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ABSTRACT
Query processing is an important way of accessing data on
the Semantic Web. Today, the Semantic Web is character-
ized as a web of interlinked datasets, and thus querying the
web can be seen as dataset integration on the web. Also, this
dataset integration must be transparent from the data con-
sumer as if she is querying the whole web. To decide which
datasets should be selected and integrated for a query, one
requires a metadata of the web of data. In this paper, to
enable this transparency, we introduce a federated query en-
gine called WoDQA (Web of Data Query Analyzer) which
discovers datasets relevant with a query in an automated
manner using VOID documents as metadata. WoDQA fo-
cuses on powerful dataset elimination by analyzing query
structure with respect to the metadata of datasets. Dataset
and linkset descriptions in VOID documents are analyzed for
a SPARQL query and a federated query is constructed. By
means of linkset concept of VOID, links between datasets are
incorporated into selection of federated data sources. Cur-
rent version of WoDQA is available as a SPARQL endpoint.

1. INTRODUCTION
While the web is evolving through a structured data space,

many applications are publishing and linking their data, and
the cloud of this linked and open data will be gigantic as
times go. In this interlinked and structured data space,
query execution becomes one of the most important research
problems and different query execution approaches and tools
have been proposed in the literature [11, 7]. The query exe-
cution on the web of data is basically depends on searching
for resources that satisfy our needs, but we need to discover
which parts of linked open data cloud may have such re-
sources. To make this discovery effectively, which resources
and vocabularies reside in a dataset and which datasets are
interlinked to others via interested links should be taken into
account. If dataset publishers provide such information by
describing metadata of their datasets, relevant datasets can
be selected effectively in an automated manner. To enable
this automation, Vocabulary of Interlinked Datasets (VOID)
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[1] is published as W3C Semantic Web Interest Group note1.
VOID is an RDF vocabulary and is used to describe meta-
data of RDF datasets, in a sense, metadata of the web of
data. Linked open data cloud is represented as a graph of
datasets in which datasets are represented as nodes and sets
of links between datasets are represented as edges. Since
VOID bases on graph based soul of web of data, it provides
a strong way of describing metadata that allows to discover
datasets which queries are distributed over.

In this paper, we present a federated query engine called
WoDQA (Web of Data Query Analyzer) which is developed
to execute a query on distributed datasets without missing
answers using VOID metadata of datasets in linked open
data cloud. WoDQA focuses on effective dataset selection
for a query and analyzes query structure to eliminate irrel-
evant datasets. Relevant datasets are selected by analyzing
VOID documents and considering which dataset includes a
resource related with the query and which links between
datasets allow to find a result to the query. VOID meta-
data provides dataset descriptions representing content of
a dataset and linkset descriptions representing relationships
between datasets which are used by WoDQA for effective
dataset selection.

There are two main approaches which enable automated
query processing on the web of data and prevent data con-
sumers from searching for relevant datasets. The first ap-
proach called follow-your-nose (link traversal) [11] is based
on following links between data to discover potentially rele-
vant data, and the second one is query federation [7] which
is based on dividing a query into sub-queries and distribut-
ing sub-queries to relevant datasets which are selected using
metadata about datasets.

Follow-your-nose approach conceptualizes the web as a
graph of documents which contains dereferenceable URIs.
This approach is based on executing queries on relevant
documents which are retrieved by following links between re-
sources in different documents. But, this method raises com-
pleteness and performance issues. Although some heuris-
tic query planning methods can be used to answer different
kinds of queries [10], this approach cannot guarantee find-
ing all results because relevant documents vary according

1http://www.w3.org/TR/void/



to the starting point and the path. Also, although follow-
your-nose requires nothing other than linked data principles
to process a query, another disadvantage is that encounter-
ing large documents causes retrieval problems. The other
approach, query federation, has raised from database liter-
ature, and is composed of two main steps before perform-
ing a query. Firstly, query is divided into sub-queries and
datasets relevant with sub-queries are selected using some
metadata which reflects dataset content. Then, the query
evaluation plan is changed using statistics about datasets
in the query optimization step. For the purpose of exe-
cuting sub-queries on distributed data sources, query fed-
eration requires accessing datasets via SPARQL endpoints.
Contrary to follow-your-nose approach, in this approach, all
results can be found under the assumption of metadata of
all datasets is complete and accurate, and queries can be
optimized before execution by estimating execution using
dataset metadata. To find all results in an effective way,
query federation determines relevant datasets before exe-
cution using well-defined dataset metadata such as VOID
documents.

In the light of these ideas, WoDQA executes queries by
analyzing VOID documents which constitute a projection of
the web of data and incorporates follow-your-nose approach
into query federation by considering links between datasets
in metadata. WoDQA does not change the evaluation order
of a query because the main focus of this initial version of
WoDQA is only eliminating much more irrelevant datasets
in dataset selection without query optimization. Current
RDF federation implementations select relevant datasets by
considering only predicate and type indexes. Since vocab-
ularies in the Semantic Web should be common, there can
be a lot of datasets which use a specific property or class.
Therefore, using such indexes causes selection of redundant
datasets. The main contribution of WoDQA is incorporating
both links between data through linkset concept and rela-
tionships between triple patterns of a query into dataset se-
lection to eliminate irrelevant datasets effectively. We serve
WoDQA as a SPARQL endpoint and a simple web form2

to execute raw queries by analyzing datasets in the VOID
stores.

Remaining sections are organized as follows. In Section 2,
related work is discussed. Section 3 introduces general archi-
tecture of WoDQA and details dataset selection approach.
In Section 4, usage of WoDQA is shown with a working ex-
ample. Finally, Section 5 concludes the paper.

2. RELATED WORK
The Semantic Web querying approaches can be classified

as centralized and distributed. Centralized querying is based
on collecting linked data into a single central data store, and
querying the data from this store. This approach includes
data warehousing which collects pre-selected data sources
and search engines which crawl the Web by following RDF
links and index discovered data [12]. But, the main disad-
vantage of this approach is that queried data is not live, i.e.
duplicate of original sources. On the other hand, search en-
gines cannot crawl all the web and cannot answer complete
structured queries.

