
Using read/write Linked Data for Application Integration –
Towards a Linked Data Basic Profile

Arnaud J Le Hors
IBM

Software Standards
Architect

+1 (720) 396-5228

lehors@us.ibm.com

Martin Nally
IBM

CTO, Rational Software
Fellow and VP

+1 (714) 472-2690

nally@us.ibm.com

Steve K Speicher
IBM

STSM
OSLC Lead Architect

+1 (919) 254-0645

sspeiche@us.ibm.com

ABSTRACT
Linked Data, as defined by Tim Berners-Lee’s 4 rules [1], has
enjoyed considerable well-publicized success as a technology for
publishing data in the World Wide Web [2]. The Rational group in
IBM has for several years been employing a read/write usage of
Linked Data as an architectural style for integrating a suite of
applications, and we have shipped commercial products using this
technology. We have found that this read/write usage of Linked
Data has helped us solve several perennial problems that we had
been unable to successfully solve with other application
integration architectural styles that we have explored in the past.
The applications we have integrated in IBM are primarily in the
domains of Application Lifecycle Management (ALM) and
Integration System Management (ISM), but we believe that our
experiences using read/write Linked Data to solve application
integration problems could be broadly relevant and applicable
within the IT industry.

This paper explains why Linked Data, which builds on the
existing World Wide Web infrastructure, presents some unique
characteristics, such as being distributed and scalable, that may
allow the industry to succeed where other application integration
approaches have failed. It discusses lessons we have learned along
the way and some of the challenges we have been facing in using
Linked Data to integrate enterprise applications.

Finally, we discuss several areas that could benefit from
additional standard work and discuss several commonly
applicable usage patterns along with proposals on how to address
them using the existing W3C standards in the form of a Linked
Data Basic Profile. This includes techniques applicable to clients
and servers that read and write linked data, a type of container
that allows new resources to be created using HTTP POST and
existing resources to be found using HTTP GET (analogous to
things like Atom Publishing Protocol (APP) [3]).

General Terms
Management, Design, Standardization

Keywords
Linked Data, Usage Patterns, Application Integration, Enterprise
Application, Standards, ALM, ISM, Profile

1. INTRODUCTION
There is interest in Linked Data technologies for more than one
purpose. We have seen interest for the purpose of exposing
information – for example public records – on the Internet in a
machine-readable format. We have also seen interest in the use of
Linked Data for inferring new information from existing
information, for example in pharmaceutical applications or IBM
Watson [4]. The IBM Rational team has been using Linked Data
as an architectural model and implementation technology for
application integration in the Product and Application Lifecycle
Management domain. This approach has been largely successful
and we are pleased – even passionate – about the results but
getting there has not been easy. Although related work exists [5]
[6][7][8][9], as far as we can tell, there is only a very limited
number of people trying to use Linked Data technologies the way
we are, and the little information that is available on best practices
and pitfalls remains widely dispersed. We believe that Linked
Data has the potential to solve some important problems that have
frustrated the IT industry for many years, or at least make
significant advances in that direction, but this potential will only
be realized if we can establish and communicate a much richer
body of knowledge on how to exploit these technologies. In some
cases, there also are gaps in the Linked Data standards that need
to be addressed. To help with this process, we discuss in this
paper several best practices and anti-patterns we have identified
as applicable to more domains than ALM. These include
accessing, updating and creating resources from servers that
expose their resources as Linked Data.

2. THE INTEGRATION CHALLENGE
IBM Rational is a vendor of industry leading system and software
development tools, particularly those that support the general
software development process such as bug tracking, requirements
management and test management tools. Like many vendors who
sell multiple applications, we have seen strong customer demand
for better support of more complete business processes - in our
case system and software development processes - that span the
roles, tasks and data addressed by multiple tools. While answering
this demand within the realm of a single vendor offering made of
many different products can be challenging it quickly becomes
unmanageable when customers want to mix in products from
other vendors as well as their own homegrown components.
We describe our problem domain here to explain that we were led
to explore these technologies by our need to solve long-standing
problems in commercial application development and to
emphasize that our conclusions are supported by experience in Copyright is held by the author/owner(s).

LDOW2012, April 16, 2012, Lyon, France.

shipping and deploying real applications, but we do not believe
that our experiences or these technologies are limited to our
application domain. These problems are encountered in many
application domains, have existed for many years, and our
industry has tried several different architectural approaches to
address the problem of integrating the various products these
complex scenarios require. Here are a few:

1. Implement some sort of Application Programming
Interface (API) for each application, and then, in each
application, implement “glue code” that exploits the
APIs of other applications to link them together.

2. Design a single database to store the data of multiple
applications, and implement each of the applications
against this database. In the software development tools
business, these databases are often called “repositories”.

3. Implement a central “hub” or “bus” that orchestrates the
broader business process by exploiting the APIs
described in option 1 above.

While a discussion of the failings of each of these approaches is
outside the scope of this document it is fair to say that although
each one of them has its adherents and can point to some
successes, none of them is wholly satisfactory. So, we decided to
look for an alternative.

3. WHAT WOULD SUCCESS LOOK
LIKE?
Unsatisfied with the state of the art regarding product integration
in the ALM domain we decided around 2004 to have another look
at how we might approach this integration problem.

