
SMADL: The Social Machines Architecture
Description Language

Leandro Marques do Nascimento1,2, Vinicius Cardoso Garcia1,
Silvio R. L. Meira1

1 Informatics Center - Federal University of Pernambuco (UFPE) ,
2 Department of Informatics - Federal Rural University of Pernambuco (UFRPE)

{lmn2, vcg, srml}@cin.ufpe.br

Abstract. We are experiencing a high growth in the number of web
applications being developed. This is happening mainly because the web
is going into a new phase, called programmable web, where several web-
based systems make their APIs publicly available. In order to deal with
the complexity of this emerging web, we define a notion of social ma-
chine and envisage a language that can describe networks of such. To
start with, social machines are defined as tuples of input, output, pro-
cesses, constraints, states, requests and responses; apart from defining
the machines themselves, the language defines a set of connectors and
conditionals that can be used to describe the interactions between any
number of machines in a multitude of ways, as a means to represent
real machines interacting in the real web. This work presents a prelim-
inary version of the Social Machine Architecture Description Language
(SMADL).

1 Introduction

Software systems are built upon programming languages. A programming lan-
guage is a notation for expressing computations (algorithms) in both machine
and human readable form. Appropriate languages and tools may drastically re-
duce the cost of building new applications as well as maintaining existing ones
[1].

In the context of programming languages, a Domain-Specific Language (DSL)
is a language that provides constructs and notations tailored toward a particular
application domain [2]. Usually, DSLs are small, more declarative than imper-
ative, and more attractive than General-Purpose Languages (GPL) for their
particular application domain.

However, in software engineering several different artifacts are developed be-
sides code and one of the most important is the software architecture. Most de-
velopers agree that architecture is needed in some way, shape, or form, but, they
can’t agree on a definition, don’t know how to manage it efficiently in nontrivial
projects, and usually can’t express a system’s architectural abstractions precisely
and concisely [3]. When asking a developer to describe a system’s architecture
Voelter [3] says “I get responses that include specific technologies, buzzwords



such as AJAX (asynchronous JavaScript and XML) or SOA (service-oriented
architecture), or vague notions of “components” (such as publishing, catalog, or
payment). Some have wallpaper-sized UML diagrams in which the meanings of
the boxes and lines aren’t clear.”

These answers mention aspects that are actually related to a system’s ar-
chitecture, but none of them represent an unambiguous and/or “formal” de-
scription of a system’s core abstractions. Indeed, it is not surprising because,
although there are languages that directly express software architectures, they
are not quite common among software developers.

In order to better define software architectures, it is worthy using DSLs and
taking advantage of their expressiveness in a limited domain. Our proposal relies
on top of an Architecture Description Language (ADL) for describing web based
software systems in terms of Social Machines, a new concept developed by our
research group which tries to increase the abstraction level for comprehending
the web. Next, we present the context and the details about Social Machines.

2 An Emerging Web of Social Machines

The traditional concept of software has been changing during the last decades.
Since the first definition of a computing machine described by Turing in [4],
software started to become part of our lives and has been turned pervasive and
ubiquitous with the introduction of personal computers, the internet, smart-
phones and recently the internet of things. In fact, one can say that software
and the internet changed the way we communicate, the way business is done
and the way software is developed, deployed and used. Nowadays, computing
means connecting [5] and sometimes it is said that developing software is the
same as connecting services [6], since there are several up and running software
services available.

Recently, we all can clearly see that a new phase is emerging, the web “3.0”,
the web as a programming platform, the network as an infrastructure for in-
novation, on top of which all and sundry can start developing, deploying and
providing information services using the computing, communication and control
infrastructures in a way fairly similar to utilities such as electricity.

An overview of this Web 3.0 scenario can be seen in the ProgrammableWeb
website1. It gathers around 6500 publicly available APIs and more than 6700
mashups using them (last visit in July 2012). Although there have been many
studies about the future of the internet and concepts such as web 3.0, pro-
grammable web [7, 8], linked data [9] and semantic web [10, 11], the segmenta-
tion of data and the issues regarding the communication among systems obfus-
cates the interpretation of this future. Unstructured data, unreliable parts and
non-scalable protocols are all native characteristics of the internet that needs a
unifying view and explanations in order to be developed, deployed and used in
a more efficient and effective way.

