

An Operational Approach for Capturing and Tracing the

Ontology Development Process

Marcela Vegetti
1
, Luciana Roldán

1
, Silvio Gonnet

1
, Gabriela Henning

2
 and

Horacio Leone1

1
 Ingar (CONICET/UTN)

Avellaneda 3657 – S3002GJC – Santa Fe – Santa Fe – Argentina

2
Intec (CONICET/UNL)

Güemes 3450 – S3000GLN– Santa Fe – Santa Fe – Argentina

{mvegetti,lroldan,sgonnet,hleone}@santafe-conicet.gov.ar,

ghenning@intec.unl.edu.ar

Abstract. The history of an ontology development project, including its

intermediate products, together with the executed activities, and the decisions

made, might be of great importance in other future ontology developments.

However, current tools supporting this kind of projects do not capture such

information; thus, the process trace is lost, and any new ontology development

project would start from scratch. This paper presents a framework meant to do

overcome these deficiencies, allowing the capture and trace of such projects.

1. Introduction

Until the mid-90s, ontologies were developed without addressing systematic procedures.

Therefore, the ontology development process was an art rather than an engineering

activity [Fernández-López et al., 1999]. In the last decade, many ontology development

processes have changed from the traditional ones, performed by isolated knowledge

engineers or domain experts, into collaborative processes executed by mixed teams

[Bernaras et al. 1996]. In such teams, experts in knowledge acquisition and modeling,

domain specialists, and experts in implementation languages collaborate to build

ontologies, according to well-established methodologies. The expertise of each team

member, as well as the executed activities, and the decisions made during the

development process might be of great importance in future projects. However, current

tools supporting ontology development processes do not capture such information; thus,

the process trace is lost, and any new project would start from scratch. In fact, once a

given ontology development process is finished, the things that remain are mainly

isolated design products (e.g., requirement specifications, competency questions, class

diagrams, specific language implementations, etc.), without an explicit representation of

how these products were obtained, and with no capture of the rationale behind the

process. In addition, ontology building is turning into a more professional engineering

activity that needs to be managed and measured in order to obtain high quality results;

and such management requires an explicit representation of the development process.

The issues pointed out before constitute essential challenges that need to be addressed.

 In order to tackle them, this contribution proposes ONTOTracED, a framework

to represent, capture and trace ontology development processes. This paper is organized

36

as follows: after discussing some issues about ontology development processes in

Section 2, the framework components are presented in detail in Section 3. Finally,

Section 4 concludes the paper and offers paths to future work.

2. Ontology development processes

Ontology Engineering (OE) is a relatively new field concerning ontology development

processes, the ontology life cycle, the methods and methodologies for building

ontologies, and the tool suites and languages that support them. A series of

methodologies have been reported in the literature in the last two decades. An extensive

state-of-the-art overview of these methodologies can be found in Gómez-Pérez et al.

(2004). In addition, Cristani and Cuel (2005) have proposed a framework to compare

ontology engineering methodologies and evaluated the established ones accordingly. The

first contributions in the field, which are due to several authors [Gruber 1993],

[Grüninger and Fox 1995], [Uschold et al. 1998], [Uschold and Gruninger 1996], set the

grounds for many subsequent proposals. Gruber’s work [Gruber 1993] discussed some

basic ontology design criteria associated with the quality of the developed ontology, as

well as related to the methodology used to build it. Gruninger and Fox (1995) provided a

building methodology based on Competency Questions. Methontology [Fernández-

López et al. 1999] which is an ontology development process, proposed an ontology

lifecycle based on evolving prototypes and specific techniques to address each activity of

the approach. With emphasis on knowledge management, Staab et al. (2001) proposed

On-To-Knowledge. Other approaches, related to industry or research projects, include

the methods used for building CyC, SENSUS [Swartout et al. 1997] and Neon [Suárez-

Figueroa et al. 2012]. These works report different principles, design criteria, and stages

of the development process. However, no one is yet emerging as a clear reference [De

Nicola et al. 2009]. Despite recent advances, there are few computational tools

supporting the above mentioned methodologies. Neon Toolkit supports the Neon

methodology and allows scheduling the stages that will be included in the design of a

specific ontology. However, such tool neither captures the operations actually executed

when adding a concept, a relation among concepts, etc., nor the rationale behind such

operations. Consequently, there is still room for improvement in the OE field.

