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ABSTRACT 
Many Semantic Web applications require the integration of data 
from distributed and autonomous RDF data sources. However, the 
values in the RDF triples would be frequently recorded simply as 
the literal, and additional contextual information such as unit and 
format is often omitted, relying on consistent understanding of the 
context. In the wider context of the Web, it is generally not safe to 
make this assumption. The Context Interchange strategy provides 
a systematic approach for mediated data access in which semantic 
conflicts among heterogeneous data sources are automatically 
detected and reconciled by a context mediator. In this paper, we 
show that SPARQL queries that involve multiple RDF graphs 
originating from different contexts can be mediated in the way 
using the Context Interchange (COIN) Framework.  

Categories and Subject Descriptors 
H.2.5 [Database Management]: Heterogeneous Databases – 
data translation; H.2.4 [Database Management]: Systems – 
query processing; H.3.5 [Information Storage and Retrieval]: 
Online Information Services – data sharing. 

General Terms 
Algorithms, Design 

Keywords 
Semantic heterogeneity, semantic interoperability, query mediator, 
data integration 

1. INTRODUCTION 
An increasing amount of data is published in RDF format due to 
the activity of the linked data community. The Web of linked data 
that is emerging by integrating data from different sources via 
URIs can be considered as a single, globally distributed dataspace 
[1]. With SPARQL [2], a W3C Recommendation for a query 
language for RDF, data from different sources can be aggregated 
and applications can pose complex queries over the RDF dataset, 
which were not possible before. The presence on the Web of such 
a huge distributed and autonomous RDF sources poses a great 
challenge when it comes to achieve semantic interoperability 
among heterogeneous sources and receivers. 

RDF is a data model for expressing the information that needs to 
be processed by applications, so that it can be exchanged without 

loss of meaning. The data do not need to be stored in RDF but can 
be created on the fly from relational databases [3] or other non-
RDF sources. We expect that more and more content providers 
will make their data available via SPARQL endpoints. However, 
much existing data on the Web takes the form of simple values for 
properties such as weights, costs, etc., and contextually dependent 
information such as unit and format is often omitted. Due to the 
openness of the Web, it is generally not safe to make the 
assumption that anyone accessing the value of a property will 
understand the units being used. For example, an U.K. site might 
give a height value in feet, but someone accessing that data 
outside the U.K. might assume that heights are given in meters. 
Another example is that a gallon in the U.K. (the so-called 
Imperial gallon) is approximately 4546 ml, while in the U.S. the 
"same" gallon (the so-called Winchester gallon) is 3785 ml, 
almost 1 liter less. The principle that such simple values are often 
insufficient to adequately describe these values is an important 
one. If the data originating from different contexts are brought 
together and we pose queries on the whole dataset, many semantic 
conflicts can happen (see a motivational example in Section 2 for 
more detail). Proper interpretation of RDF data would depend on 
information that is not explicitly provided in the RDF dataset, and 
hence such information may be not available to other applications 
that need to interpret this data. 

With the above observations in mind, the goal of this paper is to 
illustrate the novel features of the Context Interchange mediation 
strategy, and to describe how the semantic conflicts in RDF data 
sources can be automatically detected and reconciled by query 
rewriting technique. Specifically, the paper makes the following 
contributions: 

 We describe how to use the Context Interchange strategy to 
achieve semantic interoperability among heterogeneous RDF 
sources and receivers by rewriting the user SPARQL query to 
a mediated query. The mediated query can return the answer 
collated and presented in the receiver context. 

 We propose a formal and logical COIN framework to model 
contexts, i.e., the factual statements present in a data source 
are true relative to the context associated with the source but 
not necessarily so in a different context. With the framework, 
the users are not burdened with the diverse data semantics in 
sources, all of which are declared in the context representation 
components and can be automatically taken into consideration 
by the mediator. 

 A SPARQL query rewriting algorithm is described and tested 
with the real data from CIA Factbook1 and DBpedia2. The 

                                                                 
1 http://www4.wiwiss.fu-berlin.de/factbook/ 
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results show that the approach is promising and effective. The 
source code and some test cases can be downloaded from the 
web site http://homepage.fudan.edu.cn/zhengxq/coin/. 

The rest of the paper is organized as follows. Following this 
introduction, a motivational example is presented to highlight the 
Context Interchange strategy toward semantic interoperability. 
The COIN framework is described by introducing the formalism 
in section 3. The SPARQL query mediation via query rewriting 
technique is explained in section 4. A preliminary implementation 
is introduced in section 5. Section 6 presents a brief overview of 
related work. The conclusions are summarized in section 7. 

2. MOTIVATIONAL EXAMPLE 
Consider the scenario of finding cheap airfare on the Web shown 
in Figure 1, deliberately kept simple for didactical reasons. In this 
paper, examples assume the namespace prefix bindings given in 
Appendix A unless otherwise stated. Data on scheduled-service 
flights are available in two autonomously administered data 
sources. We assume that the flights are described by the terms 
from shared vocabularies to highlight the data-level conflicts. 
Suppose a user looks for a one-way ticket from Boston to 
Shanghai with one stop in Tokyo. She wants to leave Boston after 
9:30 a.m., Feb 9th, 2011 and arrive in Shanghai before 11:30 p.m., 
                                                                                                           
2 http://dbpedia.org/ 

Feb 10th, 2011. This query can be formulated on the schema of 
the two sources as the naïve query shown in Figure 1. The query 
will return the empty answer without any mediation if it is 
executed over the given dataset. 

The query, however, does not take into account the fact that both 
sources and receivers may operate with different contexts, i.e., 
they may have different assumptions on how the property values 
should be interpreted. Specifically, the user operates with city 
names and US style datetimes, while the locations are recorded 
using IATA airport codes in the source 1 and the source 2 
assumes xsd:dateTime format. It requires that certain constraints 
typed by the user should be transformed properly to comply with 
assumptions in the contexts of data sources (for example, from 
"Boston" to "BOS"; from "9:30 AM 02/09/2011" to "2011-02-
09T09:30:00Z"). Besides, she works with US dollars with a scale-
factor of 1, whereas the source 2 reports all ticket prices in 
Japanese Yen with a scale-factor of 1000, which shows that the 
data might vary in two or more aspects (in that case, currency and 
scale). So there must be more than one conversion of the data. 
Even if these specific differences were carefully dealt with by 
writing a new query with appropriate datetime formats, currencies 
and city codes for each individual source (which might be a 
significant challenge for the user, especially if unfamiliar with the 
details of each of the multiple sources involved), the result still 

CONTEXT: RECEIVER 
 
 Currency is USD with a scale-factor of 1; 
 Datetime is expressed in US style; 
 Locations are expressed as city name. 

