
SPARQL Query Mediation over RDF Data
Sources with Disparate Contexts

Xiaoqing Zheng
School of Computer Science

Fudan University
Shanghai, 201203, China

zhengxq@fudan.edu.cn

Stuart E. Madnick
Sloan School of Management

Massachusetts Institute of Technology
Cambridge, MA 02142, USA

smadnick@mit.edu

Xitong Li
Sloan School of Management

Massachusetts Institute of Technology
Cambridge, MA 02142, USA

xitongli@mit.edu

ABSTRACT
Many Semantic Web applications require the integration of data
from distributed and autonomous RDF data sources. However, the
values in the RDF triples would be frequently recorded simply as
the literal, and additional contextual information such as unit and
format is often omitted, relying on consistent understanding of the
context. In the wider context of the Web, it is generally not safe to
make this assumption. The Context Interchange strategy provides
a systematic approach for mediated data access in which semantic
conflicts among heterogeneous data sources are automatically
detected and reconciled by a context mediator. In this paper, we
show that SPARQL queries that involve multiple RDF graphs
originating from different contexts can be mediated in the way
using the Context Interchange (COIN) Framework.

Categories and Subject Descriptors
H.2.5 [Database Management]: Heterogeneous Databases –
data translation; H.2.4 [Database Management]: Systems –
query processing; H.3.5 [Information Storage and Retrieval]:
Online Information Services – data sharing.

General Terms
Algorithms, Design

Keywords
Semantic heterogeneity, semantic interoperability, query mediator,
data integration

1. INTRODUCTION
An increasing amount of data is published in RDF format due to
the activity of the linked data community. The Web of linked data
that is emerging by integrating data from different sources via
URIs can be considered as a single, globally distributed dataspace
[1]. With SPARQL [2], a W3C Recommendation for a query
language for RDF, data from different sources can be aggregated
and applications can pose complex queries over the RDF dataset,
which were not possible before. The presence on the Web of such
a huge distributed and autonomous RDF sources poses a great
challenge when it comes to achieve semantic interoperability
among heterogeneous sources and receivers.

RDF is a data model for expressing the information that needs to
be processed by applications, so that it can be exchanged without

loss of meaning. The data do not need to be stored in RDF but can
be created on the fly from relational databases [3] or other non-
RDF sources. We expect that more and more content providers
will make their data available via SPARQL endpoints. However,
much existing data on the Web takes the form of simple values for
properties such as weights, costs, etc., and contextually dependent
information such as unit and format is often omitted. Due to the
openness of the Web, it is generally not safe to make the
assumption that anyone accessing the value of a property will
understand the units being used. For example, an U.K. site might
give a height value in feet, but someone accessing that data
outside the U.K. might assume that heights are given in meters.
Another example is that a gallon in the U.K. (the so-called
Imperial gallon) is approximately 4546 ml, while in the U.S. the
"same" gallon (the so-called Winchester gallon) is 3785 ml,
almost 1 liter less. The principle that such simple values are often
insufficient to adequately describe these values is an important
one. If the data originating from different contexts are brought
together and we pose queries on the whole dataset, many semantic
conflicts can happen (see a motivational example in Section 2 for
more detail). Proper interpretation of RDF data would depend on
information that is not explicitly provided in the RDF dataset, and
hence such information may be not available to other applications
that need to interpret this data.

With the above observations in mind, the goal of this paper is to
illustrate the novel features of the Context Interchange mediation
strategy, and to describe how the semantic conflicts in RDF data
sources can be automatically detected and reconciled by query
rewriting technique. Specifically, the paper makes the following
contributions:

 We describe how to use the Context Interchange strategy to
achieve semantic interoperability among heterogeneous RDF
sources and receivers by rewriting the user SPARQL query to
a mediated query. The mediated query can return the answer
collated and presented in the receiver context.

 We propose a formal and logical COIN framework to model
contexts, i.e., the factual statements present in a data source
are true relative to the context associated with the source but
not necessarily so in a different context. With the framework,
the users are not burdened with the diverse data semantics in
sources, all of which are declared in the context representation
components and can be automatically taken into consideration
by the mediator.

 A SPARQL query rewriting algorithm is described and tested
with the real data from CIA Factbook1 and DBpedia2. The

1 http://www4.wiwiss.fu-berlin.de/factbook/

Copyright is held by the author/owner(s).
LDOW2012, April 16, 2012, Lyon, France.

results show that the approach is promising and effective. The
source code and some test cases can be downloaded from the
web site http://homepage.fudan.edu.cn/zhengxq/coin/.

The rest of the paper is organized as follows. Following this
introduction, a motivational example is presented to highlight the
Context Interchange strategy toward semantic interoperability.
The COIN framework is described by introducing the formalism
in section 3. The SPARQL query mediation via query rewriting
technique is explained in section 4. A preliminary implementation
is introduced in section 5. Section 6 presents a brief overview of
related work. The conclusions are summarized in section 7.

2. MOTIVATIONAL EXAMPLE
Consider the scenario of finding cheap airfare on the Web shown
in Figure 1, deliberately kept simple for didactical reasons. In this
paper, examples assume the namespace prefix bindings given in
Appendix A unless otherwise stated. Data on scheduled-service
flights are available in two autonomously administered data
sources. We assume that the flights are described by the terms
from shared vocabularies to highlight the data-level conflicts.
Suppose a user looks for a one-way ticket from Boston to
Shanghai with one stop in Tokyo. She wants to leave Boston after
9:30 a.m., Feb 9th, 2011 and arrive in Shanghai before 11:30 p.m.,

2 http://dbpedia.org/

Feb 10th, 2011. This query can be formulated on the schema of
the two sources as the naïve query shown in Figure 1. The query
will return the empty answer without any mediation if it is
executed over the given dataset.

The query, however, does not take into account the fact that both
sources and receivers may operate with different contexts, i.e.,
they may have different assumptions on how the property values
should be interpreted. Specifically, the user operates with city
names and US style datetimes, while the locations are recorded
using IATA airport codes in the source 1 and the source 2
assumes xsd:dateTime format. It requires that certain constraints
typed by the user should be transformed properly to comply with
assumptions in the contexts of data sources (for example, from
"Boston" to "BOS"; from "9:30 AM 02/09/2011" to "2011-02-
09T09:30:00Z"). Besides, she works with US dollars with a scale-
factor of 1, whereas the source 2 reports all ticket prices in
Japanese Yen with a scale-factor of 1000, which shows that the
data might vary in two or more aspects (in that case, currency and
scale). So there must be more than one conversion of the data.
Even if these specific differences were carefully dealt with by
writing a new query with appropriate datetime formats, currencies
and city codes for each individual source (which might be a
significant challenge for the user, especially if unfamiliar with the
details of each of the multiple sources involved), the result still

CONTEXT: RECEIVER

 Currency is USD with a scale-factor of 1;
 Datetime is expressed in US style;
 Locations are expressed as city name.

