusMonitor level;

Sub Sub_1;

...

connect(refLevel, Sub_1.in1);
...

}
(b) Textual syntax

Fig. 1: A model for regulating the liquid volume in a tank, using two valves, vIn
and vOut.

4 Conclusions

We have in this paper described the opportunity to use RAGs for implementing
tools for visual languages. Attribute gammars is a proven and convenient formal-
ism to specify the semantics of a language. RAGs extends AGs with references,
and makes it possibly to superimpose graphs on an AST, which can be used
to represent programs of visual languages. Expected benefits of using RAGs in-
clude reuse of compiler specification between different tools and the possibility
to experiment with new language constructs in a modular way. The expected
contributions are the prototype system and development of the foundations of
RAGs to support visual languages. Research goals have been described and re-
search challenges identified. Finally, we mention design science research as our
research methodology and describe the preliminary work with ABB that serves
as a case study.

Acknowledgements

We thank the anonymous reviewers for interesting and useful comments on a
earlier draft of this paper.

References

1. Deursen, A., Klint, P.: Little languages: Little maintenance? Journal of Software
Maintenance: Research and Practice 10(2) (1998) 75–92

2. Mernik, M., Heering, J., Sloane, A.M.: When and how to develop domain-specific
languages. ACM Comput. Surv. 37(4) (2005) 316–344

3. Ekman, T., Hedin, G.: The JastAdd system - modular extensible compiler con-
struction. Science of Computer Programming 69(1-3) (2007) 14–26

4. Ekman, T., Hedin, G.: The Jastadd Extensible Java Compiler. In: OOPSLA 2007,
ACM (2007) 1–18

5. Hedin, G., Åkesson, J., Ekman, T.: Extending languages by leveraging compilers:
from Modelica to Optimica. IEEE Software 28(3) (March 2010) 68–74



6. Modelica Association: Modelica - A Unified Object-Oriented Language for Systems
Modeling - Language Specification Version 3.3. (2012) Available from: http://www.
modelica.org.

7. Hedin, G.: Reference Attributed Grammars. In: Informatica (Slovenia). 24(3)
(2000) 301–317

8. Scott, D.: Outline of a mathematical theory of computation. Oxford University
Computing Laboratory, Programming Research Group (1970)

9. Scott, D., Strachey, C.: Toward a mathematical semantics for computer languages.
Oxford University Computing Laboratory, Programming Research Group (1971)

10. Kahn, G.: Natural semantics. In: 4th Annual Symposium on Theoretical Aspects
of Computer Sciences on STACS 87. Volume 247 of LNCS., Passau, Germany,
Springer (1987) 22–39

11. Plotkin, G.D.: A Structural Approach to Operational Semantics. Technical report,
Department of Computer Science, University of Aarhus (1981)

12. Knuth, D.E.: Semantics of Context-free Languages. Math. Sys. Theory 2(2) (1968)
127–145 Correction: Math. Sys. Theory 5(1):95–96, 1971.

13. Magnusson, E., Hedin, G.: Circular Reference Attributed Grammars - Their Eval-
uation and Applications. Science of Computer Programming 68(1) (2007) 21–37

14. Söderberg, E., Ekman, T., Hedin, G., Magnusson, E.: Extensible intraprocedural
flow analysis at the abstract syntax tree level. Science of Computer Programming
(2012)

15. Wyk, E.V., Bodin, D., Gao, J., Krishnan, L.: Silver: An extensible attribute gram-
mar system. Science of Computer Programming 75(1-2) (2010) 39–54

16. Sloane, A.M., Kats, L.C.L., Visser, E.: A pure object-oriented embedding of at-
tribute grammars. Electr. Notes Theor. Comput. Sci. 253(7) (2010) 205–219

17. Minas, M., Viehstaedt, G.: DiaGen: A generator for diagram editors providing
direct manipulation and execution of diagrams. In: Proceedings of the IEEE In-
ternational Symposium on Visual Languages, IEEE (1995) 203–210

18. Ehrig, K., Ermel, C., Hänsgen, S., Taentzer, G.: Generation of visual editors as
Eclipse plug-ins. In: Proceedings of the 20th IEEE/ACM international Conference
on Automated software engineering. ASE ’05, ACM (2005) 134–143

19. Rekers, J., Schürr, A.: Defining and parsing visual languages with layered graph
grammars. Journal of Visual Languages and Computing 8(1) (1997) 27–55

20. Bottoni, P., Costagliola, G.: On the definition of visual languages and their editors.
Diagrammatic Representation and Inference (2002) 337–396

21. GMF: The Eclipse Graphical Modeling Framework
http://www.eclipse.org/modeling/gmp/

22. Marriott, K.: Constraint multiset grammars. In: Visual Languages, 1994. Proceed-
ings., IEEE Symposium on, IEEE (1994) 118–125

23. Erwig, M.: Abstract syntax and semantics of visual languages. J. Vis. Lang.
Comput. 9(5) (1998) 461–483

24. Schmidt, C., Kastens, U.: Implementation of visual languages using pattern-based
specifications. Software: Practice and Experience 33(15) (2003) 1471–1505

25. Söderberg, E., Hedin, G.: Incremental evaluation of reference attribute grammars
using dynamic dependency tracking. Technical Report 98, Lund University (April
2012) LU-CS-TR:2012-249, ISSN 1404-1200.

26. Söderberg, E., Hedin, G.: Building semantic editors using jastadd. In: Proceedings
of the of the 11th Workshop on Language Descriptions, Tools and Applications,
LDTA 2011, ACM (2011)

http://www.modelica.org
http://www.modelica.org


27. Esser, R., Janneck, J.: A framework for defining domain-specific visual languages.
Workshop on Domain Specific Visual Languages, ACM Conference on Object-
Oriented Programming, Systems, Languages and Applications (OOPSLA-2001)
(2001)

28. Tveit, M.: Specification of graphical representations-using hypergraphs or meta-
models? Norsk informatikkonferanse NIK (2008) 39–50

29. Antkiewicz, M., Czarnecki, K.: Design space of heterogeneous synchronization. In:
Generative and Transformational Techniques in Software Engineering II. LNCS,
Springer (2008) 3–46

30. Schäfer, M., Ekman, T., de Moor, O.: Sound and Extensible Renaming for Java.
In Kiczales, G., ed.: 23rd Annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA 2008), ACM Press
(2008)

31. March, S.T., Smith, G.F.: Design and natural science research on information
technology. Decis. Support Syst. 15(4) (December 1995) 251–266

32. Hevner, A.R., March, S.T., Park, J., Ram, S.: Design science in information systems
research. MIS Q. 28(1) (March 2004) 75–105

33. Fors, N., Hedin, G.: Handling of layout-sensitive semantics in a visual control
language. In: Proceedings of the 2012 IEEE Symposium on Visual Languages and
Human-Centric Computing, IEEE (2012) poster paper to appear.


	Supporting Visual Editors usingReference Attributed Grammars