2The simple web form and up-to-date endpoint address can
be found on http://seagent.ege.edu.tr/etmen/wodqa.html
page.

On the other hand, distributed querying depends on pro-
cessing query parts directly on original data and managing
results retrieved from distributed data. Query federation
[9, 7] and follow-your-nose [11] are mainstream distributed
querying approaches. DARQ [14], FedX [15] and SPLEN-
DID [8] are the example implementations of the query fed-
eration approach. DARQ distributes a query using dataset
metadata called Service Descriptions3 which are constructed
manually by query developer, and benefits from triple and
entity counts and selectivity estimates to optimize the query
plan. Since DARQ uses predicates to select relevant datasets,
the success of the query execution depends on associating
datasets with predicates, and triple patterns which have un-
bound predicates cannot be handled4. On the other hand,
FedX is an extended version of Federation SAIL provided
by AliBaba5. Datasets which will be queried are given to
FedX, and it checks each triple pattern existence on each
dataset by ASK queries to decide about which triple pat-
tern will be queried on which datasets [16]. These two query
federation implementations also stand up to self-descriptive
nature of linked data since metadata of datasets should be
described by data publishers as is in describing and link-
ing their data. The last query federation implementation is
SPLENDID which indexes dataset using VOID descriptions,
eliminates datasets by ASK queries for triple patterns, and
benefits from statistical data in VOID to optimize federated
queries.

Although aforementioned query federation implementa-
tions aim to query linked datasets, they do not consider links
between data for dataset selection. For this reason, there
are some shortcomings of these implementations from query-
ing web of data perspective. The first one is that deciding
datasets via only predicate indexes causes inability to select
datasets effectively for triple patterns which have unbounded
predicates or have so general predicates such as owl:sameAs
and foaf:page that are extensively used in datasets6. The sec-
ond shortcoming is that so many datasets may be selected
for triple patterns, and executing ASK queries in such a case
increases the cost notably. One need to take the structure of
the query into account to eliminate right irrelevant datasets
in the web of data context.

The second distributed querying approach is follow-your-
nose [11] whose basic idea is traversing RDF links between
data to discover relevant datasets. There is no need to any
prior metadata about datasets in advance as in query fed-
eration, but it needs initial URIs in some triple patterns to
start exploring datasets. The main disadvantages of this
approach are infinite link discovery, trying to retrieve large
RDF graphs, failing to discover relevant data for queries
with only bound predicates (?s foaf:friend ?o) or type state-
ments (?s rdf:type foaf:Person). These restrictions cause less
comprehensive result sets. One of well-known follow-your-
nose implementations is SQUIN [11] that traverse RDF links
on the fly, i.e. during query execution. Hartig et al. improve
this work using some heuristic methods that modify query

3Service Description introduced in that paper contains in-
formation about triples in the dataset, limitations on access
patterns, and statistical information about dataset.
4http://darq.sourceforge.net/#Limitations and known issues
5http://www.openrdf.org/doc/alibaba/2.0-beta6/alibaba-
sail-federation/
6SPLENDID also uses type indexes, but it is still not enough
since vocabularies can be used frequently.



evaluation order to reduce execution cost and to provide
more comprehensive results [10], but the results strictly de-
pend on the starting point and the evaluation order. On the
other hand, Bouquet et al. formalize the web of data and
suggest three different querying methods exploiting their
web of data formalization [4]. These methods based on
merging relevant graphs to execute queries on them. One of
these methods uses follow-your-nose approach which speci-
fies and merges relevant graphs by looking up URIs before
query execution.

WoDQA aims to query the web of interlinked datasets us-
ing VOID dataset and linkset descriptions to decide relevant
datasets for a query. At first, it assumes that all datasets
are relevant with a query, then irrelevant datasets are elim-
inated by analyzing query structure in the light of meta-
data of datasets. Its novelty is considering query structure
and links between datasets to select relevant datasets be-
fore query execution, and thus it incorporates follow-your-
nose approach into the query federation. To the best of
our knowledge, WoDQA is the first query engine which uses
datasets and linksets together that are critical elements of
VOID to describe dataset metadata.

3. WODQA INTERNAL ARCHITECTURE
In this section, query processing architecture of WoDQA

is explained in detail. Since it is impractical to perform a
query on all published datasets on the web, WoDQA aims
to transform a query into a federated query which is evalu-
ated only on relevant datasets. In this direction, to process a
query on the linked data cloud, WoDQA contains three main
modules as seen in Figure 3.1: DatasetAnalyzer, QueryRe-
organizer and Jena ARQ7.

Dataset publishers construct the VOID documents of their
datasets and the Semantic Web programmers can access
these documents through services called VOID store such
as voiD Browser8, CKAN9 and voiDStore10. A VOID store
generates a projection of Linked Open Data, and thus this
structure obliges dataset publishers to create well-defined
VOID document which reflects actual content of the dataset
to enable including the dataset in relevant queries. Datase-
tAnalyzer is the module which is responsible for discover-
ing relevant datasets and eliminating irrelevant ones using
VOID documents of datasets in the VOID stores. We as-
sume that dataset publishers update the description doc-
uments in the VOID stores to make VOID stores up-to-
date for dataset selection when datasets are changed. In the
current version of WoDQA, DatasetAnalyzer discovers the
VOID documents from the CKAN net, and analyzes dataset
and linkset descriptions for each triple pattern in the query.
This analysis eliminates irrelevant datasets which definitely
do not contain any result contributing to the result of the
query by assuming that accurate and complete VOID docu-
ments of datasets are available. Dataset analysis is achieved
by a rule-based approach. We explain the rules which dis-
covers relevant datasets Subsection 3.1.

The second module is QueryReorganizer which rewrites
queries depending on results of DatasetAnalyzer. This rewrit-
ing process constructs federated SPARQL queries including

7http://jena.sourceforge.net/ARQ/
8http://kwijibo.talis.com/voiD/
9http://ckan.net/

10http://void.rkbexplorer.com/

Figure 3.1: WoDQA internal architecture

SERVICE expressions11. Details of QueryReorganizer are
given in Subsection 3.2.