NAÏVE SPARQL QUERY

1: SELECT ?airline1 ?airline2 ?total
2:
3: FROM NAMED <http://usairline.com/flights>
4: FROM NAMED <http://japanairline.com/flights>
5:
6: WHERE {
7: GRAPH ?graph1
8: { ?airline1 fts:depDateTime ?depDateTime1 ;
9: fts:arrDateTime ?arrDateTime1 ;
10: fts:depCity "Boston" ;
11: fts:arrCity "Tokyo" ;
12: fts:price ?price1 . }
13: GRAPH ?graph2
14: { ?airline2 fts:depDateTime ?depDateTime2 ;
15: fts:arrDateTime ?arrDateTime2 ;
16: fts:depCity "Tokyo" ;
17: fts:arrCity "Shanghai" ;
18: fts:price ?price2 . }
19:
20: FILTER (?arrDateTime1 < ?depDateTime2) .
21: FILTER (?depDateTime1 >= "9:30 AM 02/09/2011") .
22: FILTER (?arrDateTime2 <= "11:30 PM 02/10/2011") .
23:
24: LET (?total := ?price1 + ?price2) }
25:
26: ORDER BY ASC(?total)
27: LIMIT 1

Figure 1. Example scenario

CONTEXT: SOURCE 1

 Currency is USD with a scale-factor of 1;
 Datetime is expressed in US style;
 Locations are expressed as IATA airport codes.

Named graph: http://usairline.com/flights
@prefix : <http://usairline.com/flights#> .

:us339 fts:depDateTime "12:30 PM 02/09/2011" .
:us339 fts:arrDateTime "7:25 AM 02/10/2011" .
:us339 fts:depCity "BOS" .
:us339 fts:arrCity "TYO" .
:us339 fts:price 950 .

:us512 fts:depDateTime "9:45 AM 02/10/2011" .
:us512 fts:arrDateTime "10:30 PM 02/10/2011" .
:us512 fts:depCity "TYO" .
:us512 fts:arrCity "SHA" .
:us512 fts:price 380 .

CONTEXT: SOURCE 2

 Currency is JPY with a scale-factor of 1000;
 Datetime is expressed in xsd:dateTime type;
 Locations are expressed as city names.

Named graph: http://japanairline.com/flights
@prefix : <http://japanairline.com/flights#> .

:jp241 fts:depDateTime "2011-02-10T09:25:00Z"^^xsd:dateTime .
:jp241 fts:arrDateTime "2011-02-10T22:05:00Z"^^xsd:dateTime .
:jp241 fts:depCity "Tokyo" .
:jp241 fts:arrCity "Shanghai" .
:jp241 fts:price 25 .

would be misleading. For the source 1, the graph pattern of naïve
query needs to be rewritten to the following one:

GRAPH ?graph1
 { ?airline1 fts:depDateTime ?depDateTime1;
 fts:arrDateTime ?arrDateTime1;
 fts:depCity "BOS";
 fts:arrCity "TYO";
 fts:price ?price1 . }
 GRAPH ?graph2
 { ?airline2 fts:depDateTime ?depDateTime2;
 fts:arrDateTime ?arrDateTime2;
 fts:depCity "TYO";
 fts:arrCity "SHA";
 fts:price ?price2 . }

But the result below still is incorrect because it is not cheapest
airfare:

airline1 airline2 total
us339 us512 1330.00

The above result is a solution corresponding to the way in which
the query's pattern matches the RDF data, all from the source 1.
For the source 2, the result returned is empty because there is only
one flight from "Tokyo" to "Shanghai". SPARQL, however, can
be used to express queries across diverse data sources, and a
SPARQL query can match different parts of the query pattern
against different graphs. In the example, it does not work by
rewriting the naïve query into two separate queries, one for
executing over source 1 and one for source 2, and combining the
results. A solution is required to make these context conversions
in dynamic way, depending on which data sources is involved.
Further, the answers should be transformed so that they conform
to the context of the user.

In the Context Interchange system, the semantics of data of those
present in a source, or of those expected by a receiver can be
explicitly represented in the form of a context theory and a set of
context statements with reference to a context ontology (see
Section 3). Queries submitted to the system would be rewritten
into the mediated queries by a Context Mediator, in which the
semantic conflicts between the sources and the receiver would be
automatically recognized and reconciled.

The naïve query can be transformed to the mediated query by the
rewriting algorithm described in the Section 4. This mediated
query considers all potential conflicts between the sources and the
receiver when matching, restricting and testing values. Moreover,
the answers returned can be transformed so that they conform to
the context of the receiver. The mediated query, when executed,
returns the "correct" answer below, which helps the user to make
the right choice.

airline1 airline2 total
us339 jp241 1255.59

Exchange rate: 100 USD = 8181 JPY
In the COIN system, query mediation and query answering are
separated as shown in the above example. Since the mediated
queries encode all the necessary data transformations, they can be
executed by existing query engines such as ARQ3, AllegroGraph4,
OpenRDF Sesame5, taking advantage of their sophisticated query

3 http://jena.sourceforge.net/ARQ/
4 http://www.franz.com/
5 http://www.openrdf.org/

optimizers. We have shown only one user in this scenario.
However, other users with different contexts could also issue their
queries and get the results in their own contexts by simply
declaring or choosing their contexts. Similarly, other RDF data
sources can be added to the system with the declaration of their
contexts, and queries over multiple sources with different contexts
could be mediated in the similar way.

3. CONTEXT REPRESENTATION
The purpose of knowledge representation in COIN is to provide a
formal way of making explicit disparate assumptions about data.
Knowledge about the source and user contexts is declared under a
formal, logical COIN framework consisting of the following four
core components (see Figure 2):

 O = <C, P>, the Context Ontology, is a description of generic
concepts C that would be interpreted differently across data
sources and receivers (e.g. "MonetaryValue"), and the conflict
dimensions (or modifiers) that are defined as the properties P
for these concepts (e.g. "hasCurrency").

 A, the Context Pool, is a set of instantiations of the context
ontology. Value assignments are made for each modifier to
explicate the meaning of a concept in a data source or receiver
(e.g. ctx:JP_yen coin:scale "1000"^^xsd:integer).

 M, the Context Mappings, defined a set of context statements
that associate the sources or receivers with their contexts. A
context statement can identify the correspondences between a
property used in the sources and a context instance defined in
A (e.g. fts:price coin:monetaryValue ctx:JP_yen).

 F, the Conversion Function Bindings, specified which
functions should be used to make data transforms. Conversion
functions are defined to achieve conversions between different
contexts. For each modifier at least one conversion function
will be defined to transform a value in one (source) context
into a corresponding value in another (target) context (e.g.
fn:cvt_currency("JPY", "USD", 25000), which converts
25000 Japanese Yen to the equivalent US dollars).

In the remaining subsections, we describe each of the components
in turn with examples. RDF and OWL have been used to describe
context knowledge in the framework. The adoption of RDF and
OWL provides us with greater flexibility in representing, reusing
and exchanging data semantics captured in different contexts.