 
NAÏVE SPARQL QUERY 
 
1:  SELECT  ?airline1  ?airline2  ?total 
2: 
3:  FROM NAMED <http://usairline.com/flights>  
4:  FROM NAMED <http://japanairline.com/flights>  
5:  
6:  WHERE  {   
7:    GRAPH  ?graph1 
8:       {  ?airline1  fts:depDateTime  ?depDateTime1 ; 
9:                           fts:arrDateTime  ?arrDateTime1 ; 
10:                         fts:depCity  "Boston" ; 
11:                         fts:arrCity  "Tokyo" ; 
12:                         fts:price  ?price1 .  } 
13:   GRAPH  ?graph2 
14:      {  ?airline2  fts:depDateTime  ?depDateTime2 ; 
15:                         fts:arrDateTime  ?arrDateTime2 ; 
16:                         fts:depCity  "Tokyo" ; 
17:                         fts:arrCity  "Shanghai" ; 
18:                         fts:price  ?price2 .  } 
19: 
20:   FILTER ( ?arrDateTime1 < ?depDateTime2 )  . 
21:   FILTER ( ?depDateTime1 >= "9:30 AM 02/09/2011" )  . 
22:   FILTER ( ?arrDateTime2 <= "11:30 PM 02/10/2011" )  . 
23: 
24:   LET ( ?total  :=  ?price1 + ?price2 )  } 
25:  
26:  ORDER BY ASC(?total) 
27:  LIMIT 1 

Figure 1. Example scenario 

CONTEXT: SOURCE 1 
 
 Currency is USD with a scale-factor of 1; 
 Datetime is expressed in US style; 
 Locations are expressed as IATA airport codes. 

 
# Named graph: http://usairline.com/flights 
@prefix : <http://usairline.com/flights#>  . 
 
:us339  fts:depDateTime  "12:30 PM 02/09/2011" . 
:us339  fts:arrDateTime  "7:25 AM 02/10/2011"  . 
:us339  fts:depCity  "BOS" . 
:us339  fts:arrCity  "TYO" . 
:us339  fts:price  950 . 
 
:us512  fts:depDateTime  "9:45 AM 02/10/2011" . 
:us512  fts:arrDateTime  "10:30 PM 02/10/2011" . 
:us512  fts:depCity  "TYO" . 
:us512  fts:arrCity  "SHA" . 
:us512  fts:price  380 . 
 
CONTEXT: SOURCE 2 
 
 Currency is JPY with a scale-factor of 1000; 
 Datetime is expressed in xsd:dateTime type; 
 Locations are expressed as city names. 

 
# Named graph: http://japanairline.com/flights 
@prefix : <http://japanairline.com/flights#>  . 
 
:jp241  fts:depDateTime  "2011-02-10T09:25:00Z"^^xsd:dateTime .
:jp241  fts:arrDateTime  "2011-02-10T22:05:00Z"^^xsd:dateTime . 
:jp241  fts:depCity  "Tokyo" . 
:jp241  fts:arrCity  "Shanghai" . 
:jp241  fts:price  25 . 



would be misleading. For the source 1, the graph pattern of naïve 
query needs to be rewritten to the following one: 

GRAPH  ?graph1 
    {  ?airline1  fts:depDateTime  ?depDateTime1; 
                        fts:arrDateTime  ?arrDateTime1; 
                        fts:depCity  "BOS";  
                        fts:arrCity  "TYO"; 
                        fts:price  ?price1 .  } 
  GRAPH  ?graph2 
    {  ?airline2  fts:depDateTime  ?depDateTime2; 
                        fts:arrDateTime  ?arrDateTime2; 
                        fts:depCity  "TYO"; 
                        fts:arrCity  "SHA"; 
                        fts:price  ?price2 .  } 

But the result below still is incorrect because it is not cheapest 
airfare: 

airline1 airline2 total 
us339 us512 1330.00 

The above result is a solution corresponding to the way in which 
the query's pattern matches the RDF data, all from the source 1. 
For the source 2, the result returned is empty because there is only 
one flight from "Tokyo" to "Shanghai". SPARQL, however, can 
be used to express queries across diverse data sources, and a 
SPARQL query can match different parts of the query pattern 
against different graphs. In the example, it does not work by 
rewriting the naïve query into two separate queries, one for 
executing over source 1 and one for source 2, and combining the 
results. A solution is required to make these context conversions 
in dynamic way, depending on which data sources is involved. 
Further, the answers should be transformed so that they conform 
to the context of the user. 

In the Context Interchange system, the semantics of data of those 
present in a source, or of those expected by a receiver can be 
explicitly represented in the form of a context theory and a set of 
context statements with reference to a context ontology (see 
Section 3). Queries submitted to the system would be rewritten 
into the mediated queries by a Context Mediator, in which the 
semantic conflicts between the sources and the receiver would be 
automatically recognized and reconciled. 

The naïve query can be transformed to the mediated query by the 
rewriting algorithm described in the Section 4. This mediated 
query considers all potential conflicts between the sources and the 
receiver when matching, restricting and testing values. Moreover, 
the answers returned can be transformed so that they conform to 
the context of the receiver. The mediated query, when executed, 
returns the "correct" answer below, which helps the user to make 
the right choice. 

airline1 airline2 total 
us339 jp241 1255.59 

Exchange rate: 100 USD = 8181 JPY 
In the COIN system, query mediation and query answering are 
separated as shown in the above example. Since the mediated 
queries encode all the necessary data transformations, they can be 
executed by existing query engines such as ARQ3, AllegroGraph4, 
OpenRDF Sesame5, taking advantage of their sophisticated query 

                                                                 
3 http://jena.sourceforge.net/ARQ/ 
4 http://www.franz.com/ 
5 http://www.openrdf.org/ 

optimizers. We have shown only one user in this scenario. 
However, other users with different contexts could also issue their 
queries and get the results in their own contexts by simply 
declaring or choosing their contexts. Similarly, other RDF data 
sources can be added to the system with the declaration of their 
contexts, and queries over multiple sources with different contexts 
could be mediated in the similar way. 

3.  CONTEXT REPRESENTATION 
The purpose of knowledge representation in COIN is to provide a 
formal way of making explicit disparate assumptions about data. 
Knowledge about the source and user contexts is declared under a 
formal, logical COIN framework consisting of the following four 
core components (see Figure 2): 

 O = <C, P>, the Context Ontology, is a description of generic 
concepts C that would be interpreted differently across data 
sources and receivers (e.g. "MonetaryValue"), and the conflict 
dimensions (or modifiers) that are defined as the properties P 
for these concepts (e.g. "hasCurrency"). 

 A, the Context Pool, is a set of instantiations of the context 
ontology. Value assignments are made for each modifier to 
explicate the meaning of a concept in a data source or receiver 
(e.g. ctx:JP_yen  coin:scale  "1000"^^xsd:integer). 

 M, the Context Mappings, defined a set of context statements 
that associate the sources or receivers with their contexts. A 
context statement can identify the correspondences between a 
property used in the sources and a context instance defined in 
A (e.g. fts:price  coin:monetaryValue  ctx:JP_yen). 

 F, the Conversion Function Bindings, specified which 
functions should be used to make data transforms. Conversion 
functions are defined to achieve conversions between different 
contexts. For each modifier at least one conversion function 
will be defined to transform a value in one (source) context 
into a corresponding value in another (target) context (e.g. 
fn:cvt_currency("JPY", "USD", 25000), which converts 
25000 Japanese Yen to the equivalent US dollars). 

In the remaining subsections, we describe each of the components 
in turn with examples. RDF and OWL have been used to describe 
context knowledge in the framework. The adoption of RDF and 
OWL provides us with greater flexibility in representing, reusing 
and exchanging data semantics captured in different contexts. 