Stepping back from what had already been attempted to date we
started by identifying what characteristics an ideal solution would
have. We came up with the following list:

Distributed – because of outsourcing, acquisitions, and the
Internet, systems and work forces are increasingly distributed.

Scalable - need to scale to an unlimited number of products and
users

Reliable – as we move from local area networks to wide area
networks, as we move to remote areas of the world without the
best infrastructures, and as users increasingly use mobile
technology, we have to be reliable across a wide range of
connectivity profiles.

Extensible – we need to be extensible in the sense that we can
work with a wide variety of resources both in the application
delivery domain but also in adjacent domains.

Simple – avoid the fragility we saw with tight coupling and keep
the barrier to entry low so that it will be easy for people to
interoperate with our products.

Equitable – equitable architecture that is open to everyone with no
barriers to participation.

4. THE SOLUTION
When looking for a solution that had these characteristics –
distributed, scalable, reliable, extensible, simple, and equitable –
we realized that one such solution already existed: The World-
Wide Web.

The Internet is all over the world, it supports billions of users, it’s
never gone down, it supports every kind of capability from web
pages to video, from education to business, and anyone with an
internet connection and an input device can participate in it.
One reason the Web enjoys all these characteristics is that it
works in terms of protocols and resource formats rather than
application specific interfaces. As an example, the web allows
anyone to access any web page using whatever device and
browser they like, independently of the type of hardware and
system the server is running on. This is possible because the web
relies on a resource format for web pages – HTML – and a
protocol for accessing these resources – HTTP –.
Applying the same principle to the ALM domain integration
problem meant thinking in terms of domain specific resources,
such as requirements, change requests, and defects, and access to
these resources rather than in terms of tools. We stopped thinking
of the applications as being the central concept of the architecture
and instead started to focus on the resources.
In this architecture the focus is on a web of resources from the
various application domains – in our case, change management or
quality management etc. - the applications are viewed as simply
handlers of HTTP requests for those resources, and are not a
central focus. Because each resource is identified by a URI, we
can easily express arbitrary linkage between resources from
different domains or the same domajn.
When we started in this direction, we were not fully aware of the
linked data work – we reasoned by analogy with the HTML web,
and we had understood the value of HTTP and URLs for solving
our problems. For data representations, we continued to look to
XML for solutions. Over time it became clear to us that to realize
the full potential of the architecture we needed a simpler and more
prescriptive data model than the one offered by XML, and so we
started transitioning to RDF [10]. At this point we realized that
what we were really doing was applying Linked Data principles to
application integration.

5. LINKED DATA
We wanted an architecture that is minimalist, loosely coupled,
had a standard data representation, kept the barriers to entry low
and could be supported by existing applications implemented with
many implementation technologies. Linked Data was just what we
needed.

Linked Data was defined by Tim Berners-Lee as the following
four rules [1]:

1) Use URIs as names for things
2) Use HTTP URIs so that people can look up those

names.
3) When someone looks up a URI, provide useful

information, using the standards (RDF*, SPARQL)
4) Include links to other URIs, so that they can discover

more things.
RDF provides a data model that is very flexible, enables
interoperability and extensibility.
With RDF we were able to model the different types of resources
we needed and the relationships between themsuch that for ALM
a change request becomes a resource exposed as RDF that can be
linked to the defect it is to address, and a test to use to validate the
change to be made. With Linked Data the change management,

defect management, and test management tools no longer connect
to each other via specific interfaces but simply access the
resources directly, following the Linked Data principles.

6. CONVENTIONS
As we embarked on the process of defining the various resource
types we needed, their relationship, and their lifecycle it became
apparent that we also needed to define a set of conventions above
what is currently defined by W3C and the Linked Data standards.
Some of these are simple rules that could be thought of as
clarification of the basic Linked Data principles. Others are
necessary because, unlike many uses of Linked Data, which are
essentially read-only, our use of Linked Data is fundamentally
read-write which raises its own set of challenges.
The following lists some of the categories these conventions fall
in:

• Resources – a set of HTTP and RDF standard
techniques and best practices that you should use, and
anti-patterns you should avoid, when constructing
clients and servers that read and write linked data. This
includes a set of common properties leveraging existing
RDF vocabularies such as Dublin Core [11]. It also
includes what HTTP verb to use for creating, updating,
getting, and deleting a resource as well as how to use
them. In particular, in a system where tools may expand
resources with additional properties beyond the core
properties required to be supported by everyone it is
crucial that any application that updates a resource
preserves the properties it doesn’t understand.

• Containers – a type of resource that allows new
resources to be created using HTTP POST and existing
resources to be found using HTTP GET. These
containers are to RDF what APP is to XML. They
answer the following two basic questions:
1) To which URLs can I POST to create new

resources?
2) Where can I GET a list of existing resources?

• Paging – a mechanism for splitting the information in
large containers into pages that can be fetched
incrementally. For example, an individual defect usually
is sufficiently small that it makes sense to send it all at
once, but the list of all the defects ever created is
typically too big. The paging mechanism provides a
way to communicate the list in chunks with a simple set
of conventions on how to query the first page and how
pages are linked from one to the next.

• Ordering – a mechanism for specifying which
predicates were used for page ordering..