3. A framework to capture and trace the ontology development process

Generally, at the end of an ontology development process the things that remain are

mainly unconnected design products (e.g. the requirements specification, competency

questions, ontology class diagrams, the ontology implementation in a specific language,

etc.), without an explicit representation of how they were obtained, and with no capture

of the history and rationale behind the project. More specifically, there is no trace of the

activities that have led to any of the products, the requirements imposed at each stage of

the process, the actors that have performed each of the activities, and the underlying

rationale behind each decision that was made. To overcome these weaknesses, this work

proposes a comprehensive framework to represent, capture and trace the ontology

development process, along with its associated products and their evolution.

 Fig. 1 shows the main components of the proposed framework, that includes: (i)

a Conceptual Model, which is able to represent generic design processes; (ii) an

Ontological Engineering Domain Model (OEDM) that specifies the concepts that are

37

required to describe ontology development processes, and (iii) a support computational

environment, named TracOED (Tracking Ontology Engineering Designs), that

implements both the conceptual model and the OEDM to enable the capture of specific

ontology design processes, along with their associated products.

Figure 1. Components of the proposed framework.

 The supporting Conceptual Model is based on an operational-oriented approach

that envisions the ontology development project as a sequence of activities that operates

on the products of the development process. The proposal defines two representation

spaces to model generic design process concepts: the Process and Product spaces. In

addition, a third component (the Specification Space in Fig. 1) is included to fully specify

a flexible model that is able to represent and capture design processes pertaining to

specific engineering fields.

 The Ontological Engineering Domain Model component can represent and

capture particular ontology development projects, based on building-blocks that define

the products obtained, as well as the activities carried out during this type of processes.

This representation includes those modeling elements that are most commonly used in

the methodologies that nowadays guide ontology development processes. Among these

modeling elements are: the competency question, concept, and relation concepts, etc. In

order to show how this proposal may be applied when ontologists want to stick to

specific methodologies and/or approaches, the ontological categories proposed by the

Unified Foundational Ontology (UFO) [Guizzardi 2005] have been added to the

Ontological Engineering Domain Model. UFO is a language to build domain ontologies

that preserves the ontological commitment of the domain being modeled. It distinguishes

between conceptual entities called universals and individuals. In particular, due to space

limitations, this work focuses on the subsumption hierarchy of sortal universals.

 TracOED is the computational environment that implements the conceptual

model and incorporates the OEDM. It is based on TracED [Roldán et al. 2010], which

was conceived for capturing and tracing engineering designs. The major components of

TracOED are the Domain Editor and Versions Manager. By using the Domain Editor,

the OEDM has been specified in TracOED. Furthermore, the editor allows this model to

be further specialized, if required. On the other hand, the Versions Manager keeps track

of the execution of a design project, as will be shown in the following sections.

3.1 Conceptual Model

The Conceptual Model component provides the framework foundations. This

component is organized in Process Representation, Product Representation and

Specification spaces, which are explained in this section. The Process representation

 Ontology

Development

Process captures and

traces

TracOED

Version Manager

Domain Editor

Conceptual Model

Process Representation Space

Product Representation Space

OEDM

Activity
implements

specifiedBy

By
Specification Space

Version Repository

Domain Operation

ONTOTracED framework

38

space models the activities being performed during an ontology development process and

it is specified by the Activity package (Fig. 2). In particular, when tackling the

development of an ontology, typical tasks are: adding concepts and relations into the

ontology, defining constraints on a specific concept, analyzing whether a group of

concepts, relationships and constraints satisfies a formal competency question, evaluating

the ontology, deciding on alternative concepts and relations, etc. As Fig. 2 shows, such

activities are represented in the model with the BasicActivity or CompositeActivity

classes, depending on whether the task is atomic or it can be decomposed into a set of

subactivities.