1 www.programmableweb.com



Furthermore, the Web concepts, as we know, are recent enough to represent
many serious difficulties while understanding their basic elements and how they
can be efficiently combined to develop real, practical systems in either personal,
social or enterprise contexts. Therefore, we developed a new concept called Social
Machine (SM), in order to provide a common and coherent conceptual basis
for understanding this still immature, upcoming and possibly highly innovative
phase of software development. SM concept was firstly conceived in [12] and later
demonstrated with a case study in [13].

So, we define a SM as a tuple, as following:

SM = <Rel, WI, Req, Resp, S, Const, I, P, O>

In general, a SM represents a connectable and programmable entity contain-
ing an internal processing unit (P) and a wrapper interface (WI) that waits for
requests (Req) from and replies [with responses (Resp)] to other social ma-
chines. Its processing unit receives inputs (I), produces outputs (O) and has
states (S); and its connections define intermittent or permanent relationships
(Rel) with other SMs. These relationships are connections established under
specific sets of constraints (Const). Our goal with this concept of a Social Ma-
chine is not to formally describe software services as can be seen in [14], but
instead we want to describe the programmable web in a higher level of abstrac-
tion, thus increasing the power of new programming structures or paradigms
dedicated to this context. Figure 1 illustrates a basic representation of a Social
Machine.

Fig. 1. A graphical representation of a Social Machine.

The idea behind Social Machines is to take advantage of the networked en-
vironment they are in to make it easier to combine and reuse exiting services
from different SMs and use them to implement new ones. Hence, we can high-
light some of its main characteristics, as following: Sociability, Compositionality,



Platform and Implementation independency, Self-awareness, Discoverability and
last, but not least, Programmability.

There may be different types of social machines, but one way to classify
them is through the simple taxonomy shown in Figure 2, based on the types of
interactions they have with each other, as follows:

– Isolated - Social Machines that have no interaction with other Social Ma-
chines;

– Provider - Social Machines that provide services for other Social Machines
to consume;

– Consumer - Social Machines that consume services that other Social Ma-
chines provide;

– Prosumer - Social Machines that both provide and consume services.

Fig. 2. Social Machines as a partial order diagram.

In this work, we envisage an Architecture Description Language that can
describe networks of SMs. Apart from defining the machines themselves, the
ADL defines a set of connectors and conditionals that can be used to describe the
interactions between any number of machines in a multitude of ways, as a means
to represent real machines interacting in the real web. Details are presented next.

3 The Social Machines Architecture Description
Language - SMADL

This work is an attempt to answer the following research questions: “Is it possible
to integrate diverse web applications using a standard architecture description
language?”. In order to answer it, this work purposes a new ADL for defining
social machines: SMADL.

Social Machines can be connected (or establish a relationship) in basically
two phases: in the first phase, the SMs must find each other, and a there must
be a SM registry service much likely Internet DNS; in the second phase the SMs
actually connect to each other and exchange information for a limited period



of time. The SM registry service is out of the scope of this proposal. We are
assuming SMs can find each other without much effort.

In order to comprise these two phases, SMADL is composed by two mini-
languages:

– VCL (Visitor Card Language): presents the externally visible properties
of a SM, i.e., which requests and responses it accepts, which types of in-
puts/outputs it handles, if an internal state is maintained and/or how many
requests it can handle per amount of time. A vCard is provided by the SM
registry to the consumer SM, so it can decide if the relationship is interest-
ing or not. Business issues are also present in a SM vCard, such as, billing
information and service level agreements. Nowadays, popular web APIs do
not make available such business information in a programmatic way. Usu-
ally, there are only few lines in reduced font size contracts mentioning that
important information.

– WIL (Wrapper Interface Language): we are assuming every SM has a vCard
with which the wrapper interface is fully complaint. This language is respon-
sible for actually connecting SMs, establishing pre and post conditions, ap-
plying different connectors in a SM composition, and implementing business
rules associated with a given set of SMs. Our proposal is to use WIL not as
substitute for the currently available technologies. Instead it increases the
level of abstraction of these technologies, freeing the programmer to concen-
trate on business issues of the SM relationships.