The following sections provide further details regarding a
proposal for addressing these in the form of a “Basic Profile for
Linked Data” inspired by our work on Open Services for
Lifecycle Collaboration (OSLC) [12].

7. TERMINOLOGY
The terminology used in this paper is based on W3C's
Architecture of the World Wide Web [13] and Hyper-text
Transfer Protocol (HTTP/1.1) [14].

Link : A relationship between two resources when one resource
(representation) refers to the other resource by means of a URI.
Basic Profile : A specification that defines the needed
specification components from other specifications as well as
providing clarifications and patterns. Within the "Basic Profile for
Linked Data", it is sometimes referred to as a shortened "Basic
Profile".

Client : A program that establishes connections for the purpose of
sending requests.
Basic Profile Client : A client that adheres to the rules defined in
the Basic Profile.

Server: An application program that accepts connections in order
to service requests by sending back responses. Any given program
may be capable of being both a client and a server; our use of
these terms refers only to the role being performed by the
program for a particular connection, rather than to the program's
capabilities in general. Likewise, any server may act as an origin
server, proxy, gateway, or tunnel, switching behavior based on the
nature of each request.
Basic Profile Server : A server that adheres to the rules defined
in the Basic Profile.

8. BASIC PROFILE RESOURCES
Basic Profile Resources are HTTP linked data resources that
conform to some simple patterns and conventions. Most Basic
Profile Resources are domain-specific resources that contain data
for an entity in some domain, which could be commercial,
governmental, scientific, religious or other. A few Basic Profile
Resources are defined by the Basic Profile specifications and are
cross-domain. All Basic Profile Resources follow the four basic
rules of Linked Data, previously laid out in section 5, to which
Basic Profile adds a few rules of its own. Some of these rules
could be thought of as clarification of the basic linked data rules.

1. Basic Profile Resources are HTTP resources that
can be created, modified, deleted and read using
standard HTTP methods.
(Clarification or extension of Linked Data rule #2.)
Basic Profile Resources are created by HTTP POST (or
PUT) to an existing resource, deleted by HTTP
DELETE, updated by HTTP PUT or PATCH [15], and
"fetched" using HTTP GET.
Additionally Basic Profile Resources can be created,
updated and deleted using SPARQL Update [16].

2. Basic Profile Resources use RDF to define their
state.
(Clarification of Linked Data rule #3.) The state (in the
sense of state used in the REST architecture) of a Basic
Profile Resource is defined by a set of RDF triples.
Basic Profile Resources can be mixed in the same
application with other resources that do not have useful
RDF representations such as binary and text resources.

3. You can request an RDF/XML representation of
any Basic Profile Resource.
(Clarification of Linked Data rule #3.) The resource
may have other representations as well. These could be

other RDF formats, like Turtle, N3 or NTriples, but
non-RDF formats like HTML and JSON would also be
popular additions, and Basic Profile sets no limits.

4. Basic Profile clients use Optimistic Collision
Detection on Update.
(Clarification of Linked Data rule #2.) Because the
update process involves first getting a resource,
modifying it and then later putting it back to the server
there is the possibility of a conflict, e.g. some other
client may have updated the resource since the GET. To
mitigate this problem, Basic Profile implementations
should use the HTTP If-Match header and HTTP
ETags to detect collisions.

5. Basic Profile Resources use standard vocabularies.
Basic Profile Resources use common vocabularies
(classes, properties, etc) for common concepts. Many
web sites define their own vocabularies for common
concepts like resource types, label, description, creator,
last-modification-time, priority, enumeration of priority
values and so on. This is usually viewed as a good
feature by users who want their data to match their local
terminology and processes, but it makes it much harder
for organizations to subsequently integrate information
in a larger view. Basic Profile requires all resources to
expose common concepts using a common vocabulary
for properties. Sites may choose to additionally expose
the same values under their own private property names
in the same resources. In general, Basic Profile avoids
inventing its own property names where possible – it
uses ones from popular RDF-based standards like the
RDF standards themselves, Dublin Core, and so on.
Basic Profile invents property URLs where no match is
found in popular standard vocabularies. A number of
recommended standard properties for use in Basic
Profile Resources are listed below, in section 8.1.

6. Basic Profile Resources set rdf:type explicitly.
A resource’s membership in a class extent can be
indicated explicitly – by a triple in the resource
representation that uses the rdf:type predicate and the
URL of the class - or derived implicitly. In RDF there is
no requirement to place an rdf:type triple in each
resource, but this is a good practice, since it makes
query more useful in cases where inferencing is not
supported. Remember also that a single resource can
have multiple values for rdf:type. For example, the
dpbedia entry for Barack Obama [17] has dozens of
rdf:types. Basic Profile sets no limits to the number of
types a resource can have.

7. Basic Profile Resources use a restricted number of
standard datatypes. RDF does not by itself define
datatypes to be used for property values, so Basic
Profile lists a set of standard datatypes to be used in
Basic Profile to increase interoperability. Here is the
list:
o Boolean: a boolean type as specified by XSD [18]
Boolean.
o Date: a Date type as specified by XSD date.

o DateTime: a Date and Time type as specified by
XSD dateTime.
o Decimal: a decimal number type as specified by
XSD Decimal.
o Double: a double floating-point number type as
specified by XSD Double.
o Float: a floating-point number type as specified by
XSD Float.
o Integer: an integer number type as specified by XSD
Integer.
o String: a string type as specified by XSD String).
o XMLLiteral: a Literal XML value.