Figure 2. An illustration of the COIN framework 

 



3.1 Context Ontology 
Context ontology is a collection of generic concepts (or classes in 
the OWL language), which provides a common type system for 
describing data semantics exchanged between disparate systems. 
A context ontology corresponding to the motivational example in 
Section 2 can be seen in Figure 2. Concepts, denoted by C, are 
depicted by ellipses, and the "Context" is the special concept from 
which all other concepts inherit. Concepts may have properties, 
called modifiers and denoted by P, which serve as annotations 
that make explicit the semantics of data in different contexts. 

Contexts are the actual specializations of the concepts subject to 
multiple meanings across sources and receivers. For sources, the 
contexts are defined as the specializations used for the underlying 
data values. For receivers, on the other hand, the contexts are 
defined as the specializations assumed in viewing the data values. 
These specializations could be the representation of date or the 
number scale being used. 

The modifiers, as properties, will be inherited by the sub-concept 
relations from its ancestors. A concept can have multiple 
modifiers, each of which indicates an orthogonal dimension of the 
variations. For example, the concept "MonetaryValue" has four 
modifiers, two of which are "hasCurrency" introduced by the 
"MonetaryValue" and "hasScale" inherited from the "Number", 
which indicates that its instances could be interpreted according to 
two dimensions: scale factor and money currency. All the 
concepts and their properties of the context ontology are defined 
in the namespace bound to the prefix "coin". 

3.2 Context Pool 
Context pool contains a set of instantiations of the concepts in the 
context ontology. As we mentioned above, modifiers are special 
properties that affect the interpretation of data values. The context 
ontology defines what types of modifiers apply to which concepts. 
A context instance or individual is defined by a set of RDF 
statements that determine the values of modifiers. Such 
statements are defined over the domain A × P × (I ڂ L), where 
I is a set of the IRIs, and L is a set of the RDF literals. If {s, p, o} 
is a statement about a context instance s, and s belongs to a 
concept C א C,  the property p א P should be able to apply to the 
class C, and a value o must be in the range of the property p. 

For example, a context instance "ctx:US_dollar" can be described 
with the following statements: 

ctx:US_dollar  coin:hasDataType  xsd:long  . 
ctx:US_dollar  coin:hasScale  "1"^^xsd:integer  . 
ctx:US_dollar  coin:hasCurrency  "USD"  . 

These modifier assignments explicitly indicate that any data value 
associated with the "ctx:US_dollar" is in US dollars with a scale-
factor of 1 and is represented by the typed literal "xsd:long". All 
the context instances are defined in the namespace bound to the 
prefix "ctx". The objects (xsd:long, "1", and "USD") in the above 
RDF statements are called modifier values. 

We can declare new context instances or reuse which are already 
defined in the pool. For each concept of the context ontology that 
is interpreted differently by sources and receivers, modifiers are 
introduced to explicate those differences. The advantage of this 
approach is that it allows conflicts between sources and receivers 
to be introduced gradually as they are discovered. Many conflicts 
emerge later in the integration process as more sources and users 

are incorporated in the system. If all sources and receivers hold a 
common meaning for a given concept, no modifier is required at 
that time. When that situation changes at a later time, modifiers 
can be introduced to handle the variations. 

3.3 Context Mappings 
Context mappings provide the articulation of the data semantics 
for the sources and receivers, which are often implicit in the given 
contexts. For each concept in the context ontology, a predicate 
with the same name as the concept was defined (for example, the 
predicate coin:monetaryValue needs to be defined for the concept 
"MonetaryValue"). These predicates are used to associate the 
properties used in the sources with the corresponding context 
instances in order to make explicit the data semantics of the 
values of the properties. The statements of the context mappings 
are defined over the domain (R ڂ D) × T × A, where R is a set 
of the IRIs that represent the properties appeared in the data 
sources, D is a set of IRIs used to identify specific applications, 
and T is a set of predefined vocabulary that have the same names 
as the concepts defined in the context ontology, but begin with a 
lower case letter. T is used to indicate the types of the context 
instances assigned in the context mapping statements.  

For example, the fact that the values of the "fts:price" property are 
reported in US dollars using a scale-factor of 1 is made explicit by 
the following statement: 

fts:price  coin:monetaryValue  ctx:US_dollar  . 
The "ctx:US_dollar" is a context instance of the "MonetaryValue" 
concept, and was defined in the example of Section 3.2. If the 
data is structured in the form: subject-predicate-[ ]-predicate-
object, using an intermediate blank node, as the example similar 
to the following definition: 
   item  hasPrice  _:blanknode 
   _:blanknode  price  "100" 
   _:blanknode  currency  "USD " 
In that case, the context mapping will be defined by associating 
the "price" property with the appropriate context instance to make 
explicit the data semantics of the value "100" of that property. For 
the sources, the context mappings are defined by attaching the 
context instances to the properties, which could be considered as 
some extensions to the RDF Schema vocabulary. The extensions 
support the description of context information indicating how the 
values of a given property are interpreted. 

We cannot assume that the users have intimate knowledge of the 
data sources being accessed since this assumption is generally 
non-tenable when the number of systems involved is large and 
when changes are frequent. The users should remain isolated from 
underlying semantic heterogeneity, i.e., they are not required to 
be sufficiently familiar with the properties in different schemas 
(so as to construct a query). There are some graphic tools (Gruff6 
for example) to assist the users to create SPARQL queries. The 
COIN enables the users to identify their contexts independent of 
the data sources. Receiver's contexts can be declared by assigning 
the instances in A to D with the aid of vocabulary in T. For 
example, a user could declare that she use US dollars by the 
following statement: 

:flight  coin:monetaryValue  ctx:US_dollar  . 

                                                                 
6 http://www.franz.com/agraph/gruff/ 



The ":flight" is used to indicate an application domain, so a 
meaningful name is recommended. A user is allowed to make 
different context definitions for different applications. 

All context statements for a data source or a receiver should be 
made in a separate namespace. The correspondences between the 
sources or receivers and their context definitions then need to be 
further identified. We assume that all context statements about the 
source 1 were described at <http://coin.mit.edu/sources/usairline>. 
The following triple asserts that the context of the source 1 is 
defined in the RDF graph <http://coin.mit.edu/ sources/usairline>, 
where the source 1 is identified by <http:// usairline.com/flights>: 

<http://usairline.com/flights>   coin:hasContext  
<http://coin.mit.edu/sources/usairline>  . 

Such RDF statements, called context bindings, are defined over 
the domain I × coin:hasContext × I. The context bindings, 
denoted by B, will be added in the mediated query to retrieve the 
context mappings of the data sources and/or receivers (more about 
these in the section 4). 

3.4 Conversion Function Bindings 
The preceding statements are not yet sufficient for resolving 
conflicts of data present in disparate contexts, since we have to 
define how values in one (source) context are to be reported in 
another (target) context with different assumptions (i.e., modifier 
values). This is accomplished via the introduction of conversion 
functions that are defined for each modifier between two different 
modifier values. A general representation of conversion functions 
is shown as follows: 

fn:cvt_modifier(mvs, mvt, vs) 
where mvs and mvt are two distinct values of the modifier in the 
source and target contexts respectively. The function returns the 
equivalent value vt that complies with assumptions in the target 
context for the source value vs. For example, a scale conversion 
fn:cvt_scale could be defined by multiplying a given value with 
the appropriate ratio as shown below: 

fn:cvt_scale: vt = vs * mvs / mvt 
Note that the conversion function will return vt directly if mvs or 
mvt is undefined. 