Figure 2. An illustration of the COIN framework

3.1 Context Ontology
Context ontology is a collection of generic concepts (or classes in
the OWL language), which provides a common type system for
describing data semantics exchanged between disparate systems.
A context ontology corresponding to the motivational example in
Section 2 can be seen in Figure 2. Concepts, denoted by C, are
depicted by ellipses, and the "Context" is the special concept from
which all other concepts inherit. Concepts may have properties,
called modifiers and denoted by P, which serve as annotations
that make explicit the semantics of data in different contexts.

Contexts are the actual specializations of the concepts subject to
multiple meanings across sources and receivers. For sources, the
contexts are defined as the specializations used for the underlying
data values. For receivers, on the other hand, the contexts are
defined as the specializations assumed in viewing the data values.
These specializations could be the representation of date or the
number scale being used.

The modifiers, as properties, will be inherited by the sub-concept
relations from its ancestors. A concept can have multiple
modifiers, each of which indicates an orthogonal dimension of the
variations. For example, the concept "MonetaryValue" has four
modifiers, two of which are "hasCurrency" introduced by the
"MonetaryValue" and "hasScale" inherited from the "Number",
which indicates that its instances could be interpreted according to
two dimensions: scale factor and money currency. All the
concepts and their properties of the context ontology are defined
in the namespace bound to the prefix "coin".

3.2 Context Pool
Context pool contains a set of instantiations of the concepts in the
context ontology. As we mentioned above, modifiers are special
properties that affect the interpretation of data values. The context
ontology defines what types of modifiers apply to which concepts.
A context instance or individual is defined by a set of RDF
statements that determine the values of modifiers. Such
statements are defined over the domain A × P × (I ڂ L), where
I is a set of the IRIs, and L is a set of the RDF literals. If {s, p, o}
is a statement about a context instance s, and s belongs to a
concept C א C, the property p א P should be able to apply to the
class C, and a value o must be in the range of the property p.

For example, a context instance "ctx:US_dollar" can be described
with the following statements:

ctx:US_dollar coin:hasDataType xsd:long .
ctx:US_dollar coin:hasScale "1"^^xsd:integer .
ctx:US_dollar coin:hasCurrency "USD" .

These modifier assignments explicitly indicate that any data value
associated with the "ctx:US_dollar" is in US dollars with a scale-
factor of 1 and is represented by the typed literal "xsd:long". All
the context instances are defined in the namespace bound to the
prefix "ctx". The objects (xsd:long, "1", and "USD") in the above
RDF statements are called modifier values.

We can declare new context instances or reuse which are already
defined in the pool. For each concept of the context ontology that
is interpreted differently by sources and receivers, modifiers are
introduced to explicate those differences. The advantage of this
approach is that it allows conflicts between sources and receivers
to be introduced gradually as they are discovered. Many conflicts
emerge later in the integration process as more sources and users

are incorporated in the system. If all sources and receivers hold a
common meaning for a given concept, no modifier is required at
that time. When that situation changes at a later time, modifiers
can be introduced to handle the variations.

3.3 Context Mappings
Context mappings provide the articulation of the data semantics
for the sources and receivers, which are often implicit in the given
contexts. For each concept in the context ontology, a predicate
with the same name as the concept was defined (for example, the
predicate coin:monetaryValue needs to be defined for the concept
"MonetaryValue"). These predicates are used to associate the
properties used in the sources with the corresponding context
instances in order to make explicit the data semantics of the
values of the properties. The statements of the context mappings
are defined over the domain (R ڂ D) × T × A, where R is a set
of the IRIs that represent the properties appeared in the data
sources, D is a set of IRIs used to identify specific applications,
and T is a set of predefined vocabulary that have the same names
as the concepts defined in the context ontology, but begin with a
lower case letter. T is used to indicate the types of the context
instances assigned in the context mapping statements.

For example, the fact that the values of the "fts:price" property are
reported in US dollars using a scale-factor of 1 is made explicit by
the following statement:

fts:price coin:monetaryValue ctx:US_dollar .
The "ctx:US_dollar" is a context instance of the "MonetaryValue"
concept, and was defined in the example of Section 3.2. If the
data is structured in the form: subject-predicate-[]-predicate-
object, using an intermediate blank node, as the example similar
to the following definition:
 item hasPrice _:blanknode
 _:blanknode price "100"
 _:blanknode currency "USD "
In that case, the context mapping will be defined by associating
the "price" property with the appropriate context instance to make
explicit the data semantics of the value "100" of that property. For
the sources, the context mappings are defined by attaching the
context instances to the properties, which could be considered as
some extensions to the RDF Schema vocabulary. The extensions
support the description of context information indicating how the
values of a given property are interpreted.

We cannot assume that the users have intimate knowledge of the
data sources being accessed since this assumption is generally
non-tenable when the number of systems involved is large and
when changes are frequent. The users should remain isolated from
underlying semantic heterogeneity, i.e., they are not required to
be sufficiently familiar with the properties in different schemas
(so as to construct a query). There are some graphic tools (Gruff6
for example) to assist the users to create SPARQL queries. The
COIN enables the users to identify their contexts independent of
the data sources. Receiver's contexts can be declared by assigning
the instances in A to D with the aid of vocabulary in T. For
example, a user could declare that she use US dollars by the
following statement:

:flight coin:monetaryValue ctx:US_dollar .

6 http://www.franz.com/agraph/gruff/

The ":flight" is used to indicate an application domain, so a
meaningful name is recommended. A user is allowed to make
different context definitions for different applications.

All context statements for a data source or a receiver should be
made in a separate namespace. The correspondences between the
sources or receivers and their context definitions then need to be
further identified. We assume that all context statements about the
source 1 were described at <http://coin.mit.edu/sources/usairline>.
The following triple asserts that the context of the source 1 is
defined in the RDF graph <http://coin.mit.edu/ sources/usairline>,
where the source 1 is identified by <http:// usairline.com/flights>:

<http://usairline.com/flights> coin:hasContext
<http://coin.mit.edu/sources/usairline> .

Such RDF statements, called context bindings, are defined over
the domain I × coin:hasContext × I. The context bindings,
denoted by B, will be added in the mediated query to retrieve the
context mappings of the data sources and/or receivers (more about
these in the section 4).

3.4 Conversion Function Bindings
The preceding statements are not yet sufficient for resolving
conflicts of data present in disparate contexts, since we have to
define how values in one (source) context are to be reported in
another (target) context with different assumptions (i.e., modifier
values). This is accomplished via the introduction of conversion
functions that are defined for each modifier between two different
modifier values. A general representation of conversion functions
is shown as follows:

fn:cvt_modifier(mvs, mvt, vs)
where mvs and mvt are two distinct values of the modifier in the
source and target contexts respectively. The function returns the
equivalent value vt that complies with assumptions in the target
context for the source value vs. For example, a scale conversion
fn:cvt_scale could be defined by multiplying a given value with
the appropriate ratio as shown below:

fn:cvt_scale: vt = vs * mvs / mvt
Note that the conversion function will return vt directly if mvs or
mvt is undefined.