8. Basic Profile clients expect to encounter unknown
properties and content.
Basic Profile provides mechanisms for clients to
discover lists of expected properties for resources for
particular purposes, but also assumes that any given
resource may have many more properties than are listed.
Some servers will only support a fixed set of properties
for a particular type of resource. Clients should always
assume that the set of properties for a resource of a
particular type at an arbitrary server may be open in the
sense that different resources of the same type may not
all have the same properties, and the set of properties
that are used in the state of a resource are not limited to
any pre-defined set. However, when dealing with Basic
Profile Resources, clients should assume that a Basic
Profile server may discard triples for properties of
which it does have prior knowledge. In other words,
servers may restrict themselves to a known set of
properties, but clients may not. When doing an update
using HTTP PUT, a Basic Profile client must preserve
all property-values retrieved using GET that it doesn’t
change whether it understands them or not. (Use of
HTTP PATCH or SPARQL Update instead of PUT for
update avoids this burden for clients.)

9. Basic Profile clients do not assume the type of a
resource at the end of a link.
Many specifications and most traditional applications
have a “closed model”, by which we mean that any
reference from a resource in the specification or
application necessarily identifies a resource in the same
specification (or a referenced specification) or
application. By contrast, the HTML anchor tag can
point to any resource addressable by an HTTP URI, not
just other HTML resources. Basic Profile works like
HTML in this sense. A HTTP URI reference in one
Basic Profile resource may in general point to any
resource, not just a Basic Profile resource.

There are numerous reasons to maintain an open model
like HTML’s. One is that it allows data that has not yet
been defined to be incorporated in the web in the future.
Another reason is that it allows individual applications
and sites to evolve over time - if clients assume that
they know what will be at the other end of a link, then
the data formats of all resources across the transitive
closure of all links has to be kept stable for version
upgrade.

A consequence of this independence is that client
implementations that traverse HTTP URI links
from one resource to another should always code
defensively and be prepared for any resource at the
end of the link. Defensive coding by clients is
necessary to allow sets of applications that
communicate via Basic Profile to be independently
upgraded and flexibly extended.

8.1 Common Properties
The following are some properties from well-known RDF
vocabularies that are recommended for use in Basic Profile
Resources. Basic Profile requires none of them, but a
specification based on Basic Profile may require one of these
properties or more for a particular resource type.
Commonly used namespace prefixes:
@prefix dcterms: <http://purl.org/dc/terms/>.
@prefix rdf:

 <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
@prefix rdfs:

 <http://www.w3.org/2000/01/rdf-schema#>.
@prefix bp:

 <http://open-services.net/ns/basicProfile#>.
@prefix xsd:

 <http://www.w3.org/2001/XMLSchema#>.

8.1.1 From Dublin Core
URI: http://purl.org/dc/terms/

Property Range Comment

dcterms:contributordcterms:Agent

The identifier of a resource
(or blank node) that is a
contributor of information.
This resource may be a
person or group of people, or
possibly an automated
system.

dcterms:creator dcterms:Agent

The identifier of a resource
(or blank node) that is the
original creator of the
resource. This resource may
be a person or group of
people, or possibly an
automated system.

dcterms:created xsd:dateTime The creation timestamp

dcterms:descriptionrdf:XMLLiteral

Descriptive text about the
resource represented as rich
text in XHTML format.
SHOULD include only
content that is valid and
suitable inside an XHTML
<div> element.

dcterms:identifier rdfs:Literal

A unique identifier for the
resource. Typically read-only
and assigned by the service
provider when a resource is
created. Not typically
intended for end-user display.

dcterms:modified xsd:dateTime Date on which the resource
was changed.

dcterms:relation rdfs:Resource The URI of a related

Property Range Comment
resource. This is the predicate
to use when you don't know
what else to use. If you know
more specifically what sort of
relationship it is, use a more
specific predicate.

dcterms:subject rdfs:Resource

Should be a URI (see
dbpedia.org) "Typically, the
subject will be represented
using keywords, key phrases,
or classification codes.
Recommended best practice
is to use a controlled
vocabulary. To describe the
spatial or temporal topic of
the resource, use the
Coverage element." (from
Dublin Core)

dcterms:title rdf:XMLLiteral

A name given to the resource.
Represented as rich text in
XHTML format. SHOULD
include only content that is
valid inside an XHTML
 element.