To understand better how these mini-languages are used, Figure 3 shows the
steps for establishing a relationship between two SMs, as following:

1. Initially, the requester SM, in this case represented by Evernote (upper left
icon), searches for some SM registered as a micro blog, in our case Twit-
ter (upper right icon). Note that Evernote presents its vCard to DNS while
searching for a service, once the responder may or may not accept connec-
tions with that specific SM.

2. The SM DNS finds Twitter and requests its vCard.
3. Twitter responds with its vCard, accepting the relationship.
4. The SM DNS replies back to Evernote with the Twitter vCard, which in-

cludes its address.
5. Using Twitter vCard and knowing its wrapper interface, Evernote establishes

a relationship with Twitter, following all conditions imposed.

There are several popular technologies for integrating web based or service
oriented systems, such, REST [15] and OSGi [16]. The current version of SMADL
generates code for REST based apps, as it is becoming the most popular on
the web, adopted by big players such as Facebook and Google. According to
ProgrammableWeb site 4300 out of approximately 6500 APIs uses REST as
base technology.

SMADL is being developed on Xtext language workbench [17]. As this is a
work in progress, we are preliminarily evaluating alpha versions of the language
and planning an experiment using the approach proposed by [18].



Fig. 3. Steps for establishing a relationship between two example Social Machines.

4 Related Work

We performed a systematic mapping study [19] for better understanding the
DSL/ADL research field as shown in [20]. Initially, 4450 studies were identified,
and, after filtering, 1440 primary studies were selected and categorized. Among
all those primary studies, different methods/techniques for handling DSLs (cre-
ating, evolving, maintaining, testing) could be listed and several DSLs applied
to several different domains could be identified. The domain where DSLs are
most frequently applied is the Web domain. Other domains such as embedded
systems, data intensive apps, and control systems where quite common too.

In our study we could enumerate 30 publications directly related to ADL.
Amongst them, only two of them mention the Web domain, both from 2010. In
the first one [21], the authors propose to formalize the architectural model using
domain-specific language, an ADL which supports the description of dynamic,
adaptive and evolvable architectures, such as SOA itself. Their ADL allows the
definition of executable ver-sions of the architecture. The second one is [?] which
presents a framework for the implementation of best practices concerning the
design of the software architecture. The authors present an implementation of the
framework in the Eclipse platform and an ADL dedicated to Web applications.

In addition, practical examples, such as Yahoo! Pipes2 and IfThisThenThat3

can be seen as related work. The former uses a graphical tool for customizing
data flows from different sources. The latter allows end users to program the web
based on pre-defined events fired by a set of channels, for example, if someone
tags you on a given social network (channel 1), then save this photo in the
person’s virtual drive (channel 2). The user can choose among different events
from different channels, which are, in practice, websites that make available
their APIs. Our work is an attempt to be a completely different way to program

2 http://pipes.yahoo.com
3 http://ifttt.com/



the Web, not based on pre-defined parameters. The idea behind SMADL is to
actually define every public API in the Web and the relationships among them.
This way, composition possibilities for several SMs can be infinite.

As can be seen, this is a relatively new research field and we believe we can
make a considerable contribution by establishing the concept of a Social Machine
and developing an ADL for supporting it.

5 Concluding Remarks and Future Work

This work presents SMADL “The Social Machines Architecture Description Lan-
guage” as a possible solution for modeling web-based software systems.

In general, a Social Machine (SM) represents a connectable and programmable
entity containing an internal processing unit (P) and a wrapper interface (WI)
that waits for requests (Req) from and replies [with responses (Resp)] to other
social machines. Its processing unit receives inputs (I), produces outputs (O)
and has states (S); and its connections define intermittent or permanent rela-
tionships (Rel) with other SMs. These relationships are connections established
under specific sets of constraints (Const).

Our main goal is to use SMADL to describe SM relationships and then we
can have one unique way to program the web, independently of what technol-
ogy/platform is being used. The current version (alpha) of SMADL generates
code for REST based apps, as it is becoming the most popular on the web,
adopted by big players such as Facebook and Google. Nowadays, we are work-
ing on several sample apps which have their architecture written in SMADL.
These apps are basically consumer SMs, it means they do not make available
public features, but only consumes other public APIs. These apps are going to
be distributed as open source.

Our next steps include writing fully prosumer social machines, i.e. applica-
tions that connects to others, process their data, and someway make this data
available for others to consume. At this phase, we are planning to perform an
experiment, following the methodology described in [18].