In some cases, ancillary data sources may be used for defining
appropriate functions. For instance, currency conversions need to
be supported by external data sources that provide the exchange
rate between two different currencies. Atomic conversions can be
composited to construct composite conversions. As we mentioned,
each modifier captures one aspect of interpretation that may vary
across contexts. After invoking an atomic conversion, the source
value is transformed to a (intermediate) context that is the same as
the target context in terms of this aspect; by invoking the atomic
conversions consecutively, the value is converted through a series
of intermediate contexts, each having one aspect being different
from the target context; it reaches the target context in the end
when no aspect is different from the target context. Thus, in the
case of "MonetaryValue" that has two modifiers, currency and
scale, we may have:

fn:cvt_scale(1000, 1, fn:cvt_currency("JPY", "USD", 25))
Hence, if the function for currency returns the value 0.30559, it
will be rewritten to 305.59 by the scale conversion function. All
the COIN components for the motivational example are given in
Appendix B except the context ontology that has already shown
in Figure 2.

Conversion function bindings, denoted by F, are defined by a set
of RDF triples that determine which functions can be used to
make necessary data transforms for the modifiers of the concepts.
Such statements are defined over the domain C × P × N, where N
is a set of IRIs used to identify and retrieve conversion functions.

4. SPARQL QUERY MEDIATION
The goal of the COIN framework is to provide a formal, logical
basis that allows for the automatic mediation of queries such as
those described in Section 2. The semantic conflicts would happen
when the RDF literals typed by a receiver are attempted to match
against source graphs or the RDF terms from different graphs are
compared. In this section, we describe the process of rewriting a
naïve SPARQL query (i.e. query ignoring semantic differences
between sources and/or receivers) to a mediated query with all the
semantic conflicts reconciled and the query results transformed
appropriately according to user expectation.

4.1 Well-Formed Query
Given a naïve SPARQL query, context mediation is bootstrapped
by transforming this user query into a logically equivalent query.
The mediation process starts by converting the naïve query into
its well-formed query that must satisfy the following requirements:
 All the data sources are introduced as named graphs by using

the FROM NAMED clause.
 All the graph patterns (i.e., basic or group graph patterns) are

defined inside the scope of GRAPH keywords.
 There is no such variable that is used in two different GRAPH

clauses.
The translation to meet the first two requirements is obviously a
trivial exercise. Note that the GRAPH keyword could be followed
by a variable or an IRI. If a variable is provided, it is not possible
to know in advance which named graph will be matched since the
variable will range over the IRIs of all the named graphs in the
query's RDF dataset. Query variables in SPARQL queries have
global scope and use of a given variable name anywhere in a
query identifies the same variable. However, a variable shared by
different named graphs might be bound to the logically-equivalent
term, but with different representations in different contexts. So
the last requirement is necessary and can always be guaranteed by
renaming variables and adding the corresponding FILTERs to the
WHERE clause. For example, if a ?var variable is used across two
different GRAPH clauses, one variable would be renamed ?nvar,
and a FILTER(sameTerm (?var ,?nvar)) constraint will be created.

4.2 Semantic Conflicts Detection
The semantic conflicts are detected by a context mediator through
the comparison of context statements corresponding to the sources
and receivers engaged in query patterns. The algorithm 1 shows
how to detect the potential conflicts among heterogeneous sources
and receivers for given a pair of properties, where a three-place
notation Tripleg(s, p, o) is used to represent a typical RDF triple
<s, p, o> and if the subscript g is given it indicates that the triple
is defined under the named graph g. The subscript g could be an
IRI or a variable. In this paper, Tripleg(s, p, o) is also used to
denote a triple pattern.

Note that the properties P1 and P2 are not required to be
associated with the same concept in C, which makes it possible to
express the constraints like FILTER (?price < ?weight). If the
properties of ?price and ?weight have a common modifier,

"hasScale" for example, and different modifier values, this
conflict will also be detected and be used to construct the
conversion function (see Section 4.3). Recall that the users are not
required to be sufficiently familiar with the underlying schemas of
data sources, and their contexts are declared by assigning the
context instances to the concepts C via T. If S2 identifies a receiver,
the context instance ctx2 could be retrieved directly by looking up
M for the concept C1 as shown in line 9 of the algorithm 1.

The algorithm 1 can only be used to statically detect the semantic
conflicts between sources and/or the receiver. Sometimes it is
impossible to know in advance which sources the query pattern
will be matched until the query is executed, not to mention the
contexts of the sources. For example, the following group graph
pattern in the query of the motivational example can be matched
against both source 1 and 2 (assuming the city names, "Shanghai"
and "Tokyo", are automatically transformed so that they conform
to the contexts of the corresponding sources).

GRAPH ?graph2
{ ?airline2 fts:depDateTime ?depDateTime2 ;

fts:arrDateTime ?arrDateTime2 ;
fts:depCity "Tokyo" ;
fts:arrCity "Shanghai" ;
fts:price ?price2 . }

The trick is that we are able to access the graph name by making a
variable (i.e., ?graph2 used in the above pattern) bound to IRIs of
the graph being matched, and then use the graph name to obtain
its context definition via context bindings (see Section 3.3).
SPARQL queries can be used to find all the potential semantic
conflicts instead of the algorithm 1, and the algorithm can be
trivially translated to the equivalent SPARQL query shown in
Figure 3. If this query is applied to the source 1 and 2 for the
property fts:price, two semantic conflicts would be detected as

shown in Table 1. Note that we just need to detect the conflicts
that are required to make necessary conversions for queries.

For the same reason, in some cases it is not possible to know in
advance how to interpret the value of a property because we
cannot know in advance the sources of the value. However, in
most cases, we are able to know with which concept the property
was associated by looking up the context mappings. With the
concept name, we can get all the modifiers applied to the concept,
access the values of the modifiers, and then use them to construct
the appropriate conversion functions. An OPTIONAL keyword
will be used when we cannot know in a static way whether certain
modifiers or modifier values are defined in the context statements.
Notice that if a concept has no modifier, there is no conversion
function defined for the concept, so the values are assumed not to
vary across any context.