Figure 2. Conceptual Model.

 In the proposed model, the execution of an activity is guided by one or more

requirements, which specify the functional and non-functional characteristics that a

development product must satisfy (e.g., in the ontology development domain, the

concepts have to preserve the ontological commitment of the domain being modeled).

Therefore, the ontology development process is interpreted as a series of activities led by

requirements that are performed by Actors. An Actor may be either an Individual (a

human being or a computational program) or a Team. Teams allow representing

composite skills that are needed for carrying out activities. Each basic activity performed

by an actor during an ontology development process is represented by the execution of a

sequence of operations, which transforms the design objects. The operations that can be

applied are domain dependent. So, it is necessary to define the allowed types of

operations, as well as the modeling elements, for each specific domain.

 As it was previously introduced, activities operate on the outcomes or products

of the ontology design process, called design objects (Fig. 2). Design objects represent

the various products of the development activities. Typical design objects are models of

the artifact being conceived (e.g., in the ontology development domain: class diagrams,

implementations in specific ontology languages, etc.), specifications to be met (i.e.

competency questions, quality attributes, etc.). Design Objects may relate among

themselves by domain specific relationships (DomainRelationship association class in

Fig. 2), and can be organized in generalization-specialization hierarchies. Design objects

types are described by a set of properties. Moreover, each design object type is related to

a set of operation types that may be used to transform such design object.

*

BasicActivity

Activity Package

CompositeActivity

Activity Actor

Execution

Individual Team

Skill SubActivity

1..*

* Member *
1..*

1..*

*

*

Requirement

GuidedBy

*

Operation *

OperatesOn

Materialize

- objectType

Domain Package

DesignObjectType

OperationType

Property

- specialization

- part
0..1 *

*

- container

DomainRelationhip
- generalization

- type

Association VersionableObject

Repository Package

*

- end

* - origin
*

- object

- type

- instance *

Version

Version Package

ObjectVersion

ModelVersion

BasciActivity
(from Activity)

PropValue

1..*
Belong

- version

 - argument

- predecesor

- successor

0..1

*

*

* - result

Version

ModelHistory

History

1..*

- instance

1..*

- instance

- type

*

Operation Package

Macro

Command

Command

Primitive

Add Delete Modify

Auxiliary

Function

1..*
Argument

{ordered} {ordered}
- argument
*

Variable

- type

Collection

Primitive

DataType

DataType

DomainRelationhip

 (from Domain)

DesignObjectType

 (from Domain)
OperationType

 (from Domain)

39

 In this proposal, the execution of an activity (materialized through a sequence of

operations) transforms a design object, which thus may evolve into multiple versions. In

order to represent this evolution, each design object is specified at two levels: the

Repository and the Version packages (Fig. 2), which constitute the Product

Representation Space. The Repository keeps a unique entity for each design object that

has been created and/or modified due to the natural progress that takes place during a

development project. Any entity kept in the repository is regarded as a versionable

object. Furthermore, relationships among the different versionable objects are also

maintained in the repository (Association class in Fig. 2). On the other hand, the Version

level keeps the different versions resulting from the evolution of each design object,

which are called object versions. The relationship between a versionable object and any

of its object versions is captured by the Version association. Therefore, for a given

design object, a unique instance is kept in the repository, and all the versions it assumes

along the design process belong to the versions level. Fig. 2 also includes the Design

object type class, which allows representing the various kinds of modeling elements

pertaining to particular domains.

 The versions package also includes the ModelVersion concept, which represents

a set of design objects within the context in which a given design activity is carried out.