8.1.2 From RDF
URI: http://www.w3.org/1999/02/22-rdf-syntax-ns#

Property Range Comment

rdf:type rdfs:Class

The type or types of the resource. Basic
Profile recommends that the rdf:type(s) of
a resource be set explicitly in resource
representations to facilitate query with non-
inferencing query engines

8.1.3 From RDF Schema
URI: http://www.w3.org/2000/01/rdf-schema#

Property Range Comment

rdfs:member rdf:Resource The URI (or blank node identifier) of a
member of a container.

rdfs:label rdf:Resource "Provides a human-readable version of a
resource name." (From RDFS)

9. BASIC PROFILE CONTAINER
Many HTTP applications and sites have organizing concepts that
partition the overall space of resources into smaller containers.
Blog posts are grouped into blogs, wiki pages are grouped into
wikis, and products are grouped into catalogs. Each resource
created in the application or site is created within an instance of
one of these container-like entities, and users can list the existing
artifacts within one. There is no agreement across applications or
sites, even within a particular domain, on what these grouping
concepts should be called, but they commonly exist and are
important. Containers answer two basic questions, which are:

1. To which URLs can I POST to create new resources?
2. Where can I GET a list of existing resources?

In the XML world, APP has become popular as a standard for
answering these questions. APP is not a good match for Linked
Data - this specification shows how the same problems that are
solved by APP for XML-centric designs can be solved by a

simple Linked Data usage pattern with some simple conventions
on posting to RDF containers. We call these RDF containers that
you can POST to Basic Profile Containers. Here are some of their
characteristics:

1. A Basic Profile Container is a resource that is a Basic
Profile Resource of type bp:Container.

2. Clients can retrieve the list of existing resources in a
Basic Profile Container.

3. New resources are created in a Basic Profile Container
by POSTing to it.

4. Any resource can be POSTed to a Basic Profile
Container - a resource does not have to be a Basic
Profile Resource with an RDF representation to be
POSTed to a Basic Profile Container.

5. After POSTing a new resource to a container, the new
resource will appear as a member of the container until
it is deleted. A container may also contain resources that
were added through other means - for example through
the user interface of the site that implements the
Container.

6. The same resource may appear in multiple containers.
This happens commonly if one container is a "view"
onto a larger container.

7. Clients can get partial information about a Basic Profile
Container without retrieving a full representation
including all of its contents.

The representation of a Basic Profile Container is a standard RDF
container representation using the rdfs:member predicate or
another predicate specified by bp:membershipPredicate. For
example, if you have a container with the URL
http://example.org/container1, it might have the following
representation:
@prefix dcterms: <http://purl.org/dc/terms/>.

@prefix rdfs:

 <http://www.w3.org/2000/01/rdf-schema#>.

@prefix bp:

 <http://open-services.net/ns/basicProfile#>.

<http://example.org/container1>

 a bp:Container ;

 dcterms:title "A very simple container";

 rdfs:member

 <http://example.org/container1/member1>,

 <http://example.org/container1/member2>,

 <http://example.org/container1/member3>.

Basic Profile does not recognize or recommend the use of other
forms of RDF container such as Bag and Seq because they are not
friendly to query. This follows standard linked data guidance for
RDF usage (see RDF Features Best Avoided in the Linked Data
Context [5]).
Sometimes it is useful to use a subject other than the container
itself as the membership subject and to use a predicate other than
rdfs:member as the membership predicate, as illustrated below.
The following is the representation of

http://example.org/netW/nw1/assetCont

@prefix rdfs:

 <http://www.w3.org/2000/01/rdf-schema#>.

@prefix bp:

 <http://open-services.net/ns/basicProfile#>.

@prefix o: <http://example.org/ontology/>.

<http://example.org/netW/nw1/assetCont>

 a bp:Container;

 bp:membershipSubject

 <http://example.org/netW/nw1>;

 bp:membershipPredicate o:asset.

<http://example.org/netW/nw1>

 a o:netW;

 o:asset

 <http://example.org/netW/nw1/assetCont/a1>,

 <http://example.org/netW/nw1/assetCont/a2>.

The essential structure of the container is the same, but in this
example, the membership subject is not the container itself – it is
a separate net worth resource. The membership predicate is
o:asset – a predicate from the domain model. A POST to this
container will create a new asset and add it to the list of members
by adding a new membership triple to the container. You might
wonder why we didn’t just make http://example.org/netW/nw1 a
container and POST the new asset directly there. That would be a
fine design if http://example.org/netW/nw1 had only assets, but if
it has separate predicates for assets and liabilities, that design will
not work because it is unspecified to which predicate the POST
should add a membership triple. Having separate
http://example.org/netW/nw1/assetCont and
http://example.org/netW/nw1/liabilityCont container resources
allows both assets and liabilities to be created.
In this example, clients cannot simply guess which resource is the
membership subject and which predicate is the membership
predicate, so the example includes this information in triples
whose subject is the Basic Profile Container resource itself.

9.1 rdfs:Container Properties
Because a Basic Profile Container is a Basic Profile Resource the
same set of common properties described in section 8.1 applies.
In addition, Basic Profile Containers have the following specific
properties:

Property Occurs Range Comment

bp:membershi
pPredicate zero or one rdfs:Property

Indicates which
predicate of the
container should be used
to determine the
membership when it is
not rdfs:member.

bp:membershi
pSubject zero or one rdfs:Property

Indicates which resource
is the subject for the
members of the
container when it is not
the container itself.