4.3 Conversion Function Construction
The conversion functions are introduced to define how values of a
given concept are transformed between different contexts. In the
COIN framework, an "ontology-based" representation is adopted
where conversion functions are attached to concepts in different
contexts. This mechanism allows for greater sharing and reuse of
semantic encoding. For example, the same concept may appear
many times in different properties (e.g., consider the concept
"MonetaryValue"). Rather than writing a function conversion for

Figure 3. The equivalent SPARQL query for Algorithm 1

1: SELECT ?concept1 ?concept2 ?modifier ?mv1 ?mv2
2: WHERE {
3: S1 coin:hasContext ?def1
4: S2 coin:hasContext ?def2
5: GRAPH ?def1 { P1 ?concept1 ?ctx1 }
6: GRAPH ?def2 { P2 ?concept2 ?ctx2 }
7: ?ctx1 ?modifier ?mv1 .
8: ?ctx2 ?modifier ?mv2 .
9: FILTER(!sameTerm(?mv1, ?mv2)) } .

modifier mv1 mv2
coin:hasScale 1 1000
coin:hasCurrency USD JPY

Table 1. The semantic conflicts detected in the motivational
example for the property fts:price

Input: K : COIN components, K = < O, A, M, F> including B
SC : a set of semantic conflicts detected by the algorithm 1
MV : a data value or a variable in source context
D : a boolean variable to indicate conversion direction

Output: CF : a composite conversion (default value is NULL)

1: for each { S1, S2, P1, P2, C1, C2, modifier, mv1, mv2 } א SC do
2: if CF = = NULL then
3: function ൌ { f | Triple(C, modifier, f) א F ٿ C א C ٿ

(C = C1 ڀ C is a closest super-concept of C1) }
4: if D = = TRUE
5: CF ൌ function(mv1, mv2, MV)
6: else CF ൌ function(mv2, mv1, MV)
7: else function ൌ { f | Triple(C, modifier, f) א F ٿ C א C ٿ

(C = C1 ڀ C is a closest super-concept of C1) }
8: if D = = TRUE
9: CF ൌ function(mv1, mv2, CF)
10: else CF ൌ function(mv2, mv1, CF)
11: return CF

Algorithm 2. Conversion function construction

Input: K : COIN components, K = < O, A, M, F > including B
S1 : a data source IRI (could be a variable)
S2 : another data source IRI (could be a variable) or an

IRI used to identify a receiver
P1 : a property IRI used in S1
P2 : a property IRI used in S2 or an IRI used to identify a

application domain if S2 is a receiver identifier
Output: SC : a set of semantic conflicts detected

1 SC ൌ ׎
2: def1 = { def | Triple(S1, coin:hasContext, def) א B }
3: def2 = { def | Triple(S2, coin:hasContext, def) א B }
4: ctx1 = { ctx | Tripledef1(P1, concept, ctx) א M }
5: C1 = { concept | Tripledef1(P1, concept, ctx1) א M ٿ concept א T }
6: if S2 is a data source identifier then
7: ctx2 = { ctx | Tripledef2(P2, concept, ctx) א M ሽ
8: C2 = { concept | Tripledef2(P2, concept, ctx2) א M

א concept ٿ T }
9: else ctx2 ൌ { ctx | Tripledef2(P2, C1, ctx) א M }
10: C2 = C1
11: for each modifier א { p | Triple(ctx1, p, mv) א A ٿ p א P } do
12: mv1 ൌ { mv | Triple(ctx1, modifier, mv) א A }
13: mv2 ൌ { mv | Triple(ctx2, modifier, mv) א A }
14: if mv1 ് mv2 and mv1 ് NULL and mv2 ് NULL then
15: SC ൌ SC ڂ { S1, S2, P1, P2, C1, C2, modifier, mv1, mv2 }

16: return SC

Algorithm 1. Detection of semantic conflicts between sources
and/or receivers for a given property

each property that redundantly describes how different reporting
currencies are resolved, we can simply associate the conversion
function with the concept "MonetaryValue".

In addition, when a property involves two or more conflicts, a
composite function can be constructed to reconcile those conflicts
by the algorithm 2. It is also scalable because it can compose all
necessary conversions using a small set of component conversions.
The composition can be obtained as a series of invocations on the
conversion function defined for each modifier pertaining to the
concept in the context ontology.

The function-finding method in the algorithm 2 (line 3 and 7) at
first will try to find the specific conversion function defined for
the modifier of the concept. If it cannot be found, the method will
try to find the function defined for the same modifier under the
direct super-concept. The step will repeat until a function is
retrieved or it reaches the top "Context" concept. For example, the
function cvt_format_dateTime() is defined for the modifier
"hasFormat" under the concept "dateTime" that has no sub-
concepts, while cvt_scale() function is defined under the concept
"Number" and the function can be used by all its sub-concepts
such as "Weight", "Height" and "MonetaryValue" for scale-factor
adjustment.

Note that the translation from one context to another is embedded
in conversion functions present in individual context theories, and
they are not part of the context ontology. This means that there is
greater scope for different users to introduce conversion functions
which are most appropriate for their purposes without requiring
these differences to be accounted globally. For example, different
currency exchange system would be used in different countries or
for different purposes.

The modifiers of the concept are called orthogonal if the value
derived from its composite conversion is not affected by the order
in which the component conversions are invoked. For example,
the currency and scale modifiers of the "MonetaryValue" concept
are orthogonal. We will get the same value either by converting
currency first followed by scale-factor adjustment or by adjusting
scale-factor first followed by currency conversion. For any pair of
modifiers that are not orthogonal, the component conversions are
required to be invoked in a particular order to return right value.
The order depends on how the component conversion is specified.
An in-depth discussion on this issue can be found in [6].

4.4 Query Rewriting
The context mediator uses the algorithm 3 to undertake the role of
detecting and reconciling potential conflicts at the time a query is
submitted. The following parts in a query might be rewritten to
the corresponding forms that all semantic conflicts, when detected,
are resolved:
 SELECT: the answers returned should be further transformed

so that they conform to the context of the receiver.
 WHERE: the constants should be transformed to comply with

assumptions in the source contexts.
 EXPRESSION and FUNCTION: one of two arguments might

be transformed so that the two arguments conform to the same
context.

First, the context mappings M and context pool A will be added
into the RDF dataset as named graphs (line 4). A mediated query
is executed against the RDF dataset that comprises one or more
data sources and the two graphs generated from M and A. In the

Input: K : COIN components, K = < O, A, M, F > including B
WQ : a well-formed SPARQL query
r : an IRI used to identify a receiver
a : an IRI used to identify a application domain

Output: MQ : an mediated SPARQL query

1: MQ ൌWQ
2: pattern ൌ ׎
3: parse the query WQ and extract its triple patterns into bgp
4: M and A are included into the dataset of MQ as named graphs
5: for each var א { v | v is a RESULT variable ٿ

Tripleg(s, p, v) א bgp } do
6: if SC ൌ Algorithm1(K, g, r, p, a) ٿ SC ് ׎ then
7: pattern ൌ pattern ׫ PatternCreator(g, r, p, a, SC) / bgp
8: CF ൌAlgorithm2(K, SC, v, TRUE)
9:

adds the assignment LET (nvar := CF) into MQ and
replace var with nvar in the SELECT clause, where nvar
is a new variable never used before.
/* if the variable v is introduced by a LET clause, the
context conversion will be done in the LET clause */

10: for each cont = { c | c is a constant ٿ Tripleg(s, p, c) א bgp } do
11: if SC ൌ Algorithm1(K, g, r, p, a) ٿ SC ് ׎ then
12: pattern ൌ pattern ׫ PatternCreator(g, r, p, a, SC) / bgp
13: CF ൌAlgorithm2(K, SC, cont, FALSE)
14:

adds the FILTER(nvar := CF) into MQ and replace
cont with nvar in Tripleg(s, p, c), where nvar is a new
variable never used before.