In some cases, ancillary data sources may be used for defining 
appropriate functions. For instance, currency conversions need to 
be supported by external data sources that provide the exchange 
rate between two different currencies. Atomic conversions can be 
composited to construct composite conversions. As we mentioned, 
each modifier captures one aspect of interpretation that may vary 
across contexts. After invoking an atomic conversion, the source 
value is transformed to a (intermediate) context that is the same as 
the target context in terms of this aspect; by invoking the atomic 
conversions consecutively, the value is converted through a series 
of intermediate contexts, each having one aspect being different 
from the target context; it reaches the target context in the end 
when no aspect is different from the target context. Thus, in the 
case of "MonetaryValue" that has two modifiers, currency and 
scale, we may have: 

fn:cvt_scale(1000, 1, fn:cvt_currency("JPY", "USD", 25)) 
Hence, if the function for currency returns the value 0.30559, it 
will be rewritten to 305.59 by the scale conversion function. All 
the COIN components for the motivational example are given in 
Appendix B except the context ontology that has already shown 
in Figure 2. 

Conversion function bindings, denoted by F, are defined by a set 
of RDF triples that determine which functions can be used to 
make necessary data transforms for the modifiers of the concepts. 
Such statements are defined over the domain C × P × N, where N 
is a set of IRIs used to identify and retrieve conversion functions. 

4. SPARQL QUERY MEDIATION 
The goal of the COIN framework is to provide a formal, logical 
basis that allows for the automatic mediation of queries such as 
those described in Section 2. The semantic conflicts would happen 
when the RDF literals typed by a receiver are attempted to match 
against source graphs or the RDF terms from different graphs are 
compared. In this section, we describe the process of rewriting a 
naïve SPARQL query (i.e. query ignoring semantic differences 
between sources and/or receivers) to a mediated query with all the 
semantic conflicts reconciled and the query results transformed 
appropriately according to user expectation. 

4.1 Well-Formed Query 
Given a naïve SPARQL query, context mediation is bootstrapped 
by transforming this user query into a logically equivalent query. 
The mediation process starts by converting the naïve query into 
its well-formed query that must satisfy the following requirements: 
 All the data sources are introduced as named graphs by using 

the FROM NAMED clause. 
 All the graph patterns (i.e., basic or group graph patterns) are 

defined inside the scope of GRAPH keywords. 
 There is no such variable that is used in two different GRAPH 

clauses. 
The translation to meet the first two requirements is obviously a 
trivial exercise. Note that the GRAPH keyword could be followed 
by a variable or an IRI. If a variable is provided, it is not possible 
to know in advance which named graph will be matched since the 
variable will range over the IRIs of all the named graphs in the 
query's RDF dataset. Query variables in SPARQL queries have 
global scope and use of a given variable name anywhere in a 
query identifies the same variable. However, a variable shared by 
different named graphs might be bound to the logically-equivalent 
term, but with different representations in different contexts. So 
the last requirement is necessary and can always be guaranteed by 
renaming variables and adding the corresponding FILTERs to the 
WHERE clause. For example, if a ?var variable is used across two 
different GRAPH clauses, one variable would be renamed ?nvar, 
and a FILTER(sameTerm (?var ,?nvar)) constraint will be created. 

4.2 Semantic Conflicts Detection 
The semantic conflicts are detected by a context mediator through 
the comparison of context statements corresponding to the sources 
and receivers engaged in query patterns. The algorithm 1 shows 
how to detect the potential conflicts among heterogeneous sources 
and receivers for given a pair of properties, where a three-place 
notation Tripleg(s, p, o) is used to represent a typical RDF triple 
<s, p, o> and if the subscript g is given it indicates that the triple 
is defined under the named graph g. The subscript g could be an 
IRI or a variable. In this paper, Tripleg(s, p, o) is also used to 
denote a triple pattern. 

Note that the properties P1 and P2 are not required to be 
associated with the same concept in C, which makes it possible to 
express the constraints like FILTER (?price < ?weight). If the 
properties of ?price and ?weight have a common modifier, 



"hasScale" for example, and different modifier values, this 
conflict will also be detected and be used to construct the 
conversion function (see Section 4.3). Recall that the users are not 
required to be sufficiently familiar with the underlying schemas of 
data sources, and their contexts are declared by assigning the 
context instances to the concepts C via T. If S2 identifies a receiver, 
the context instance ctx2 could be retrieved directly by looking up 
M for the concept C1 as shown in line 9 of the algorithm 1. 

The algorithm 1 can only be used to statically detect the semantic 
conflicts between sources and/or the receiver. Sometimes it is 
impossible to know in advance which sources the query pattern 
will be matched until the query is executed, not to mention the 
contexts of the sources. For example, the following group graph 
pattern in the query of the motivational example can be matched 
against both source 1 and 2 (assuming the city names, "Shanghai" 
and "Tokyo", are automatically transformed so that they conform 
to the contexts of the corresponding sources). 

GRAPH  ?graph2 
{  ?airline2  fts:depDateTime  ?depDateTime2 ; 

fts:arrDateTime  ?arrDateTime2 ; 
fts:depCity  "Tokyo" ; 
fts:arrCity  "Shanghai" ; 
fts:price  ?price2 .  } 

The trick is that we are able to access the graph name by making a 
variable (i.e., ?graph2 used in the above pattern) bound to IRIs of 
the graph being matched, and then use the graph name to obtain 
its context definition via context bindings (see Section 3.3). 
SPARQL queries can be used to find all the potential semantic 
conflicts instead of the algorithm 1, and the algorithm can be 
trivially translated to the equivalent SPARQL query shown in 
Figure 3. If this query is applied to the source 1 and 2 for the 
property fts:price, two semantic conflicts would be detected as 

shown in Table 1. Note that we just need to detect the conflicts 
that are required to make necessary conversions for queries. 

For the same reason, in some cases it is not possible to know in 
advance how to interpret the value of a property because we 
cannot know in advance the sources of the value. However, in 
most cases, we are able to know with which concept the property 
was associated by looking up the context mappings. With the 
concept name, we can get all the modifiers applied to the concept, 
access the values of the modifiers, and then use them to construct 
the appropriate conversion functions. An OPTIONAL keyword 
will be used when we cannot know in a static way whether certain 
modifiers or modifier values are defined in the context statements. 
Notice that if a concept has no modifier, there is no conversion 
function defined for the concept, so the values are assumed not to 
vary across any context. 