Acknowledgments. This work was partially supported by the National In-
stitute of Science and Technology for Software Engineering (INES ), funded
by CNPq and FACEPE, grants 573964/2008-4, APQ-1037-1.03/08 and APQ-
1044-1.03/10 and Brazilian Agency (CNPq processes number 475743/2007-5 and
140060/2008-1).

References

1. Pressman, R.S.: Software engineering: a practitioner’s approach (2nd ed.).
McGraw-Hill, Inc., New York, NY, USA (1986)

2. Mernik, M., Heering, J., Sloane, A.M.: When and how to develop domain-specific
languages. ACM Comput. Surv. 37(4) (December 2005) 316–344



3. Völter, M.: Architecture as language. IEEE Software 27(2) (2010) 56–64
4. Turing, A.M.: On computable numbers, with an application to the entschei-

dungsproblem. Proceedings of the London Mathematical Society 42 (1936) 230–
265

5. Roush, W.: Social Machines. Technology Review (2006) 1–18
6. Turner, M., Budgen, D., Brereton, P.: Turning software into a service. Computer

36(10) (October 2003) 38–44
7. Yu, S., Woodard, C.J.: Service-oriented computing — icsoc 2008 workshops.

Springer-Verlag, Berlin, Heidelberg (2009) 136–147
8. Hwang, J., Altmann, J., Kim, K.: The structural evolution of the web 2.0 service

network. Online Information Review 33(6) (2009) 1040–1057
9. Bizer, C., Heath, T., Berners-Lee, T.: Linked data - the story so far. Int. J.

Semantic Web Inf. Syst. 5(3) (2009) 1–22
10. Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific American

284(5) (2001) 34–43
11. Hitzler, P., Krtzsch, M., Rudolph, S.: Foundations of Semantic Web Technologies.

1st edn. Chapman & Hall/CRC (2009)
12. Meira, S.R.L., Burégio, V.A., Nascimento, L.M., de Figueiredo, E.G.M., Neto, M.,

Encarnação, B.P., Garcia, V.C.: The Emerging Web of Social Machines. CoRR
abs/1010.3 (2010)

13. Meira, S.R.L., Buregio, V.A.A., Nascimento, L.M., Figueiredo, E., Neto, M., En-
carnacao, B., Garcia, V.C.: The Emerging Web of Social Machines. In: 2011 IEEE
35th Annual Computer Software and Applications Conference, IEEE (July 2011)
26–27

14. Broy, M., Krüger, I.H., Meisinger, M.: A formal model of services. ACM Trans.
Softw. Eng. Methodol. 16(1) (February 2007)

15. Richardson, L., Ruby, S.: Restful web services. First edn. O’Reilly (2007)
16. Hall, R.S., Pauls, K., McCulloch, S., Savage, D.: OSGi in Action: Creating Modular

Applications in Java. Volume 188. Manning (2010)
17. Eysholdt, M., Behrens, H.: Xtext: implement your language faster than the quick

and dirty way. In: Proceedings of the ACM international conference companion
on Object oriented programming systems languages and applications companion.
SPLASH ’10, New York, NY, USA, ACM (2010) 307–309

18. Juristo, N., Moreno, A.: Basics of Software Engineering Experimentation. Springer
(2001)

19. Petersen, K., Feldt, R., Mujtaba, S., Mattsson, M.: Systematic mapping studies
in software engineering. In: Proceedings of the 12th international conference on
Evaluation and Assessment in Software Engineering. EASE’08, Swinton, UK, UK,
British Computer Society (2008) 68–77

20. Nascimento, L.M., Viana, D.L., da Mota Silveira Neto, P.A., Souto, S.F., Martins,
D.A.O., Garcia, V.C., Meira, S.R.L.M.: Domain-Specific Languages - A Systematic
Mapping Study. In: Proceeedings of 7th International Conference on Software
Engineering Advances (ICSEA). (2012)

21. López-Sanz, M., Cuesta, C.E., Marcos, E.: Formalizing high-level service-oriented
architectural models using a dynamic adl. In: Proceedings of the 2010 international
conference on On the move to meaningful internet systems. OTM’10, Berlin, Hei-
delberg, Springer-Verlag (2010) 57–66