The last module is query executor which directly uses Jena
ARQ to execute SPARQL queries including the SERVICE
expressions inserted by the QueryReorganizer. The feder-
ated query constructed by QueryReorganizer is passed to
ARQ to be executed. Results of query execution are re-
turned to the querior. In the following subsections, the first
two modules which implement WoDQA analysis and reor-
ganization phases are explained.

3.1 Dataset Analyzer
This section introduces the details of the DatasetAna-

lyzer module which is the core and the innovative part of
the current version of WoDQA. Unlike other query federa-
tion approaches, WoDQA considers triple pattern relations
and links between datasets while selecting datasets. Thanks
to dataset analysis of WoDQA, relevant datasets are speci-
fied while plenty of irrelevant ones are excluded. Output of
dataset analysis is a subset of all published datasets on the
web of data, and thus the query is performed only on this
subset including related ones. For the purpose of explaining
how this subset is constructed, we give a formalization in
this section.

We firstly give a definition of the web of data to formalize
our dataset selection approach. In summary, the web of data
is an RDF graph which is constructed by typed links between
data from different sources. Basically an RDF graph (G) is
formally represented as a set of triples in the form of 〈s, p, o〉:
G = {〈s, p, o〉 | 〈s, p, o〉∈ (I ∪ B)× I × (I ∪ B ∪ L)} where I
is the set of IRIs[6], B is the set of blank nodes, L is the
set of literals, and all are RDF terms T = I ∪ B ∪ L . In
this direction, web of data is the global graph (Gwod) which
consists of the triples constructed from IRIs, blank nodes
and literals on the web. Gwod is a model of mathematical
RDF construct for the web of data.

From another perspective, the web of data means web
of interlinked datasets [3]. A dataset (δ) is a meaningful
set of RDF triples [1] which decreases granularity of the
web. Rather than publishing information only as single re-
sources and connecting these resources, datasets are the way
of publishing information as sub-graphs of Gwod. These sub-
graphs, i.e. datasets, are connected via RDF triples which
connect resources in different datasets [13]. The publishers
create their resources and deploy them into the datasets on
the web, and consumers use these resources while creating
their datasets. With regard to this, to formalize a dataset,
we use subj (G) which represents the set of resources which

11http://www.w3.org/TR/sparql11-federated-query/



are the subjects of triples in a graph.

Definition 1. A dataset is a sub-graph of web of data,
δx ⊂ Gwod, and the resources which are included by δx are
specified as follows: ∀r, δi (r ∈ subj (δx)→ Owner (δx, r)).

VOID describes a dataset with well-defined properties12,
and we formalize a VOID dataset description as a tuple
〈Lspace, Ivoc〉 ∈ L × I. The first dataset property Lspace
corresponding to void:uriSpace set which contains string lit-
erals that all entity IRIs in a dataset start with. The other
one is Ivoc corresponding to void:vocabulary which denotes
the set of vocabularies used by the dataset13.

The triples whose object is a resource in another dataset
make the web of data a graph of interlinked datasets. We
call such triples link triples, and define the set of link triples
as LT = {(s, p, o) |owner (s) 6= owner (o)} where s, o ∈ I.
This definition leads us to define link predicate (plink) con-
cept which corresponds to void:linkPredicate used to define
a linkset which is an important contribution of VOID ef-
fort. Set of link predicates

(
P link

)
includes all the predicates

which are used in a link triple: P link = {plink|∃
〈
s, plink, o

〉
∈

LT }. A linkset represents link triples which connect re-
sources in different datasets using the same link predicate.

We formalize the linkset, λ, as a tuple
〈
δfromλ , δtoλ , p

link
λ

〉
∈

∆×∆×P link where ∆ is the set of all datasets on the web.
In this definition, δfromλ is the referrer dataset which is the
owner of subject of link triples in the linkset, δtoλ is the refer-
enced dataset which is the owner of object of link triples in
the linkset, and plinkλ is the link predicate of all link triples
in the linkset.

DatasetAnalyzer uses both dataset and linkset descrip-
tions of VOID metadata to select the relevant datasets, in
other words sub-graphs, which may contain the results of
the query. By this means, the query is transformed into a
federated query and executed on the relevant datasets on
the web. Accordingly, we exclude the datasets which do not
contain any result for the query while querying the global
graph, Gwod. Beside analyzing relationships between VOID
descriptions (datasets, linksets) and triple pattern, relation-
ships between triple patterns in a query are considered. For
this reason, we need to give a formal definition of SPARQL
queries.

We consider a subset of SPARQL queries which corre-
sponds to a basic graph pattern for formalization [5]. A
basic graph pattern consists of triple patterns, BGP = {tpi|
〈stpi , ptpi , otpi〉 ∈ (I ∪ V)× (I ∪ V)× (I ∪ L ∪ V)}. A triple
pattern is slightly different from RDF triple since it contains
at least one and at most three variables that are elements
of infinite set V14. While performing a query, its variables
are replaced by RDF terms. Thus, according to semantics
of SPARQL, a query result is a set of solution mappings,
{µ|µ : V → T }, where a solution mapping, µ, is a partial
function from variables to RDF terms.

To perform a query on the web of data, in the worst
case, each triple pattern has to be queried on all published

12DatasetAnalyzer of the current version of WoDQA consid-
ers only these properties for the sake of simplicity. We plan
to integrate other properties such as statistics in the future
to make optimized queries.

13Note that schemas of the Semantic Web languages such as
RDFS and OWL are not specified in Ivoc.

14We exclude blank nodes in query.