4.3 Conversion Function Construction 
The conversion functions are introduced to define how values of a 
given concept are transformed between different contexts. In the 
COIN framework, an "ontology-based" representation is adopted 
where conversion functions are attached to concepts in different 
contexts. This mechanism allows for greater sharing and reuse of 
semantic encoding. For example, the same concept may appear 
many times in different properties (e.g., consider the concept 
"MonetaryValue"). Rather than writing a function conversion for 

Figure 3. The equivalent SPARQL query for Algorithm 1

1:  SELECT  ?concept1  ?concept2  ?modifier  ?mv1  ?mv2 
2:  WHERE  {   
3:    S1  coin:hasContext  ?def1 
4:    S2  coin:hasContext  ?def2 
5:    GRAPH  ?def1 {  P1  ?concept1  ?ctx1  } 
6:    GRAPH  ?def2 {  P2  ?concept2  ?ctx2  } 
7:    ?ctx1  ?modifier  ?mv1  . 
8:    ?ctx2  ?modifier  ?mv2  . 
9:    FILTER(!sameTerm(?mv1, ?mv2))  }  . 

modifier mv1 mv2 
coin:hasScale 1 1000 
coin:hasCurrency USD JPY 

Table 1. The semantic conflicts detected in the motivational 
example for the property fts:price 

Input: K : COIN components, K = < O, A, M, F> including B
SC : a set of semantic conflicts detected by the algorithm 1
MV : a data value or a variable in source context
D : a boolean variable to indicate conversion direction

Output: CF : a composite conversion (default value is NULL)

1: for each { S1, S2, P1, P2, C1, C2, modifier, mv1, mv2 } א SC    do 
2:  if CF = = NULL    then 
3:   function ൌ { f  | Triple(C, modifier, f ) א F ٿ C א C ٿ 

( C = C1 ڀ C is a closest super-concept of C1 ) }
4:   if D = = TRUE 
5:  CF ൌ function(mv1, mv2, MV) 
6:   else CF ൌ function(mv2, mv1, MV) 
7:  else function ൌ { f  | Triple(C, modifier, f ) א F ٿ C א C ٿ

( C = C1 ڀ C is a closest super-concept of C1 ) }
8:   if D = = TRUE 
9:   CF ൌ function(mv1, mv2, CF) 
10:   else CF ൌ function(mv2, mv1, CF) 
11: return    CF

Algorithm 2. Conversion function construction 

Input: K : COIN components, K = < O, A, M, F > including B
S1 : a data source IRI (could be a variable) 
S2 : another data source IRI (could be a variable) or  an 

IRI used to identify a receiver 
P1  : a property IRI used in S1 
P2 : a property IRI used in S2 or an IRI used to identify a 

application domain if S2 is a receiver identifier
Output: SC : a set of semantic conflicts detected 
 
1 SC ൌ ׎ 
2: def1 = { def | Triple(S1, coin:hasContext, def) א B } 
3: def2 = { def | Triple(S2, coin:hasContext, def) א B } 
4: ctx1 = { ctx | Tripledef1(P1, concept, ctx) א M } 
5: C1 = { concept | Tripledef1(P1, concept, ctx1) א M ٿ concept א T }
6: if S2 is a data source identifier    then 
7:  ctx2 = { ctx | Tripledef2(P2, concept, ctx) א M ሽ 
8:  C2 = { concept | Tripledef2(P2, concept, ctx2) א M  

א concept ٿ T } 
9: else ctx2 ൌ { ctx | Tripledef2(P2, C1, ctx) א M } 
10:  C2 = C1 
11: for  each  modifier א { p | Triple(ctx1, p, mv) א A ٿ p א P }   do
12:  mv1 ൌ { mv | Triple(ctx1, modifier, mv) א A } 
13:  mv2 ൌ { mv | Triple(ctx2, modifier, mv) א A } 
14:  if mv1 ് mv2 and mv1 ് NULL and mv2 ് NULL  then 
15:   SC ൌ SC ڂ { S1, S2, P1, P2, C1, C2, modifier, mv1, mv2 } 

16: return    SC 

Algorithm 1. Detection of semantic conflicts between sources 
and/or receivers for a given property 



each property that redundantly describes how different reporting 
currencies are resolved, we can simply associate the conversion 
function with the concept "MonetaryValue". 

In addition, when a property involves two or more conflicts, a 
composite function can be constructed to reconcile those conflicts 
by the algorithm 2. It is also scalable because it can compose all 
necessary conversions using a small set of component conversions. 
The composition can be obtained as a series of invocations on the 
conversion function defined for each modifier pertaining to the 
concept in the context ontology. 

The function-finding method in the algorithm 2 (line 3 and 7) at 
first will try to find the specific conversion function defined for 
the modifier of the concept. If it cannot be found, the method will 
try to find the function defined for the same modifier under the 
direct super-concept. The step will repeat until a function is 
retrieved or it reaches the top "Context" concept. For example, the 
function cvt_format_dateTime( ) is defined for the modifier 
"hasFormat" under the concept "dateTime" that has no sub-
concepts, while cvt_scale( ) function is defined under the concept 
"Number" and the function can be used by all its sub-concepts 
such as "Weight", "Height" and "MonetaryValue" for scale-factor 
adjustment. 

Note that the translation from one context to another is embedded 
in conversion functions present in individual context theories, and 
they are not part of the context ontology. This means that there is 
greater scope for different users to introduce conversion functions 
which are most appropriate for their purposes without requiring 
these differences to be accounted globally. For example, different 
currency exchange system would be used in different countries or 
for different purposes. 

The modifiers of the concept are called orthogonal if the value 
derived from its composite conversion is not affected by the order 
in which the component conversions are invoked. For example, 
the currency and scale modifiers of the "MonetaryValue" concept 
are orthogonal. We will get the same value either by converting 
currency first followed by scale-factor adjustment or by adjusting 
scale-factor first followed by currency conversion. For any pair of 
modifiers that are not orthogonal, the component conversions are 
required to be invoked in a particular order to return right value. 
The order depends on how the component conversion is specified. 
An in-depth discussion on this issue can be found in [6]. 

4.4 Query Rewriting 
The context mediator uses the algorithm 3 to undertake the role of 
detecting and reconciling potential conflicts at the time a query is 
submitted. The following parts in a query might be rewritten to 
the corresponding forms that all semantic conflicts, when detected, 
are resolved: 
 SELECT: the answers returned should be further transformed 

so that they conform to the context of the receiver. 
 WHERE: the constants should be transformed to comply with 

assumptions in the source contexts. 
 EXPRESSION and FUNCTION: one of two arguments might 

be transformed so that the two arguments conform to the same 
context. 

First, the context mappings M and context pool A will be added 
into the RDF dataset as named graphs (line 4). A mediated query 
is executed against the RDF dataset that comprises one or more 
data sources and the two graphs generated from M and A. In the 

Input: K : COIN components, K = < O, A, M, F > including B
WQ : a well-formed SPARQL query 
r : an IRI used to identify a receiver 
a : an IRI used to identify a application domain 

Output: MQ : an mediated SPARQL query 

1: MQ ൌWQ
2: pattern ൌ ׎
3: parse the query WQ and extract its triple patterns into bgp
4: M and A are included into the dataset of MQ as named graphs
5: for each var א { v | v is a RESULT variable ٿ  

Tripleg(s, p, v) א bgp }  do 
6:  if SC ൌ Algorithm1(K, g, r, p, a) ٿ SC ് ׎    then
7:   pattern ൌ pattern ׫ PatternCreator(g, r, p, a, SC) / bgp
8:   CF ൌAlgorithm2(K, SC, v, TRUE) 
9:  

 

adds the assignment LET ( nvar := CF ) into MQ and 
replace var with nvar in the SELECT clause, where nvar
is a new variable never used before. 
/* if the variable v is introduced by a LET clause, the 
context conversion will be done in the LET clause */

10: for each cont = { c | c is a constant ٿ Tripleg(s, p, c) א bgp }  do
11:  if SC ൌ Algorithm1(K, g, r, p, a) ٿ SC ് ׎    then
12:   pattern ൌ pattern ׫ PatternCreator(g, r, p, a, SC) / bgp
13:   CF  ൌAlgorithm2(K, SC, cont, FALSE) 
14:  

 
adds the FILTER( nvar := CF ) into MQ and replace 
cont with nvar in Tripleg(s, p, c), where nvar is a new 
variable never used before. 