9.2 Retrieving non-member properties
The representation of a container that has many members may be
large. When we looked at our use cases, we saw that there were
several important cases where clients needed to access only the
non-member properties of the Container. [The dcterms properties
listed in this page may not seem important enough to warrant
addressing this problem, but we have use cases that add other

predicates to containers - for providing validation information and
associating SPARQL endpoints for example.] Since retrieving the
whole container representation to get this information may be
onerous, we were motivated to define a way to retrieve only the
non-member property values. We do this by defining for each
Basic Profile Container a corresponding resource, called the "non-
member resource", whose state is a subset of the state of the
container. The non-member resource's HTTP URI can be derived
in the following way.
If the HTTP URI of the container is {url}, then the HTTP URI of
the related non-member resource is {url}?non-member-properties.
The representation of {url}?non-member-properties is identical to
the representation of {url}, except that the membership triples are
missing. The subjects of the triples will still be {url} (or whatever
they were in the representation of {url}), not {url}?non-member-
properties. Any server that does not support non-member-
resources should return an HTTP 404-NotFound error when a
non-member-resource is requested.

This approach can be thought of as being analogous to using
HTTP HEAD compared to HTTP GET. HTTP HEAD is used to
fetch the response headers for a resource as opposed to requesting
the entire representation of a resource using HTTP GET.

Here is an example:

Request:
GET /container1?non-member-properties
HOST: example.org
Accept: text/turtle

Response:
@prefix rdfs:

 <http://www.w3.org/2000/01/rdf-schema#>.
@prefix dcterms: <<http://purl.org/dc/terms/>.
<http://example.org/container1>

 a bp:Container;

 dcterms:title

 "A Basic Profile Container of Acme Resources";
 bp:membershipPredicate rdfs:member;
 dcterms:publisher <http://acme.com/>.

9.3 Design motivation and background
The concept of non-member-resources has not been especially
controversial, but using the URL pattern {url}?non-member-
properties to identify them has been controversial. Some people
feel it's an unacceptable intrusion into the URL space that is
owned and controlled by the server that defines {url}. A more
practical objection is that servers respond unpredictably to URLs
they do not understand, especially those that have a "?" character
in them. For example, some servers will return the resource
identified by the portion of the URL that precedes the “?” and
simply ignore the rest. This problem could perhaps be mitigated
by using a character other than "?" in the URL pattern. An
alternative design that was discussed uses a header field in the
response header of {url} to allow the server to control and
communicate the URL of the corresponding non-member-
resource - presence or absence of the header field would let
clients know whether the non-member-resource is supported by
the server. The advantages of this approach are that it does not
impinge on the server's URL space, and it works predictably for
servers that do not understand the concept of a non-member-
resource. The disadvantages are that it requires two server round-
trips - a HEAD and a GET - to retrieve the non-member-

resources, and it requires the definition of a custom HTTP header,
which to some people at least seems comparatively heavyweight.

9.4 Paging
Basic Profile Containers may support a technique called Paging
which allows the representation of large containers to be
transmitted in chunks.
Paging can be achieved with a simple RDF pattern. For each
container resource, <containerURL>, we define a new resource
<containerURL>?firstPage. The triples in the representation of
<containerURL>?firstPage are a subset of the triples in
<containerURL> - same subject, predicate and object.
Basic Profile Container servers may respond to requests for a
container by redirecting the client to the first page resource –
using a HTTP-303 “See Other” HTTP redirect to the actual URL
for the page resource.
Continuing on from the member information from the
JohnZSmith net worth example, we’ll split the response across
two pages. The client requests the first page as
http://example.org/netW/nw1/assetCont?firstPage:

The following is the representation of

http://example.org/netW/nw1/assetCont?firstPage

@prefix rdf:

 <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.

@prefix dcterms: <http://purl.org/dc/terms/>.

@prefix bp:

 <http://open-services.net/ns/basicProfile#>.

@prefix o: <http://example.org/ontology/>.

<http://example.org/netW/nw1/assetCont>

 a bp:Container;

 dcterms:title "The assets of JohnZSmith";

 bp:membershipSubject

 <http://example.org/netW/nw1>;

 bp:membershipPredicate o:asset.

<http://example.org/netW/nw1/assetCont?firstPage>

 a bp:Page;

 bp:pageOf

 <http://example.org/netW/nw1/assetCont>;

 bp:nextPage

 <http://example.org/netW/nw1/assetCont?p=2>.

<http://example.org/netW/nw1>

 a o:netW;

 o:asset

 <http://example.org/netW/nw1/assetCont/a1>,

 <http://example.org/netW/nw1/assetCont/a4>,

 <http://example.org/netW/nw1/assetCont/a3>,

 <http://example.org/netW/nw1/assetCont/a2>.

<http://example.org/netW/nw1/assetCont/a1>

 a o:Stock;

 o:value 100.00.

<http://example.org/netW/nw1/assetCont/a2>

 a o:Cash;

 o:value 50.00.

server initially supplied no data for a3 and a4
in this response

The following example is the result of retrieving the
representation for the next page:

The following is the representation of

http://example.org/netW/nw1/assetCont?p=2

@prefix rdf:

 <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.

@prefix dcterms: <http://purl.org/dc/terms/>.

@prefix bp:

 <http://open-services.net/ns/basicProfile#>.

@prefix o: <http://example.org/ontology/>.

<http://example.org/netW/nw1/assetCont>

 a bp:Container;

 dcterms:title "The assets of JohnZSmith";

 bp:membershipSubject

 <http://example.org/netW/nw1>;

 bp:membershipPredicate o:asset.

<http://example.org/netW/nw1/assetCont?p=2>

 a bp:Page;

 bp:pageOf

 <http://example.org/netW/nw1/assetCont>;

 bp:nextPage rdf:nil.