Figure 3.2: Example VOID Models

datasets. Since this is impractical, our purpose is eliminat-
ing irrelevant datasets for each triple pattern. By elimina-
tion of irrelevant datasets, we construct a federated query
which distributes sub-queries to only relevant ones. In or-
der to eliminate irrelevant datasets, we introduce a set of
rules which discover the relevant datasets in dataset analysis,
called relevant dataset discovery rules. A relevant dataset
for a triple pattern is formalized as an assertion ρ(δx, tpi)
which denotes that the dataset δx may contain a result for
the triple pattern tpi. We need to discuss how relevant
dataset assertions (ρ) inferred by discovery rules used for
eliminating irrelevant datasets. To explain the method of
eliminating irrelevant datasets, assume that Qtpi is the set
of datasets selected to be queried for tpi which we call se-
lected set, and this set initially contains all datasets on the
web, Qinittpi ≡ ∆ (all datasets in a VOID store in our case).
Each rule analyzes datasets in Qtpi of each triple pattern.
After applying a rule, elements of Qtpi which the rule does
not infer relevant dataset assertion about are removed from
Qtpi . But, if the rule does not imply any relevant dataset
assertion, Qtpi remains the same. Irrelevant dataset elimi-
nation method is formalized as Qnewtpi below to denote such
an update of selected set subsequent to executing a rule.

Qnewtpi =

{
∃δa (ρ (δa, tpi)) ; {δx| (δx ∈ Qtpi) ∧ ρ(tpi, δx)}
∃0δa (ρ (δa, tpi)) ; Qtpi

}
In the following subsection we give relevant dataset discov-

ery rules in detail and we use some queries to exemplify ap-
plication of rules. Figure 3.2 shows VOID models of a set of
datasets which are used in these examples. This model con-
tains simplified VOID descriptions of five datasets and the
linksets connecting these datasets by link predicates. Link
predicates are showed by arrows between dataset descrip-
tions which are represented with squares. Also we create a
sample dataset called Facebook which keeps the data about
Facebook users in our local store. This data is about that
movie resources located in LinkedMDB dataset are liked by
which users. Although there can be a lot of linksets, in Fig-
ure 3.2, only a few linksets are taken into account to explain
our rules are depicted.

3.1.1 Relevant Dataset Discovery Rules
This subsection presents a set of rules each of which repre-

sents an analysis method of the DatasetAnalyzer module to
discover relevant datasets effectively. Each relevant dataset
discovery rule aims to analyze datasets from different per-
spectives and combinations of them to infer relevant dataset
(ρ) assertions for triple patterns. These perspectives can
be classified into three groups. The first one is analyzing



IRIs in the triple patterns. We call this perspective IRI-
based Analysis where namespaces of IRIs and vocabularies
in the VOID documents are considered to determine relevant
datasets. The second one is considering linked resources.
We call this perspective Linking Analysis which considers
whether a triple links two resources in the same dataset (in-
ternal) or in different datasets (external) to eliminate irrele-
vant datasets. The last perspective is Shared Variable Anal-
ysis. Since triple patterns share some variables, each triple
pattern affects relevant datasets of other triple patterns that
include same variables. Relevant dataset discovery rules of
all perspectives are introduced in this section.

The first two rules are under the IRI-based analysis per-
spective each of which considers vocabularies Ivoc of VOID
metadata. The first discovery rule checks whether IRIs in
triple patterns are RDFS (or OWL) classes or properties in
the vocabulary set (Ivoc) of VOID documents. To give the
rule, we define has

(
Ivocδx , r

)
function which represents that a

resource r ∈ I (a property or a class IRI) is included by one
of the vocabularies in Ivocδx . Using has expression, relevance
of a dataset δx to an IRI r is represented with V ocMatch as
shown in Definition 2.

Definition 2. ∀δx(has(Ivocδx , r)→ V ocMatch(δx, r)) where
r ∈ I

For a triple pattern such as ?s dbpprop:name15 “Nikola
Tesla”, dbpprop:name RDFS property in the predicate po-
sition obliges that matching triple patterns can only be in
datasets which uses dbpprop vocabulary. Therefore, we can
eliminate datasets which do not use dbpprop vocabulary.
This situation is handled by Rule 1 which is similar to pred-
icate indexes.

Rule 1. If there is a dataset in which one of its vocab-
ularies includes the predicate of a triple pattern, then it is
relevant for the triple pattern.

∀tpi, δx (V ocMatch (δx, ptpi)→ ρ (δx, tpi))

According to Figure 3.2, DBpedia uses dbpprop vocabu-
lary, and the rule decides that it is relevant for such a triple
pattern. In web of data, lots of datasets which uses dbpprop
vocabulary can be found, and they can be eliminated using
outputs of other discovery rules.

To introduce Rule 2, consider another triple pattern, ?pro-
ducer rdf:type linkedMDB:producer, which contains a type
definition for the variable ?producer. In such cases, the ob-
ject of the triple pattern is a class definition, it makes sense
to eliminate the datasets which do not use the vocabulary
of this class. Rule 2 resembling type indexes is used to spec-
ify relevant datasets for such triple patterns. The example
triple pattern is queried from the datasets that use linked-
MDB vocabulary, i.e. LinkedMDB dataset for our example
model. Other datasets do not include a resource which is
an instance of linkedMDB:producer class, and therefore they
are eliminated by output of this rule.

Rule 2. If there is a dataset in which one of its vocabu-
laries includes the object of a triple pattern when the predi-
cate of the triple pattern is rdf:type, then the dataset is rel-
evant for the triple pattern.

∀tpi, δx(V ocMatch(δx, otpi) ∧ (ptpi = rdf:type)→ ρ(δx, tpi))
15All prefixes used in the paper are defined in Table 1.

Another perspective to discover relevant datasets is Link-
ing Analysis. Since a triple links two resources in the same
dataset or in different datasets, this perspective is separated
into two kinds of analyses, each of which considers different
kind of triples. The first one is Internal Linking Analysis
which considers triples linking resources in the same dataset.
A relevant dataset found by this analysis is called internal
relevant dataset, and is represented with ρint (δx, tpi). On
the other hand, External Linking Analysis considers link
triples which connect resources in different datasets. In this
case, linkset descriptions of VOID documents are taken into
account to discover relevant datasets, and a dataset found
by this analysis is called external relevant dataset which is
represented as ρext (δx, tpi). Internal and External Link-
ing analyses are both executed for a triple pattern in whole
Linking Analysis process, and then produced internal and
external relevant datasets for a triple pattern are unified as
relevant datasets for the triple pattern as shown in Rule 3.