15: for each EXPRESSION (expr1 op expr2) or
FUNCTION(expr1, expr2) do

16: if expr1 is a constant ٿ expr2 is a variable ٿ
Tripleg(s, p, expr2) א bgp ٿ
SC ൌ Algorithm1(K, g, r, p, a) ٿ SC ് ׎ then

17: pattern ൌ pattern ׫ PatternCreator(g, r, p, a, SC) / bgp
18: CF ൌAlgorithm2(K, SC, expr1, FALSE)
19: replace expr1 with CF in the expression or function
20: if expr2 is a constant ٿ expr1 is a variable ٿ

Tripleg(s, p, expr1) א bgp ٿ
SC ൌ Algorithm1(K, g, p, r, a) ٿ SC ് ׎ then

21: pattern ൌ pattern ׫ PatternCreator(g, r, p, a, SC) / bgp
22: CF ൌAlgorithm2(K, SC, expr2, FALSE)
23: replace expr2 with CF in the expression or function
24: if expr1 is a variable ٿ expr2 is a variable ٿ

Tripleg1(s1, p1, expr1) א bgp ٿ
Tripleg2(s2, p2, expr2) א bgp ٿ
SC ൌ Algorithm1(K, g1, g2, p1, p2) ٿ SC ് ׎ then

25: pattern ൌ pattern ׫
PatternCreator(g1, g2, p1, p2, SC) / bgp

26: CF ൌAlgorithm2(K, SC, expr1, TRUE)
27: replace expr1 with CF in the expression or function
28: adds pattern into MQ
29: return MQ

Function PatternCreator(S1, S2, P1, P2, SC)
1: pattern ൌ ׎
2: pattern ൌ { Triple(S1, coin:hasContext, def1) ,

Triple(S2, coin:hasContext, def2) ,
Tripledef1(P1, C1, ctx1) ,

 Tripledef2(P2, C2, ctx2) ሽ
3: for each { S1, S2, P1, P2, C1, C2, modifier, mv1, mv2 ሽ א SC
4: pattern ൌ ሼ pattern ,

Triple(ctx1, modifier, mv1) ,
 Triple(ctx2, modifier, mv2) ሽ

5: return pattern

Algorithm 3. SPARQL query rewriting

current SPARQL core standard, SELECT queries only project out
variables bound in the query and there is no way to return the
values of expressions over result bindings. The mediated queries
need the ability to project expressions rather than just variables
because the results need to be transformed to comply with
assumptions in the receiver context. An example is returning the
total cost of two air tickets. LET assignments are used to enable
transformation on the results by using the conversion functions
(line 9). For the same reason, we also use FILTER clauses in the
line 14 to transform the constants in the queries to comply with
assumptions in the sources contexts.

Considering the naïve query in the motivational example, the first
triple pattern encountered that needs to be processed is the one:

GRAPH ?graph1 { ?airline1 fts:depCity "Boston" . }
The line 10-14 of the algorithm 3 will transform this triple into the
following patterns.
i: GRAPH ?graph1 { ?airline1 fts:depCity ?depCity . }
ii: GRAPH <http://coin.mit.edu/bindings/flight>
iii: { ?graph1 coin:hasContext ?def1 .
iv: coin:receiver coin:hasContext ?recv . }
v: GRAPH ?def1 { fts:depCity coin:city ?ctx1 . }
vi: GRAPH ?recv { :flight coin:city ?ctx2 . }
vii: GRAPH <http://coin.mit.edu/contexts>
viii: { ?ctx1 coin:hasEncoding ?mv1 .
ix: ?ctx2 coin:hasEncoding ?mv2 . }
x: FILTER (?depCity = fn:cvt_encoding_city(?mv2, ?mv1,

"Boston")) .
A new variable ?depCity was generated and replaced "Boston" at
the line i. The context statements of the data sources can be
accessed dynamically via the variables ?graph1 that will bound to
IRIs of the sources being matched (line iii). The pattern of the line
iv was used to retrieve the receiver's context definition. The two
context instances of the concept "City" will be obtained by the
line v-vi. One was associated with the property fts:depCity of the
data sources; the other was referenced in the receiver's context
statements. The modifier values of those two context instances
can be retrieved by the line viii-xi, which will be taken as inputs
to the conversion function fn:cvt_encoding_city. In the FILTER
clause of the line x, the English city name "Boston" might be
transformed to comply with the contexts of the data sources. If the
variable ?graph is bound to the IRI of the source 1 (USA airlines),
"Boston" will be rewritten into "BOS". If ?graph is bound to the
IRI of the source 2 (Japan airlines), "Boston" will stay unchanged.

For the result variables of the naïve query, only the variable ?total
needs to be processed because it is the sum of the prices of the
two tickets, ?price1 and ?price2 that occur as objects in the triple
patterns. The following fragment of the mediated query will be
generated by the line 6-9 of the algorithm 3 for the variable ?total.
i: GRAPH <http://coin.mit.edu/bindings/flight>
ii: { ?graph1 coin:hasContext ?def1 .
iii: ?graph2 coin:hasContext ?def2 .
iv: coin:receiver coin:hasContext ?recv . }
v: GRAPH ?def1 { fts:price coin:monetaryValue ?ctxp1 . }
vi: GRAPH ?def2 { fts:price coin:monetaryValue ?ctxp2 . }
vii: GRAPH ?recv { :flight coin:monetaryValue ?ctxr }
viii: GRAPH <http://coin.mit.edu/contexts>
ix: { ?ctxp1 coin:hasScale ?mvs1 .
x: ?ctxp1 coin:hasCurrency ?mvc1 .
xi: ?ctxp2 coin:hasScale ?mvs2 .
xii: ?ctxp2 coin:hasCurrency ?mvc2 .
xiii: ?ctxr coin:hasScale ?mvsr .

xiv: ?ctxr coin:hasCurrency ?mvcr . }
xv: LET (?total := fn:cvt_currency(?mvc1, ?mvcr,

fn:cvt_scale(?mvs1, ?mvsr, ?price1)) +
fn:cvt_currency(?mvc2, ?mvcr,
fn:cvt_scale(?mvs2, ?mvsr, ?price2)))

The line i-iv was generated to retrieve the context definitions of
the two possible data sources (one is ?graph1 in which ?price1
will be retrieved; the other is ?graph2 that will provide ?price2)
and the receiver. Note that the duplicate patterns will be deleted
from the mediated query when the patterns are merged into the
previously-generated ones. The context instances and their
modifier values will be obtained by the line v-xiv. To rewrite the
LET assignment (line xv), the algorithm 2 will be called twice,
each for ?price1 and ?price2, to make the sum of the two prices
comply with assumptions in the receiver context.