<http://example.org/netW/nw1>

 a o:netW;

 o:asset

 <http://example.org/netW/nw1/assetCont/a5>.

<http://example.org/netW/nw1/assetCont/a5>

 a o:Stock;

 dcterms:title "Big Co.";

 o:value 200.02.

In this example, there is only one member in the container in the
final page. To indicate this is the last page, a value of rdf:nil is
used for the bp:nextPage predicate of the page resource.
Basic Profile Container guarantees that any and all the triples
about the members will be on the same page as the membership
triple for the member.

9.5 Ordering
There are many cases where an ordering of the members of the
container is important. Basic Profile Container does not provide
any particular support for server ordering of members in
containers, because any client can order the members in any way

it chooses based on the value of any available property of the
members. In the example below, the value of the o:value predicate
is present for each member, so the client can easily order the
members according to the value of that property. In this way,
Basic Profile Container avoids the use of RDF constructs like Seq
and List for expressing order.
Order only becomes important for Basic Profile Container servers
when containers are paginated. If the server does not respect
ordering when constructing pages, the client is forced to retrieve
all pages before sorting the members, which would defeat the
purpose of pagination. In cases where ordering is important, a
Basic Profile Container server exposes all the members on a page
with a higher sort order than all members on the previous page
and lower sort order than all the members on the next page. The
Basic Profile Container specification provides a predicate -
bp:containerSortPredicates - that the server may use to
communicate to the client which predicates were used for page
ordering. Multiple predicate values may have been used for
sorting, so the value of this predicate is an ordered list.
Here is an example container described previously, with
representation for ordering of the assets:
The following is the ordered representation of

http://example.org/netW/nw1/assetCont

@prefix rdf:

 <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.

@prefix dcterms: <http://purl.org/dc/terms/>.

@prefix bp:

 <http://open-services.net/ns/basicProfile#>.

@prefix o: <http://example.org/ontology/>.

<http://example.org/netW/nw1/assetCont>

 a bp:Container;

 dcterms:title "The assets of JohnZSmith";

 bp:membershipSubject

 <http://example.org/netW/nw1>;

 bp:membershipPredicate o:asset.

<http://example.org/netW/nw1/assetCont?firstPage>

 a bp:Page;

 bp:pageOf

 <http://example.org/netW/nw1/assetCont>;

 bp:containerSortPredicates (o:value).

<http://example.org/netW/nw1>

 a o:netW;

 o:asset

 <http://example.org/netW/nw1/assetCont/a1>,

 <http://example.org/netW/nw1/assetCont/a3>,

 <http://example.org/netW/nw1/assetCont/a2>.

<http://example.org/netW/nw1/assetCont/a1>

 a o:Stock;

 o:value 100.00.

<http://example.org/netW/nw1/assetCont/a2>

 a o:Cash;

 o:value 50.00.

<http://example.org/netW/nw1/assetCont/a3>

 a o:RealEstateHolding;

 o:value 300000.

As you can see by the addition of the bp:containerSortPredicates
predicate, the o:value predicate is used to define the ordering of
the results. It is up to the domain model and server to determine
the appropriate predicate to indicate the resource’s order within a
page, and up to the client receiving this representation to use that
order in whatever way is appropriate, for example to sort the data
prior to presentation on a user interface.

10. CONCLUSION
We have shipped a number of products using the Linked Data
technology as a way to integrate ALM products and are generally
pleased with the result. We now have more products in
development that use these technologies and are seeing a strong
interest in this approach in other parts of our company.

As more data gets exposed using Linked Data we believe we will
be able to do even more for our customers, with a set of
integration services with richer capabilities such as traceability
across relationships, impact analysis and deep querying
capabilities. Additionally, we will be able to develop higher level
analytics, reports, and dashboards providing data from multiple
products across different domains. We will be able to answer
questions such as: what enhancements in today's build address
requirements that need to be tested with certain test cases?

We believe that Linked Data has the potential to solve some
important problems that have frustrated the IT industry for many
years, or at least make significant advances in that direction, but
this potential will only be realized if we can establish and
communicate a much richer body of knowledge on how to exploit
these technologies.

It has taken us a number of years of experimentation to achieve
the level of understanding that we have today, we have made
some costly mistakes along the way, and we see no immediate
end to the challenges and learning that lie before us. As far as we
can tell, there is only a very limited number of people trying to
use Linked Data technologies in the ways we are using them, and
the little information that is available on best practices and pitfalls
is widely dispersed. In some cases, there also are gaps in the
Linked Data standards that need to be addressed.
We believe that defining a simple basic profile will enable
broader adoption of Linked Data principles for application
integration. Additional development of some of the concepts will
be needed to complete such a basic profile. We are encouraged by
the work started at the W3C Linked Enterprise Data Pattenrs
workshop [19] and look forward to participating in subsequent
activities. [20]
By sharing information on how we use these technologies we
hope to help the industry move forward on these issues.

11. ACKNOWLEDGMENTS
This paper contains material provided by Bill Higgins from IBM,
and several of the concepts discussed here come from our work in
the OSLC.

Thanks to Arthur Ryman and John Arwe (as well as others) for
review, feedback, and some content.