Rule 3. Union of external and internal datasets for a
triple pattern constitutes relevant datasets for the triple pat-
tern.

∀δx, tpi
(
ρint (δx, tpi) ∨ ρext (δx, tpi)→ ρ (δx, tpi)

)
Irrelevant dataset elimination method considers relevant

datasets which are specified by Rule 3 to eliminate irrelevant
datasets from selected set of a triple pattern (Qtpi). Inter-
nal and external datasets are intermediate results to infer
relevant datasets in a Linking Analysis.

The first two rules under Linking Analysis perspective
are linking-to-IRI discovery rules. Consider the example
triple pattern, ?film owl:sameAs dbpedia:A Fistful of Dollars,
which can be matched with a triple that links a resource to
dbpedia:A Fistful of Dollars resource. Triple patterns whose
object is an IRI are analyzed by these rules. Since own-
ers of the linked IRI must be known in these rules, we
give a definition that depicts the owners of any resource
on the basis of IRI Analysis. We formalize inclusion of a
resource (r ∈ I) by a dataset (δx) in Definition 3 by us-
ing the urispaces (Lspace) property of the VOID description
and startsWith

(
r,Lspaceδx

)
function which represents that r

starts with one of the urispaces in Lspaceδx
.

Definition 3. ∀δx(startsWith(r,Lspaceδx
)→ Owner(δx, r))

Rule 4 is linking-to-IRI internal discovery rule from the in-
ternal linking point of view. According to the example query
?film should be in the same dataset with dbpedia:A Fistful of
Dollars, i.e. owner of the dbpedia:A Fistful of Dollars resource.
Therefore appropriate triple patterns can be found in DB-
pedia dataset.

Rule 4. If there is a triple pattern whose object is an IRI,
then owner datasets of the IRI are internal relevant for the
triple pattern.

∀tpi, δx
(
(δx ∈ Qtpi) ∧Owner (δx, otpi)→ ρint (δx, tpi)

)
where otpi ∈ I, stpi ∈ V

On the other hand, from the external linking point of
view, appropriate triples can be found in datasets which are
linked to the owner datasets of object IRI. For our exam-
ple triple pattern, ?film should be in datasets which contain



link triples whose object resource is defined in DBpedia. For
this analysis, linkset descriptions of VOID documents are
used. To discover relevant datasets for a triple pattern by
using linking-to-IRI external discovery rule, the triple pat-
tern should have a bound predicate. We define Compatible
expression in Definition 4 to represent that which linkset
description is appropriate to use for determining relevant
datasets for a triple pattern.

Definition 4. If selected set of a triple pattern has the
referrer dataset of a linkset description and link predicate
of the linkset description is same with the triple pattern’s
predicate, then the linkset description is compatible with
the triple pattern.

∀λm, tpi((δfromλm
∈ Qtpi) ∧ (plinkλm

= ptpi)→ Compatible(λm,
tpi))

Considering ?film owl:sameAs dbpedia:A Fistful of Dollars
triple pattern, and remembering the linkset description of
our example model in Figure 3.2, there are linksets from
LinkedMDB and YAGO datasets to DBpedia dataset whose
link predicates are owl:sameAs. Rule 5 which is under the
Linking Analysis perspective gives these two datasets as ex-
ternal relevant datasets for this triple pattern. If a dataset
is not linked to DBpedia by owl:sameAs predicate then one
can conclude that this dataset is irrelevant with the triple
pattern.

Rule 5. If there is a linkset description that is compati-
ble with the triple pattern and whose referenced dataset is an
owner dataset of the triple pattern’s object, then the referrer
dataset of the linkset description is external relevant for the
triple pattern.

∀tpi, λm, δx(Compatible(λm, tpi) ∧ Owner(δx, otpi) ∧ (δx =

δtoλm
)→ ρext(δfromλm

, tpi)) where otpi ∈ I, stpi ∈ V

Recall that internal and external relevant datasets are uni-
fied by Rule 3 after applying rules in Rule 4 and Rule 5.
Thus, the final relevant datasets which are selected by the
linking-to-IRI rules are DBpedia, LinkedMDB and YAGO.

Another couple of rules under the Linking Analysis per-
spective are IRI-links-to rules. These rules are applied to
triple patterns whose subject is an IRI and object is a vari-
able to determine relevant datasets from internal and ex-
ternal linking point of view. Rule 6 is IRI-links-to internal
discovery rule and it finds the triples that link resources in
the same dataset. One can conclude that if the subject of
a triple pattern is an IRI, then triples matching with this
triple pattern are in the owner dataset of this IRI.

Rule 6. If a dataset is an owner of the subject of a triple
pattern, then this dataset is internal relevant dataset for the
triple pattern.

∀tpi, δx
(
(δx ∈ Qtpi) ∧Owner(δx, stpi)→ ρint(δx, tpi)

)
where

otpi ∈ V, stpi ∈ I

Consider the triple pattern dbpedia:Ennio Morricone owl:
sameAs ?person. Subject of this triple pattern is an IRI
whose namespace is dbpedia, and therefore an internal rel-
evant dataset is DBpedia whose VOID metadata contains
dbpedia as value of urispace property.

Rule 7 is IRI-links-to external discovery rule and it finds
the triples that connect resources in different datasets. Ac-
cording to this rule an owner dataset of the subject IRI of
the triple pattern is external relevant only when there is
a linkset definition that includes owner dataset as referrer
dataset compatible with the triple pattern.

Rule 7. If there is a linkset description that is compati-
ble with the triple pattern and whose referrer dataset is an
owner dataset of the triple pattern’s subject, then the refer-
rer dataset of the linkset description is external relevant for
the triple pattern.

∀tpi, λm, δx(Compatible(λm, tpi) ∧ Owner(δx, stpi) ∧ (δx =

δfromλm
)→ ρext(δx, tpi)) where otpi ∈ V, stpi ∈ I

According to the example, DBpedia is the owner dataset
of dbpedia:Ennio Morricone and also there is a linkset de-
scription whose referrer dataset is DBpedia and whose link
predicate is owl:sameAs.