15: for each  EXPRESSION ( expr1  op  expr2 ) or  
FUNCTION( expr1, expr2 )    do 

16:  if expr1 is a constant ٿ expr2 is a variable ٿ  
Tripleg(s, p, expr2) א bgp ٿ  
SC ൌ Algorithm1(K, g, r, p, a) ٿ SC ് ׎ then

17:  pattern ൌ pattern ׫ PatternCreator(g, r, p, a, SC) / bgp
18:  CF  ൌAlgorithm2(K, SC, expr1, FALSE) 
19:  replace expr1 with CF in the expression or function
20:  if expr2 is a constant ٿ expr1 is a variable ٿ  

Tripleg(s, p, expr1) א bgp ٿ  
SC ൌ Algorithm1(K, g, p, r, a) ٿ SC ് ׎ then

21:   pattern ൌ pattern ׫ PatternCreator(g, r, p, a, SC) / bgp
22:  CF  ൌAlgorithm2(K, SC, expr2, FALSE) 
23:  replace expr2 with CF in the expression or function
24:  if expr1 is a variable ٿ expr2 is a variable ٿ  

Tripleg1(s1, p1, expr1) א bgp ٿ  
Tripleg2(s2, p2, expr2) א bgp ٿ 
SC ൌ Algorithm1(K, g1, g2, p1, p2) ٿ SC ് ׎ then

25:   pattern ൌ pattern ׫
PatternCreator(g1, g2, p1, p2, SC) / bgp

26:  CF  ൌAlgorithm2(K, SC, expr1, TRUE) 
27:  replace expr1 with CF in the expression or function
28: adds pattern into MQ
29: return  MQ

Function PatternCreator(S1, S2, P1, P2, SC) 
1: pattern ൌ ׎
2: pattern ൌ {  Triple(S1, coin:hasContext, def1) ,  

Triple(S2, coin:hasContext, def2) , 
Tripledef1(P1, C1, ctx1) , 

                    Tripledef2(P2, C2, ctx2) ሽ  
3: for each { S1, S2, P1, P2, C1, C2, modifier, mv1, mv2 ሽ א SC
4:  pattern ൌ  ሼ  pattern ,

Triple(ctx1, modifier, mv1) , 
                 Triple(ctx2, modifier, mv2)  ሽ  

5: return  pattern 

Algorithm 3. SPARQL query rewriting 



current SPARQL core standard, SELECT queries only project out 
variables bound in the query and there is no way to return the 
values of expressions over result bindings. The mediated queries 
need the ability to project expressions rather than just variables 
because the results need to be transformed to comply with 
assumptions in the receiver context. An example is returning the 
total cost of two air tickets. LET assignments are used to enable 
transformation on the results by using the conversion functions 
(line 9). For the same reason, we also use FILTER clauses in the 
line 14 to transform the constants in the queries to comply with 
assumptions in the sources contexts. 

Considering the naïve query in the motivational example, the first 
triple pattern encountered that needs to be processed is the one: 

GRAPH ?graph1  { ?airline1  fts:depCity  "Boston" . } 
The line 10-14 of the algorithm 3 will transform this triple into the 
following patterns. 
i: GRAPH  ?graph1 { ?airline1  fts:depCity  ?depCity . }
ii: GRAPH  <http://coin.mit.edu/bindings/flight> 
iii: {  ?graph1  coin:hasContext  ?def1  . 
iv: coin:receiver  coin:hasContext  ?recv .  } 
v: GRAPH  ?def1 {  fts:depCity  coin:city  ?ctx1 . } 
vi: GRAPH  ?recv {  :flight  coin:city  ?ctx2 . } 
vii: GRAPH  <http://coin.mit.edu/contexts> 
viii:  {  ?ctx1  coin:hasEncoding  ?mv1 . 
ix: ?ctx2  coin:hasEncoding  ?mv2 . } 
x: FILTER ( ?depCity = fn:cvt_encoding_city(?mv2, ?mv1, 

"Boston") ) .
A new variable ?depCity was generated and replaced "Boston" at 
the line i. The context statements of the data sources can be 
accessed dynamically via the variables ?graph1 that will bound to 
IRIs of the sources being matched (line iii). The pattern of the line 
iv was used to retrieve the receiver's context definition. The two 
context instances of the concept "City" will be obtained by the 
line v-vi. One was associated with the property fts:depCity of the 
data sources; the other was referenced in the receiver's context 
statements. The modifier values of those two context instances 
can be retrieved by the line viii-xi, which will be taken as inputs 
to the conversion function fn:cvt_encoding_city. In the FILTER 
clause of the line x, the English city name "Boston" might be 
transformed to comply with the contexts of the data sources. If the 
variable ?graph is bound to the IRI of the source 1 (USA airlines), 
"Boston" will be rewritten into "BOS". If ?graph is bound to the 
IRI of the source 2 (Japan airlines), "Boston" will stay unchanged.  

For the result variables of the naïve query, only the variable ?total 
needs to be processed because it is the sum of the prices of the 
two tickets, ?price1 and ?price2 that occur as objects in the triple 
patterns. The following fragment of the mediated query will be 
generated by the line 6-9 of the algorithm 3 for the variable ?total.  
i: GRAPH  <http://coin.mit.edu/bindings/flight> 
ii: {  ?graph1  coin:hasContext  ?def1  . 
iii:   ?graph2  coin:hasContext  ?def2  . 
iv: coin:receiver  coin:hasContext  ?recv .  } 
v: GRAPH  ?def1 {  fts:price  coin:monetaryValue  ?ctxp1 . }
vi: GRAPH  ?def2 {  fts:price  coin:monetaryValue  ?ctxp2 . }
vii: GRAPH  ?recv {  :flight  coin:monetaryValue  ?ctxr }
viii: GRAPH  <http://coin.mit.edu/contexts> 
ix: {  ?ctxp1  coin:hasScale  ?mvs1 . 
x: ?ctxp1  coin:hasCurrency  ?mvc1 .  
xi: ?ctxp2  coin:hasScale  ?mvs2 . 
xii: ?ctxp2  coin:hasCurrency  ?mvc2 .  
xiii: ?ctxr  coin:hasScale  ?mvsr .

xiv: ?ctxr  coin:hasCurrency  ?mvcr .  } 
xv: LET ( ?total := fn:cvt_currency(?mvc1, ?mvcr, 

fn:cvt_scale(?mvs1, ?mvsr, ?price1))  + 
fn:cvt_currency(?mvc2, ?mvcr, 
fn:cvt_scale(?mvs2, ?mvsr, ?price2)) )  

The line i-iv was generated to retrieve the context definitions of 
the two possible data sources (one is ?graph1 in which ?price1 
will be retrieved; the other is ?graph2 that will provide ?price2) 
and the receiver. Note that the duplicate patterns will be deleted 
from the mediated query when the patterns are merged into the 
previously-generated ones. The context instances and their 
modifier values will be obtained by the line v-xiv. To rewrite the 
LET assignment (line xv), the algorithm 2 will be called twice, 
each for ?price1 and ?price2, to make the sum of the two prices 
comply with assumptions in the receiver context. 