12. REFERENCES
[1] Tim Berners-Lee. Linked Data Design Issues, 2006

http://www.w3.org/DesignIssues/LinkedData.html
[2] Linked Data – Connect Distributed Data across the Web

http://linkeddata.org/
[3] J Gregorio, B. de hOra. Atom Publishing Protocol (APP),

IETF RFC5023, 2007
http://www.ietf.org/rfc/rfc5023.txt

[4] IBM Watson
http://www.ibm.com/innovation/us/watson

[5] Tom Heath, Christian Bizer. Linked Data: Evolving the Web
into a Global Data Space, 2011.
http://linkeddatabook.com/editions/1.0/

[6] Leigh Dodds. Ian Davis. Linked Data Patterns, 2011.
http://patterns.dataincubator.org

[7] Tetlow, Phil, Jeff Z Pan, Daniel Oberle, Evan Wallace,
Michael Uschold, and Elisa Kendall. Ontology Driven
Architectures and Potential Uses of the Semantic Web in
Systems and Software Engineering, W3C, 2006.
http://www.w3.org/2001/sw/BestPractices/SE/ODA/.

[8] De Cesare, Sergio, Guido L Geerts, Grant Holland, Mark
Lycett, and Chris Partridge. Ontology-driven software
engineering. Ed. Regina Bernhaupt, Peter Forbrig, Jan
Gulliksen, and Marta Lrusdttir. 2010. October 6409: 279-
280.
http://portal.acm.org/citation.cfm?doid=1639950.1639983.

[9] Hesse, Wolfgang. Engineers Discovering the Real World
From Model-Driven to Ontology-Based Software
Engineering. 2008. In Information Systems and eBusiness
Technologies, ed. Will Aalst, John Mylopoulos, Norman M
Sadeh, Michael J Shaw, Clemens Szyperski, Roland
Kaschek, Christian Kop, Claudia Steinberger, and Gnther
Fliedl, 5:136-147. Springer Berlin Heidelberg.
http://dx.doi.org/10.1007/978-3-540-78942-0_16.

[10] Graham Klyne, Jeremy J. Carroll. Resource Description
Framework (RDF), W3C, 2004
http://www.w3.org/TR/rdf-concepts/

[11] Dublin Core Metadata Initiative
http://dublincore.org

[12] Open Services for Lifecycle Collaboration (OSLC)
http://open-services.net

[13] Ian Jacobs, Norman Walsh. Architecture of the World Wide
Web, W3C. 2004.
http://www.w3.org/TR/webarch/

[14] L Dusseault, J. Snell, PATCH Method for HTTP. IETF
RFC5789, 2010
http://tools.ietf.org/html/rfc5789

[15] Paul Gearon, Alexandre Passant, Axel Polleres. SPARQL 1.1
Update, W3C 2012
http://www.w3.org/TR/sparql11-update/

[16] R. Fielding and al. Hyper-text Transfer Protocol (HTTP/1.1),
IETF RFC2616, 1999.
http://tools.ietf.org/html/rfc2616

http://tools.ietf.org/html/rfc5789
http://www.w3.org/TR/sparql11-update/
http://open-services.netIan/
http://dublincore.org/
http://patterns.dataincubator.org/
http://www.w3.org/2001/sw/BestPractices/SE/ODA/
http://www-03.ibm.com/innovation/us/watson/index.html
http://www.ietf.org/rfc/rfc5023.txt
http://www.w3.org/TR/rdf-concepts/Dublin
http://linkeddata.org/
http://tools.ietf.org/html/rfc2616
http://dx.doi.org/10.1007/978-3-540-78942-0_16.Atom
http://linkeddatabook.com/editions/1.0/
http://portal.acm.org/citation.cfm?doid=1639950.1639983
http://www.w3.org/DesignIssues/LinkedData.html
http://www.w3.org/TR/webarch/

[17] Dbpedia entry for Barack Obama
http://dbpedia.org/page/Barack_Obama

[18] Paul Biron, Ashok Malhotra. XML Schema Part 2:
Datatypes, Second Edition, W3C, 2004
http://www.w3.org/TR/xmlschema-2/

[19] W3C Linked Enterprise Data Patterns Workshop
http://www.w3.org/2011/09/LinkedData/

[20] Linked Data at W3C
http://www.w3.org/standards/semanticweb/data

http://www.w3.org/standards/semanticweb/data
http://www.w3.org/TR/xmlschema-2/
http://dbpedia.org/page/Barack_Obama
http://www.w3.org/2011/09/LinkedData/

	1. INTRODUCTION
	2. THE INTEGRATION CHALLENGE
	3. WHAT WOULD SUCCESS LOOK LIKE?
	4. THE SOLUTION
	5. LINKED DATA
	6. CONVENTIONS
	7. TERMINOLOGY
	8. BASIC PROFILE RESOURCES
	8.1 Common Properties
	8.1.1 From Dublin Core
	8.1.2 From RDF
	8.1.3 From RDF Schema

	9. BASIC PROFILE CONTAINER
	9.1 rdfs:Container Properties
	9.2 Retrieving non-member properties
	9.3 Design motivation and background
	9.4 Paging
	9.5 Ordering

	10. CONCLUSION
	11. ACKNOWLEDGMENTS
	12. REFERENCES