Other discovery rules in Linking Analysis are combined
with Shared Variable Analysis. The first discovery rule
which conforms to this combined analysis is Chaining Triple
Patterns Analysis. This rule considers two triple patterns to-
gether to discover relevant datasets. This is a characteristic
of Shared Variables Analysis, since it depends on analyzing
more than one triple pattern that have same variable. Triple
patterns below are example of chaining triple patterns:
?s owl:sameAs ?film.
?film linkedMDB:producer name “Sergio Leone”

Notice that the second triple pattern is used for querying
films whose producer name is“Sergio Leone”. Thus, the sec-
ond triple pattern affects the relevant datasets of the first
triple pattern. From internal linking point of view, the first
triple pattern can be found in datasets which satisfy the sec-
ond triple pattern because ?s and ?film should be in the same
dataset. In this direction, Internal Chaining Triple Pattern
Analysis formalized in Rule 8 is used to discover internal
relevant datasets for triple patterns.

Rule 8. If there is a triple pattern whose object is same
with the subject of another triple pattern, then datasets in-
cluded by selected sets of both triple patterns are internal
relevant.

∀δx, tpi, tpj((otpi = stpj ) ∧ (δx ∈ Qtpi) ∧ (δx ∈ Qtpj ) →
ρint(δx, tpi) ∧ρint(δx, tpj)) where otpi , stpi ∈ V

To execute Chaining Triple Pattern Analysis, execution
order of rules becomes important. To exemplify this situ-
ation according to Chaining Triple Patterns query, assume
that IRI-based analysis is applied before, and LinkedMDB
is the relevant dataset for the second triple pattern since
LinkedMDB VOID includes linkedMDB as the value of vo-
cabulary. Then, this rule can specify that the internal rel-
evant dataset for the first triple pattern is LinkedMDB. It
is clearly seen from this example, Shared Variable Analysis
should be performed after the execution of IRI-based Anal-
ysis rules to eliminate more datasets. Hence, in the Sub-
section 3.1.2, we give an overview of analysis process which
specifies an execution order for these rules.

After the IRI-based analysis, if we apply Rule 8 for the ex-
ample triple patterns, relevant datasets of the second triple
pattern is shown as Qtp2 = {δLinkedMDB}, and of the first



one is shown as Qtp1 ≡ ∆. For this case, this rule asserts
that ρint(δLinkedMDB , tp1) and ρint (δLinkedMDB , tp2).

On the other hand, External Chaining Triple Patterns
analysis uses linkset descriptions while considering two triple
patterns. While internal one can be used for all triple pat-
terns without considering the predicate, external rule is ap-
plied for a triple pattern which has a link predicate. Rule 9
introduces this rule.

Rule 9. If there is a triple pattern (tpi) whose object is
same with the subject of another one (tpj), and there is a
linkset description which is compatible with (tpi) and its ref-
erenced dataset is included by the selected set of tpj, then
referrer dataset is external relevant for tpi and referenced
dataset is external relevant for tpj.

∀λm, tpi, tpj((otpi = stpj ) ∧ Compatible(λm, tpi) ∧ (δtoλm
∈

Qtpj )→ ρext(δfromλm
, tpi) ∧ ρext(δtoλm

, tpj)) where otpi ∈ V

With respect to the example of chaining triple patterns,
assume that selected set for the first triple pattern is Qtp1 ≡
∆, and for the second one is Qtp2 = {δLinkedMDB}. Rule
9 determines that δDBpedia is external relevant for tp1 since
resources ?film can be found in δLinkedMDB and there is a
linkset between these two datasets with owl:sameAs predi-
cate. It is clear that no other dataset can contain an appro-
priate triple if it is not linked to LinkedMDB by owl:sameAs.
At the end of Chaining Triple Pattern Analysis, internal and
external relevant datasets specified by Rule 8 and 9 are uni-
fied according to Rule 3.

Another analysis which uses both Linking Analysis and
Shared Variable Analysis is Object Sharing Triple Patterns
Analysis. For triple patterns which have the same object
variable, only the datasets can include triples which satisfy
the object variable of both triple patterns. To simplify the
explanation, we use the following example for Object Shar-
ing Triple Pattern Analysis below:
?person facebook:likes ?movie.
?film owl:sameAs ?movie.

From internal linking point of view, ?person and ?film
should be in the same dataset with ?movie. Rule 10 speci-
fies the internal relevant datasets for triple patterns which
have the same object. Assume that Qtp1 = {δFacebook}
due to value of vocabulary property of Facebook VOID and
Qtp2 ≡ ∆. This rule determines that only δFacebook can
contain internal triples that satisfy triple patterns together.

Rule 10. If there is a triple pattern whose object is same
with the object of another one, then the datasets included by
selected sets of both triple patterns are internal relevant.

∀δx, tpi, tpj((otpi = otpj ) ∧ (δx ∈ Qtpi) ∧ (δx ∈ Qtpj ) →
ρint(δx, tpi) ∧ρint(δx, tpj)) where otpi ∈ V

To execute Object Sharing Analysis from external point
of view, we benefit from the linkset descriptions. To find ap-
propriate link triples, ?person and ?film should be in different
datasets. Rule 11 determines external relevant dataset for
triple patterns which have the same object. This rule consid-
ers two linkset descriptions together for two triple patterns.

Rule 11. If two triple patterns have the same object, and
there are two linkset descriptions which have the same ref-
erenced dataset each of which is compatible with one of the

triple patterns, then referrer datasets of the linkset descrip-
tions are external relevant for the triple patterns.

∀λm, λn, tpi, tpj((otpi = otpj )∧Compatible(λm, tpi)∧Com−
patible(λn, tpj)∧(δtoλm

= δtoλn
)→ ρext(δfromλm

, tpi)∧ρext(δfromλn
,

tpj)) where otpi ∈ V

For the example of Object Sharing Triple Pattern Anal-
ysis, assume that no rule is applied before this analysis
and selected sets are Qtp1 ≡ ∆ and Qtp2 ≡ ∆. In Fig-
ure 5, δDBpedia, δY AGO, and δLinkedMDB have link triples
with predicate owl:sameAs. But, only δFacebook has a linkset
to δLinkedMDB with predicate facebook:likes, and therefore
Qnewtp1 = {δFacebook}. In this case, tp2 can only be queried
on the datasets which is linked to δLinkedMDB with predi-
cate owl:sameAs, and thus Qnewtp2 = {δDBpedia}. Other triples
whose subject corresponding to ?film in other datasets ac-
cording to tp2 cannot include objects that satisfy object of
tp1. As done in other Linking Analysis methods, internal
and external relevant datasets which are inferred by Rule 10
and Rule 11 are unified according to Rule 3.