5. IMPLEMENTATION 
We use Jena7 to implement COIN SPARQL framework to provide 
a demonstration of the feasibility of Context Interchange strategy. 
As shown in Figure 4, queries submitted to the system will be 
intercepted by a Context Mediator, which rewrites the user query 
into a mediated query and pass it to ARQ, the SPARQL query 
engine for Jena. COIN also can easily be plugged in to other 
existing SPARQL query engines to take advantage of their state 
of the art query optimization and execution techniques. We tested 
the solution with the real data from CIA Factbook and DBpedia.  

OWL is used to represent the context ontology, and the pool and 
mapping components are described by using RDF. All conversion 
functions now are implemented as FILTER (extension) functions, 
which use the advanced feature of ARQ that goes beyond the core 
SPARQL specification. The conversion functions extend the 
abstract class FunctionBase3 that takes three parameters. The 
query engine can dynamically call the functions based on the 
function URIs. This is done by either registering it or using the 
fake java: URI scheme. 
Conversion functions are defined as parametric functions that can 
express the conversion between all possible modifier value pairs, 
not only a specific one. For example, fn:cvt_ currency can be used 
to make currency conversion among any different currencies. For 
"hasFormat" and "hasEncoding" modifiers, the value at first is 
                                                                 
7 http://jena.sourceforge.net/ 

Figure 4. Architecture of a COIN SPARQL system
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translated from the source context into an internal representation 
and then into the target context. A datetime value, for example, is 
firstly transformed into xsd:dateTime by fn:cvt_format_dateTime 
before being transformed again in order to comply with the target 
context. Notice that the number of conversion functions is not 
generally proportional to the number of sources and receivers in 
the system. The COIN framework facilitates the maximum reuse 
of existing conversion functions, and thus the number of newly-
introduced conversion functions would diminish rapidly with the 
addition of each source or receiver. A more in-depth analysis of 
scalability can be found in [18]. 

With the COIN framework, the users are not burdened with the 
diverse data semantics in sources, all of which are declared in the 
context representation components and can be automatically taken 
into consideration by the mediator. A receiver in any context is 
able to issue queries over any set of data sources in other contexts 
as if they were in the same context. For example, it is easy for 
users to modify their context definition. Continue the motivational 
example in Section 2. Here the receiver wants to use CNY instead 
of USD. After the modification is made, the query results will 
immediately be reported in CNY as follows. 

airline1 airline2 total 
us339 jp241 8172.32 

Exchange rate: 100 USD = 651.56 CNY; 100 JPY = 7.93 CNY.  
The sources are not required to make any change or commit to 
any criteria under the COIN framework; they only need to record 
data semantics declaratively. Adding or removing a data source is 
accomplished by adding or removing the corresponding context 
declarations, which does not require any changes to the mediator 
or query processor. Conversion functions are defined for each 
modifier between distinct modifier values, not between pair-wise 
sources. Thus only a small number of atomic or component 
conversions need to be defined, which are used by the mediator to 
compose necessary composite conversions in a dynamic way to 
reconcile all semantic differences involved in a query. In many 
practical cases, an atomic function can be parameterized for the 
modifier to convert from any given context to any other context. 
The COIN strategy requires significantly less conversions than 
traditional global or interchange standardization approaches [18], 
and therefore is easy to be maintained. 

6. RELATED WORK 
We can roughly distinguish between two types of data conflicts in 
data integration: schematic conflicts and semantic conflicts. The 
first has been well-documented in the database and Semantic Web 
literature. A language, called CQuery was described in [10] to 
represent the domain knowledge in the form of a vocabulary or 
ontology as semantic metadata, and use the ontology to overcome 
heterogeneity among different data sources. Gracia et al. proposed 
a technique to perform the integration of ontology terms in order 
to cluster the most similar ones in [12]. Networked Graphs was 
proposed as a means for describing RDF graphs that are partially 
derived from other graphs using a declarative view mechanism. 
The relationships between graphs are described in a declarative 
way using SPARQL queries in [13]. Some surveys of schematic 
integration can be found in [14], [15], and [17]. Our approach is 
different because we have chosen to focus on the semantics of 
data level as opposed to the conflicts at schematic level. To the 
best of our knowledge, very little existing work has addressed the 
semantic conflicts at data level among RDF data sources. 

The context interchange strategy is mediator-based approach for 
achieving semantic interoperability among heterogeneous sources 
and receivers. As realizations of the strategy, COIN [4], [7] and a 
recent extension [9], [19], are working prototypes that implement 
the Context Interchange strategy. COIN uses FOL/Prolog as the 
representation and implementation language for the application 
ontology in the context mediation. Various sample applications 
have been implemented to illustrate its ability to solve semantic 
interoperability problems in areas such as financial services, 
weather information, and airfare aggregation and comparison. Our 
goal in this paper is to illustrate how to extend COIN strategy to 
solve context conflicts in the emerging linked data by SPARQL 
query rewriting. 
It is worth noting some interesting work which is complementary 
to our approach. A system, called Sesame, as well as its index 
structure was presented for query processing and optimization in 
distributed RDF repositories in [11]. Glimm and Krötzsch extend 
the SPARQL query language by defining the semantics of queries 
under the entailment regimes of RDF, RDFS, and OWL [16]. An 
approach is proposed to discover data that might be relevant for 
answering a query during the query execution itself [5]. The 
discovery is driven by following RDF links between data sources 
based on URIs in the query and in partial results. 

7. CONCLUSIONS 
The "Web of linked data" can be understood as a single, globally 
distributed dataspace, and SPARQL queries can be executed over 
this huge dataspace. But semantic heterogeneity widely exists 
among the RDF data sources originating from different contexts, 
and severely hampers their integration and interoperability. This 
paper describes how to use the Context Interchange strategy to 
achieve semantic interoperability among heterogeneous RDF 
sources and receivers by rewriting the user query to a mediated 
query. The semantic conflicts can be automatically detected and 
reconciled by the context mediator using the context definitions 
associated with both the data sources and the data receivers. The 
mediated query, when executed, returns the answer collated and 
presented in the receiver context. The core components of COIN 
are represented by using the Semantic Web constructs such as 
RDF and OWL, which make them possible to be exchanged and 
processed by other applications. 
The mediated query uses extension functions to transform values 
between different contexts, which might be likely to have limited 
interoperability. It might require transformation between datatype 
formats not supported by the core SPARQL specification, and the 
orderings of some application datatype also need to be defined. A 
promising alternative is to use nest query (i.e. to nest the results of 
a query within another query) to provide conversion. The current 
SPARQL core standard does not support nested query, but the 
standard is still evolving (see [8]). In the future, we plan to 
consider temporal semantic heterogeneities which refer to the 
situation where the semantics between data sources, even in the 
same data source, change over time. For example, the profit of a 
company might be represented in DEM before 1998 and in EUR 
since 1999. The approach partitions graph patterns of a given 
"naive" query into multiple GRAPH clauses, each of which uses a 
unique set of query variables. This solution need to add FILTER 
clauses that ensure the equality of values bound to newly 
introduced variables. These filters increase the complexity of 
queries and have a negative effect on performance. The focus of 
the paper has been on the query mediation, but an implementation 
with query optimization is also planned. 