5. IMPLEMENTATION
We use Jena7 to implement COIN SPARQL framework to provide
a demonstration of the feasibility of Context Interchange strategy.
As shown in Figure 4, queries submitted to the system will be
intercepted by a Context Mediator, which rewrites the user query
into a mediated query and pass it to ARQ, the SPARQL query
engine for Jena. COIN also can easily be plugged in to other
existing SPARQL query engines to take advantage of their state
of the art query optimization and execution techniques. We tested
the solution with the real data from CIA Factbook and DBpedia.

OWL is used to represent the context ontology, and the pool and
mapping components are described by using RDF. All conversion
functions now are implemented as FILTER (extension) functions,
which use the advanced feature of ARQ that goes beyond the core
SPARQL specification. The conversion functions extend the
abstract class FunctionBase3 that takes three parameters. The
query engine can dynamically call the functions based on the
function URIs. This is done by either registering it or using the
fake java: URI scheme.
Conversion functions are defined as parametric functions that can
express the conversion between all possible modifier value pairs,
not only a specific one. For example, fn:cvt_ currency can be used
to make currency conversion among any different currencies. For
"hasFormat" and "hasEncoding" modifiers, the value at first is

7 http://jena.sourceforge.net/

Figure 4. Architecture of a COIN SPARQL system

Optimized
Query

Mediated
Query

Local
Databases

RDF
Data

SPARQL
Query
Engine

Context
Mappings

RDF Data Sources

Query
Optimizer

Context
Mediator

Context
Pool

Conversion
Functions

Relational
Databases

RDF Views
Context

Mappings

Other Data Sources

Context
Mappings

Context
Ontology

RDF
Data

RDF
Data

UserContext Mediation

Query

Query Query Answers
Query

Query Answers Extensional Anssers

translated from the source context into an internal representation
and then into the target context. A datetime value, for example, is
firstly transformed into xsd:dateTime by fn:cvt_format_dateTime
before being transformed again in order to comply with the target
context. Notice that the number of conversion functions is not
generally proportional to the number of sources and receivers in
the system. The COIN framework facilitates the maximum reuse
of existing conversion functions, and thus the number of newly-
introduced conversion functions would diminish rapidly with the
addition of each source or receiver. A more in-depth analysis of
scalability can be found in [18].

With the COIN framework, the users are not burdened with the
diverse data semantics in sources, all of which are declared in the
context representation components and can be automatically taken
into consideration by the mediator. A receiver in any context is
able to issue queries over any set of data sources in other contexts
as if they were in the same context. For example, it is easy for
users to modify their context definition. Continue the motivational
example in Section 2. Here the receiver wants to use CNY instead
of USD. After the modification is made, the query results will
immediately be reported in CNY as follows.

airline1 airline2 total
us339 jp241 8172.32

Exchange rate: 100 USD = 651.56 CNY; 100 JPY = 7.93 CNY.
The sources are not required to make any change or commit to
any criteria under the COIN framework; they only need to record
data semantics declaratively. Adding or removing a data source is
accomplished by adding or removing the corresponding context
declarations, which does not require any changes to the mediator
or query processor. Conversion functions are defined for each
modifier between distinct modifier values, not between pair-wise
sources. Thus only a small number of atomic or component
conversions need to be defined, which are used by the mediator to
compose necessary composite conversions in a dynamic way to
reconcile all semantic differences involved in a query. In many
practical cases, an atomic function can be parameterized for the
modifier to convert from any given context to any other context.
The COIN strategy requires significantly less conversions than
traditional global or interchange standardization approaches [18],
and therefore is easy to be maintained.

6. RELATED WORK
We can roughly distinguish between two types of data conflicts in
data integration: schematic conflicts and semantic conflicts. The
first has been well-documented in the database and Semantic Web
literature. A language, called CQuery was described in [10] to
represent the domain knowledge in the form of a vocabulary or
ontology as semantic metadata, and use the ontology to overcome
heterogeneity among different data sources. Gracia et al. proposed
a technique to perform the integration of ontology terms in order
to cluster the most similar ones in [12]. Networked Graphs was
proposed as a means for describing RDF graphs that are partially
derived from other graphs using a declarative view mechanism.
The relationships between graphs are described in a declarative
way using SPARQL queries in [13]. Some surveys of schematic
integration can be found in [14], [15], and [17]. Our approach is
different because we have chosen to focus on the semantics of
data level as opposed to the conflicts at schematic level. To the
best of our knowledge, very little existing work has addressed the
semantic conflicts at data level among RDF data sources.

The context interchange strategy is mediator-based approach for
achieving semantic interoperability among heterogeneous sources
and receivers. As realizations of the strategy, COIN [4], [7] and a
recent extension [9], [19], are working prototypes that implement
the Context Interchange strategy. COIN uses FOL/Prolog as the
representation and implementation language for the application
ontology in the context mediation. Various sample applications
have been implemented to illustrate its ability to solve semantic
interoperability problems in areas such as financial services,
weather information, and airfare aggregation and comparison. Our
goal in this paper is to illustrate how to extend COIN strategy to
solve context conflicts in the emerging linked data by SPARQL
query rewriting.
It is worth noting some interesting work which is complementary
to our approach. A system, called Sesame, as well as its index
structure was presented for query processing and optimization in
distributed RDF repositories in [11]. Glimm and Krötzsch extend
the SPARQL query language by defining the semantics of queries
under the entailment regimes of RDF, RDFS, and OWL [16]. An
approach is proposed to discover data that might be relevant for
answering a query during the query execution itself [5]. The
discovery is driven by following RDF links between data sources
based on URIs in the query and in partial results.

7. CONCLUSIONS
The "Web of linked data" can be understood as a single, globally
distributed dataspace, and SPARQL queries can be executed over
this huge dataspace. But semantic heterogeneity widely exists
among the RDF data sources originating from different contexts,
and severely hampers their integration and interoperability. This
paper describes how to use the Context Interchange strategy to
achieve semantic interoperability among heterogeneous RDF
sources and receivers by rewriting the user query to a mediated
query. The semantic conflicts can be automatically detected and
reconciled by the context mediator using the context definitions
associated with both the data sources and the data receivers. The
mediated query, when executed, returns the answer collated and
presented in the receiver context. The core components of COIN
are represented by using the Semantic Web constructs such as
RDF and OWL, which make them possible to be exchanged and
processed by other applications.
The mediated query uses extension functions to transform values
between different contexts, which might be likely to have limited
interoperability. It might require transformation between datatype
formats not supported by the core SPARQL specification, and the
orderings of some application datatype also need to be defined. A
promising alternative is to use nest query (i.e. to nest the results of
a query within another query) to provide conversion. The current
SPARQL core standard does not support nested query, but the
standard is still evolving (see [8]). In the future, we plan to
consider temporal semantic heterogeneities which refer to the
situation where the semantics between data sources, even in the
same data source, change over time. For example, the profit of a
company might be represented in DEM before 1998 and in EUR
since 1999. The approach partitions graph patterns of a given
"naive" query into multiple GRAPH clauses, each of which uses a
unique set of query variables. This solution need to add FILTER
clauses that ensure the equality of values bound to newly
introduced variables. These filters increase the complexity of
queries and have a negative effect on performance. The focus of
the paper has been on the query mediation, but an implementation
with query optimization is also planned.