The last analysis from the Shared Variable Analysis per-
spective considers the triple patterns which have the same
subject called Subject Sharing Triple Patterns Analysis. This
rule does not use Linking Analysis perspective, and thus it
does not contain Internal and External Linking Analysis.
Consider the following example triple patterns for Subject
Sharing Triple Pattern Analysis:
?city dbpprop:name “Izmir” .
?city dc:terms ?subject.

According to our dataset definition, triples which have the
same subject are included by the same dataset. Based on
this, Rule 12 infers datasets which are relevant for triple pat-
terns by taking the intersection of selected sets into account.

Assume that selected sets for triple patterns are Qtp1 =
{δDBpedia} and Qtp2 ≡ ∆. According to the rule, the fi-
nal datasets according to this rule are Qnewtp1 ≡ Qnewtp2 =
{δDBpedia}.

Rule 12. If there is a triple pattern whose subject is same
with the subject of another triple pattern, then the datasets
included by selected sets of both triple patterns are relevant.

∀δx, tpi, tpj((stpi = stpj )∧(δx ∈ (Qtpi∩Qtpj ))→ ρ(δx, tpi)∧
ρ(δx, tpj)) where stpi ∈ V

Up to this point, we have given the relevant dataset dis-
covery rules which are used to determine relevant datasets
from different perspectives. These rules are executed to-
gether for a query to make a complete analysis. Next section
introduces the analysis process which specifies the execution
order for rules.

3.1.2 Analysis Process
The rules introduced above should be executed together

to provide effective dataset selection. In this section, exe-
cution of rules are explained in the process of DatasetAn-
alyzer which is shown Figure 3.3. In the figure, QBGP =
{Qtpi |tpi ∈ BGP} is the set of selected sets of all triple pat-
terns in a query. We use QinitBGP to represent the initial state
where selected set of each triple pattern contains the whole
web of data, ∀Qtpi ∈ QinitBGP (Qtpi ≡ ∆). This set is the in-
put of the single step analysis, and selected sets in this set are
constrained by execution of the rules includes the IRI-based



Figure 3.3: WoDQA Analysis Process

analyses. Single step analysis includes vocabulary match,
linking-to-IRI and IRI-links-to rules which are executed only
once. The reason is that the rules based on IRI-based analy-
sis produce the same result for every execution because they
do not depend on current Qtpi . Although the rules in sin-
gle step analysis do not have a specific order, using output
of each rule in dataset elimination method reduces current
datasets set of the triple patterns. Then, QconstrainedBGP is
given to the repetitive analysis phase.

On the other hand, rules based on Shared Variable Anal-
ysis take more than one triple pattern into consideration.
Since different combinations of triple patterns affect the se-
lected sets of each other, these rules depend on current se-
lected sets of triple patterns to discover the datasets rele-
vant to the triple patterns. For this reason, they are exe-
cuted repetitively until no dataset is eliminated from any
Qtpi . The repetitive analysis phase produces QnewBGP by ex-
ecuting Shared Variable Analysis rules. After the phase is
completed once, if an elimination has been done, QnewBGP is
given to repetitive analysis as QconstrainedBGP , and the phase is
repeated. On the other hand, when the rules do not change
any selected set, i.e. QnewBGP ≡ QconstrainedBGP , the analysis is
finished and the result is produced as QfinalBGP .

3.2 Query Reorganizer
The QueryReorganizer module is responsible for rewrit-

ing a query using final selected set of each triple pattern(
QfinalBGP

)
decided by the DatasetAnalyzer. While rewriting

a federated query, Query Reorganizer conforms to SPARQL
1.1 federation extension16.

While the initial query is a set of triple patterns, QueryRe-
organizer divides the query into sub-queries and makes it a
set of service graph patterns each of which is represented
with a tuple sgpα = 〈Srvα, SubTpα〉. A service graph pat-
tern consists of a Srv set which includes datasets17 to send
the sub-query, and a SubTp set which is the subset of the
triple patterns of the initial query, i.e. a sub-query. Per-
forming a service graph pattern is unifying the results of the
sub-query in each dataset in Srvα.

Triple patterns which have the same selected set (Qtpi)
are added to the same service graph pattern to decrease net-
working cost. But, only consecutive triple patterns can be
in the same sub-query because WoDQA does not change the
evaluation order of the query. In this direction, elements of
SubTp sets of service graph patterns are found by Algorithm
1.

Datasets of a sub-query is formalized as Srvα = {δx|
δx ∈ Qtpi , tpi ∈ SubTpα}, and service endpoint URLs are
procured from VOID documents of the datasets. The output
of the Query Reorganizer is shown as ReorganizedBGP =
〈sgp1, . . . , sgpm〉 where 1 ≤ m ≤ n and n is the number of
triple patterns of the initial query. ReorganizedBGP repre-

16http://www.w3.org/TR/sparql11-federated-query/
17In the implementation, SPARQL endpoints of datasets are
used in SERVICE expressions.

Algorithm 1 This algorithm divides query into sub-triples

FUNCTION DivideTriples()
INPUT bgp = {tp1, . . . , tpn} including n triple patterns;
LET i := 1, α := 1;
LET SubTriplesα := {tpi};
WHILE i < n DO

IF Qtpi+1 = Qtpi THEN
LET SubTriplesα := SubTriplesα ∪ {tpi+1};

ELSE
LET SubTriplesα+1 := {tpi+1};
LET α := α+ 1;

LET i := i+ 1;

sents the federated form of the initial query which contains
ordered service graph patterns. WoDQA executes the reor-
ganized query using Jena ARQ query engine.