8. ACKNOWLEDGMENTS 
The work was supported, in part, by a grant from the National 
Natural Science Foundation (No. 60903078). 

9. REFERENCES 
[1] Franklin, M.J., Halevy, A.Y., Maier, D. From databases to 

dataspaces: A new abstraction for information management. 
SIGMOD Record, 34, 4, (2005), 27-33. 

[2] Prud'hommeaux, E., Seaborne, A. SPARQL query language 
for RDF. W3C Recommendation, 2008. Retrieved April 25, 
2011, from http://www.w3.org/TR/2008/REC-rdf-sparql-
query-20080115/ 

[3] Sahoo, S.S., Halb, W., Hellmann, S., Idehen, K., et al. A 
survey of current approaches of mapping of relational 
database to RDF, 2009. Retrieved April 25, 2011, from 
http://www.w3.org/2005/Incubator/rdb2rdf/RDB2RDF_Suve
yReport.pdf 

[4] Goh, G.H., Bressan, S., Madnick, S., Siegel, M. Context 
Interchange: New Features and Formalisms for the 
Intelligent Integration of Information. ACM Transactions on 
Information Systems, 17, 3, (1999), 270-293. 

[5] Hartig, O., Bizer, C., Freytag, J.-C. Executing SPARQL 
queries over the Web of linked data. In Proceedings of the 
International Conference on Semantic Web, (ISWC'09). 2009, 
293-309. 

[6] Zhu, H. Effective information integration and reutilization 
solutions: to technological deficiency and legal uncertainty. 
Ph.D. Thesis, Massachusetts Institute of Technology, 
Cambridge, MA, 2005. 

[7] Zhu, H., Madnick, S. Scalable interoperability through the 
use of COIN lightweight ontology. In Proceedings of the 
VLDB Workshop on Ontologies-Based Techniques for 
Databases and Information System, (ODBIS'06), 2006, 37-50. 

[8] Kjernsmo, K., Passant, A. SPARQL New Features and 
Rationale. W3C Working Draft 2, 2009. Retrieved April 25, 
2011, from http://www.w3.org/TR/sparql-features/ 

[9] Li, X., Madnick, S., Zhu, H., Fan, Y.S. An approach to 
composing Web services with context heterogeneity. In 
Proceedings of the International Conference on Information 
System, (ICIS'09), 2009, 695-702. 

[10] Sattler, K.U., Geist, I., Schallehn, E. Concept-based querying 
in mediator systems. The VLDB Journal, 14, (2005), 97-111. 

[11] Stuckenschmidt, H. Vdovjak, R. Houben, G.J., Broekstra, J., 
Amerfoort, A.B.V. Index structures and algorithms for 
querying distributed RDF repositories. In Proceedings of the 
International Conference on World Wide Web, (WWW'04), 
2004, 631-639. 

[12] Gracia, J., d'Aquin, M., Mena, E. Large scale integration of 
senses for the Semantic Web. In Proceedings of the 
International Conference on World Wide Web, (WWW'09), 
2009, 611-620. 

[13] Schenk, S., Staab, S. Networked graphs: a declarative 
mechanism for SPARQL rules, SPARQL views and RDF 
data integration on the Web. In Proceedings of the 
International Conference on World Wide Web, (WWW'08), 
2008, 585-594. 

[14] Noy, N.F. Semantic integration: a survey of ontology-based 
approaches. SIGMOD Record, 33, 4, (2004), 65-70.  

[15] Shvaiko, P., Euzenat, J. A survey of schema-based matching 
approaches. Journal of Data Semantics IV, (2005), 146-171. 

[16] Glimm, B., Krötzsch, M. SPARQL beyond subgraph 
matching. In Proceedings of the International Conference on 
Semantic Web (ISWC'10), 2010. 

[17] Wache, H., Vögele, T., Visser, U., Stuckenschmidt, H. 
Schuster, G., Neumann, H., Hübner, S. Ontology-based 
integration of information – a survey of existing approaches. 
In Proceedings of the International Joint Conferences on 
Artificial Intelligence Workshop, (IJCAI'01), 2001, 108-117. 

[18] Gannon, T., Madnick, S., Moulton, A., Siegel, M., Sabbouh, 
M., Zhu, H. Framework for the analysis of the adaptability, 
extensibility, and scalability of semantic information 
integration and context mediation approach. In Proceedings 
of the Hawaii International Conference on System Sciences, 
(HICSS'09), 2009, 1-11. 

[19] Mihai, L., Madnick, S. Using Semantic Web tools for 
context interchange. In Proceedings of the VLDB Workshop 
on Ontologies-Based Techniques for Databases and 
Information System, (ODBIS'07), 2007.  

APPENDIX A. NAMESPACE 
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#> 
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#> 
PREFIX coin: <http://coin.mit.edu/ontology#> 
PREFIX ctx: <http://coin.mit.edu/contexts#> 
PREFIX fts: <http://www.example.org/flightschedule#> 
PREFIX fn: <http://coin.mit.edu/functions#> 

APPENDIX B. THE EXAMPLE SCENARIO 
Context Pool: 
# Default graph: http://coin.mit.edu/contexts 
ctx:US_dollar  coin:hasScale  "1"^^xsd:integer  . 
ctx:US_dollar  coin:hasCurrency  "USD"  . 
ctx:JP_yen  coin:hasScale  "1000"^^xsd:integer  . 
ctx:JP_yen  coin:hasCurrency  "JPY"  . 
ctx:US_dateTime  coin:hasFormat  "US_dateTime"  . 
ctx:XSD_dateTime  coin:hasFormat  "XSD_dateTime"  . 
ctx:IATA_airportCode  coin:hasEncoding  "IATA_airportCode"  . 
ctx:EN_city  coin:hasEncoding  "EN_city"  . 

Context Mappings: 
# Named graph: http://coin.mit.edu/sources/usairline (Source 1) 
fts:depDateTime  coin:dateTime  ctx:US_dateTime  . 
fts:arrDateTime  coin:dateTime  ctx:US_dateTime  . 
fts:depCity  coin:city  ctx:IATA_airportCode  . 
fts:arrCity  coin:city  ctx:IATA_airportCode  . 
fts:price  coin:monetaryValue  ctx:US_dollar  . 
 
# Named graph: http://coin.mit.edu/sources/japanairline (Source 2) 
fts:depDateTime  coin:dateTime  ctx:XSD_dateTime  . 
fts:arrDateTime  coin:dateTime  ctx:XSD_dateTime  . 
fts:depCity  coin:city  ctx:EN_city  . 
fts:arrCity  coin:city  ctx:EN_city  . 
fts:price  coin:monetaryValue  ctx:JP_yen  . 
 
# Named graph: http://coin.mit.edu/receivers/myContext (Receiver) 
:flight  coin:dateTime  ctx:US_dateTime . 
:flight  coin:city  ctx:EN_city . 
:flight  coin:monetaryValue  ctx:US_dollar . 
 
# Named graph: http://coin.mit.edu/bindings/flight (Context binding) 
<http://usairline.com/flights>  coin:hasContext  

 <http://coin.mit.edu/sources/usairline>  . 
<http://japanairline.com/flights>  coin:hasContext   

<http://coin.mit.edu/sources/japanairline>  . 
coin:receiver  coin:hasContext  <http://coin.mit.edu/receivers/myContext>  . 