8. ACKNOWLEDGMENTS
The work was supported, in part, by a grant from the National
Natural Science Foundation (No. 60903078).

9. REFERENCES
[1] Franklin, M.J., Halevy, A.Y., Maier, D. From databases to

dataspaces: A new abstraction for information management.
SIGMOD Record, 34, 4, (2005), 27-33.

[2] Prud'hommeaux, E., Seaborne, A. SPARQL query language
for RDF. W3C Recommendation, 2008. Retrieved April 25,
2011, from http://www.w3.org/TR/2008/REC-rdf-sparql-
query-20080115/

[3] Sahoo, S.S., Halb, W., Hellmann, S., Idehen, K., et al. A
survey of current approaches of mapping of relational
database to RDF, 2009. Retrieved April 25, 2011, from
http://www.w3.org/2005/Incubator/rdb2rdf/RDB2RDF_Suve
yReport.pdf

[4] Goh, G.H., Bressan, S., Madnick, S., Siegel, M. Context
Interchange: New Features and Formalisms for the
Intelligent Integration of Information. ACM Transactions on
Information Systems, 17, 3, (1999), 270-293.

[5] Hartig, O., Bizer, C., Freytag, J.-C. Executing SPARQL
queries over the Web of linked data. In Proceedings of the
International Conference on Semantic Web, (ISWC'09). 2009,
293-309.

[6] Zhu, H. Effective information integration and reutilization
solutions: to technological deficiency and legal uncertainty.
Ph.D. Thesis, Massachusetts Institute of Technology,
Cambridge, MA, 2005.

[7] Zhu, H., Madnick, S. Scalable interoperability through the
use of COIN lightweight ontology. In Proceedings of the
VLDB Workshop on Ontologies-Based Techniques for
Databases and Information System, (ODBIS'06), 2006, 37-50.

[8] Kjernsmo, K., Passant, A. SPARQL New Features and
Rationale. W3C Working Draft 2, 2009. Retrieved April 25,
2011, from http://www.w3.org/TR/sparql-features/

[9] Li, X., Madnick, S., Zhu, H., Fan, Y.S. An approach to
composing Web services with context heterogeneity. In
Proceedings of the International Conference on Information
System, (ICIS'09), 2009, 695-702.

[10] Sattler, K.U., Geist, I., Schallehn, E. Concept-based querying
in mediator systems. The VLDB Journal, 14, (2005), 97-111.

[11] Stuckenschmidt, H. Vdovjak, R. Houben, G.J., Broekstra, J.,
Amerfoort, A.B.V. Index structures and algorithms for
querying distributed RDF repositories. In Proceedings of the
International Conference on World Wide Web, (WWW'04),
2004, 631-639.

[12] Gracia, J., d'Aquin, M., Mena, E. Large scale integration of
senses for the Semantic Web. In Proceedings of the
International Conference on World Wide Web, (WWW'09),
2009, 611-620.

[13] Schenk, S., Staab, S. Networked graphs: a declarative
mechanism for SPARQL rules, SPARQL views and RDF
data integration on the Web. In Proceedings of the
International Conference on World Wide Web, (WWW'08),
2008, 585-594.

[14] Noy, N.F. Semantic integration: a survey of ontology-based
approaches. SIGMOD Record, 33, 4, (2004), 65-70.

[15] Shvaiko, P., Euzenat, J. A survey of schema-based matching
approaches. Journal of Data Semantics IV, (2005), 146-171.

[16] Glimm, B., Krötzsch, M. SPARQL beyond subgraph
matching. In Proceedings of the International Conference on
Semantic Web (ISWC'10), 2010.

[17] Wache, H., Vögele, T., Visser, U., Stuckenschmidt, H.
Schuster, G., Neumann, H., Hübner, S. Ontology-based
integration of information – a survey of existing approaches.
In Proceedings of the International Joint Conferences on
Artificial Intelligence Workshop, (IJCAI'01), 2001, 108-117.

[18] Gannon, T., Madnick, S., Moulton, A., Siegel, M., Sabbouh,
M., Zhu, H. Framework for the analysis of the adaptability,
extensibility, and scalability of semantic information
integration and context mediation approach. In Proceedings
of the Hawaii International Conference on System Sciences,
(HICSS'09), 2009, 1-11.

[19] Mihai, L., Madnick, S. Using Semantic Web tools for
context interchange. In Proceedings of the VLDB Workshop
on Ontologies-Based Techniques for Databases and
Information System, (ODBIS'07), 2007.

APPENDIX A. NAMESPACE
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
PREFIX coin: <http://coin.mit.edu/ontology#>
PREFIX ctx: <http://coin.mit.edu/contexts#>
PREFIX fts: <http://www.example.org/flightschedule#>
PREFIX fn: <http://coin.mit.edu/functions#>

APPENDIX B. THE EXAMPLE SCENARIO
Context Pool:
Default graph: http://coin.mit.edu/contexts
ctx:US_dollar coin:hasScale "1"^^xsd:integer .
ctx:US_dollar coin:hasCurrency "USD" .
ctx:JP_yen coin:hasScale "1000"^^xsd:integer .
ctx:JP_yen coin:hasCurrency "JPY" .
ctx:US_dateTime coin:hasFormat "US_dateTime" .
ctx:XSD_dateTime coin:hasFormat "XSD_dateTime" .
ctx:IATA_airportCode coin:hasEncoding "IATA_airportCode" .
ctx:EN_city coin:hasEncoding "EN_city" .

Context Mappings:
Named graph: http://coin.mit.edu/sources/usairline (Source 1)
fts:depDateTime coin:dateTime ctx:US_dateTime .
fts:arrDateTime coin:dateTime ctx:US_dateTime .
fts:depCity coin:city ctx:IATA_airportCode .
fts:arrCity coin:city ctx:IATA_airportCode .
fts:price coin:monetaryValue ctx:US_dollar .

Named graph: http://coin.mit.edu/sources/japanairline (Source 2)
fts:depDateTime coin:dateTime ctx:XSD_dateTime .
fts:arrDateTime coin:dateTime ctx:XSD_dateTime .
fts:depCity coin:city ctx:EN_city .
fts:arrCity coin:city ctx:EN_city .
fts:price coin:monetaryValue ctx:JP_yen .

Named graph: http://coin.mit.edu/receivers/myContext (Receiver)
:flight coin:dateTime ctx:US_dateTime .
:flight coin:city ctx:EN_city .
:flight coin:monetaryValue ctx:US_dollar .

Named graph: http://coin.mit.edu/bindings/flight (Context binding)
<http://usairline.com/flights> coin:hasContext

 <http://coin.mit.edu/sources/usairline> .
<http://japanairline.com/flights> coin:hasContext

<http://coin.mit.edu/sources/japanairline> .
coin:receiver coin:hasContext <http://coin.mit.edu/receivers/myContext> .