Besides grouping triple patterns, although WoDQA does
not include query optimization phase of query federation ap-
proach, only moving up FILTER expression[2] optimization
technique is used. Thus intermediate results are filtered as
early as possible. Furthermore, WoDQA supports queries
include UNION and OPTIONAL keywords but queries in-
clude GRAPH keyword and blank nodes are not supported.

4. USAGE SCENARIO
There are two ways for users to benefit from WoDQA.

The first one is the SPARQL endpoint of WoDQA18 which
can be used to redirect raw queries. One can construct a
SPARQL query with a SERVICE block including the raw
query, and use WoDQA SPARQL endpoint as the remote
service. When this query is executed, the WoDQA endpoint
is invoked, and this endpoint transforms the query into a
federated form by means WoDQA and executes this feder-
ated query on the relevant dataset transparently to the user.

The other way is using the web form of the WoDQA19.
In this section, a sample query execution on the web form
of WoDQA is explained. Reorganized form of the query,
results of select and construct queries and execution time
can be observed in this form.

The example query seen in the WoDQA web form in Fig-
ure 4.1 searches for an answer to “Which facebook users like
movies which are produced by a German producer?”. This
query is represented as BGP = 〈tp1, . . . , tp5〉 where
tp1 = 〈?faceUser,facebook:likes,?movie〉,
tp2 = 〈?movie,linkedMDB:producer,?producer〉,
tp3 = 〈?dbProducer,owl:sameAs,?producer〉 ,
tp4 = 〈?anyMovie, dbpo:producer, ?dbProducer〉,
tp5 = 〈?dbProducer, dbpo:birthPlace, dbpedia:Germany〉.

We explain how relevant datasets are found according
to the WoDQA Analysis process introduced in Figure 3.3.
Initially, single step analysis phase is performed for this
query. Selected sets of tp1 and tp2 are eliminated via out-
put of predicate vocabulary match, and in the consequence
of single step analysis they are Qtp1 = {δFacebook} and
Qtp2 = {δLinkedMDB}. No relevant dataset is found for tp3
in the single step analysis, because owl:sameAs is a generic

18Up-to-date WoDQA SPARQL endpoint address can
be found on http://seagent.ege.edu.tr/etmen/wodqa.html
page.

19http://seagent.ege.edu.tr/etmen/wodqa.html



Figure 4.1: Example query execution with WoDQA

property and owl is not defined as vocabulary property in
VOIDs. Thus, Qtp3 still includes all datasets (∆). Predicate
vocabulary match discovers relevant datasets for tp4 and tp5,
and their selected sets are Qtp4 = Qtp5 = {δDBpedia}.

After the single step analysis is applied to all triple pat-
terns, the repetitive analysis phase is performed, and se-
lected set of tp3 is eliminated in this phase. Subject Sharing
Triple Patterns Analysis discovers relevant datasets for tp3
since tp3 and tp5 have the same subject variable, and thus
its selected set becomes Qtp3 = {δDBpedia}.

The reorganized query shown in Figure 4.1 is rendered
with these analysis results by QueryReorganizer and for-
malized as ReorganizedBGP = 〈sgp1, sgp2, sgp3〉 where
sgp1 = 〈{δFacebook} , {tp1}〉,
sgp2 = 〈{δLinkedMDB} , {tp2}〉,
sgp3 = 〈{δDBpedia} , {tp3, tp4, tp5}〉.
After the reorganizing process, the triple patterns in the

service graph patterns are executed on related endpoints by
means of Jena ARQ, and query results are incrementally
collected. In conclusion, results related with the query are
listed at the bottom of the web form page as seen in Figure
4.1.

5. CONCLUSION
In this paper, we have introduced a query federation en-

gine called WoDQA that discovers related datasets in a VOID
store for a query and distributes the query over these datasets.
The novelty of our approach is exhaustive dataset selection
mechanism which includes analysis of triple pattern relations
and links between datasets besides analyzing datasets for
each triple pattern. WoDQA focuses on discovering relevant
datasets and eliminating irrelevant ones using a rule-based
approach introduced in this paper. Our approach requires

VOID descriptions which include a SPARQL endpoint to
query the dataset, reflect actual content of the dataset com-
pletely and accurately, and include linksets between datasets
to select datasets effectively. WoDQA allows users to con-
struct raw queries without the need to know how query will
divide into sub-queries and where sub-queries are executed.
Query results are complete under the assumption of avail-
able, accurate and complete VOID descriptions of datasets.

The initial version of WoDQA which is introduced in this
paper has some disadvantages arising from query federation
approach which WoDQA builds upon. As mentioned previ-
ously, follow-your-nose has some problems such as missing
results and large document retrieval. Similar problems may
occur for query federation. Firstly, to find complete results
to queries, it is required that metadata of all datasets must
be well-defined and accurate. But, to provide such an ac-
curate dataset metadata an automated mechanism which
continuously updates the metadata is required. However,
even there would be a tool which implements this require-
ment, providing accurate dataset metadata via such a tool
is the responsibility of dataset publishers.

Another problems of query federation are high latency
and low selectivity of datasets which are similar to retrieval
of large documents in follow-your-nose. Query optimization
can be a solution for these problems of query federation.
Grouping triple patterns to filter more triples on an end-
point can prevent high latency (required processing time)
and changing query evaluation order according to dataset
selectivity statistics can prevent retrieving large result sets.
To make WoDQA functioning in the wild, optimization step
of query federation is required to be implemented. We plan
to incorporate triple pattern selectivity into query reorgani-
zation using VOID properties about statistics.

On the other hand, we could not make an evaluation of our
approach in this paper, since VOID documents in current
VOID stores are not well-defined. Since SPARQL endpoint
definitions, linkset descriptions or vocabularies are missing
in most of VOID documents, we could not find a chance to
execute comprehensive scenarios. Developing a tool which
extracts well-defined VOID descriptions of datasets, and by
this means evaluating our approach is a required future work
to confirm applicability of WoDQA on linked open data.
Also, evaluating the analysis cost of WoDQA for a large
VOID store will be possible when well-defined VOIDs are
constructed.
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