Its aim is to provide a snapshot description of the state of a certain design process at a

given moment. According to the proposed representation, a new model version mn is

generated when a basic activity is executed. Since each basic activity is materialized by

a sequence of operations, named φ, the new model version mn is the result of applying

such sequence to the components of the previous model version mp. This predecessor

model version mp corresponds to the context where the activity was performed and the

successor one (mn) represents the resulting context.

 The Specification Space is defined by the Domain and Operation packages (see

Fig. 2), which allow specifying the building blocks and operations of particular

engineering design domains. In the context of the OntoTracED framework, this space

has allowed specifying the ontological engineering domain model. The Operation

package enables the specification of operation types and their implementations in a

computational environment (TracOED in this case). This package defines the primitive

operations add, delete and modify and also enables the specification of other operations

that are applicable into the specific design domains (the ontology development domain in

this work). When an operation is specified, it is necessary to define both its arguments

and body. The body is comprised by some already defined commands that are available

for being used in other operation specifications. They can be primitive (such as add,

delete, or modify), auxiliary function commands, or previously defined operations.

3.2 Ontological Engineering Domain Model

As it was mentioned in section 3.1, the Domain and Operation packages (Specification

space) of the underlying conceptual model let specify modeling elements and operations

that are suitable for particular domains. This section presents the use of these packages in

the specification of the Ontological Engineering Domain Model. Figure 3 (part a)

presents a partial view of the resulting model.

40

Figure 3. a) A Domain Model specification for ontology development
processes. b) Design objects proposed for the development of ontologies
using UFO.

 There are several methodologies for building ontologies and no one is yet

emerging as a clear reference. In spite of their diversity, most methodologies share

structural similarities and have comparable modeling elements. In this proposal, the

following components are considered to be part of the proposed domain model:

• Competency questions play the role of a type of requirement specification against

which a given ontology can be evaluated [Gómez-Pérez et al. 2004]. They can be split

off into more specific ones (AtomicCQ in Fig. 3), and complex competency questions

(ComplexCQ in Fig. 3), which can be expressed in terms of simpler ones. Competency

questions participate in most methodologies and they are the starting point in the

identification of the ontology terminology.

• Concepts represent a collection of entities that share a common set of characteristics.

Certain languages call them classes or frames. Concepts can be hierarchically

organized by means of subsumption relationships.

• Relations symbolize interrelations between classes. Different languages call them

properties, slots, roles, or associations.

• Individuals are entities that belong to a particular class. They are also called instances

or members of such class.

• Assumption and Constraints represent natural language expressions that restrict the

interpretation of concepts and relationships.

 It is possible to distinguish between ontologies that are mainly taxonomies from

the ones that model the domain in a deeper and formal way and provide more restrictions

on the domain semantics. In order to represent this type of formalization it is necessary

to incorporate additional design objects and operations. Therefore, the following

elements have been added into the domain model:

<<DesignObjectType>>

Concept

<<DesignObjectType>>

Relation

<<DesignObjectType>>

Individual

<<DomainRelationship>>

InstanceOf

<<DesignObjectType>>

FormalExpresion

<<DesignObjectType>>

Rule

<<DesignObjectType>>

Axiom

<<DomainRelationship>>

RefersTo

<<DesignObjectType>>

CompetencyQuestion

<<DesignObjectType>>

Assumption

<<DesignObjectType>>

Constraint

<<DomainRelationship>>
ExtractedFrom *

*

* 1

*

1

1..*

<<DesignObjectType>>

Requirement

<<DesignObjectType>>

AtomicCQ

<<DesignObjectType>>

ComplexCQ

<<DesignObjectType>>

Terminology

*

<<DesignObjectType>>

FormalCQ

*

<<DomainRelationship>>

FormalizedAs

<<DomainRelationship>>
Formalizes

1

*

1 1

<<DomainRelationship>

>

Refines

<<DesignObjectType>>

Ontology

<<DomainRelationship>>

BelongsTo

<<DesignObjectType>>

Sortal

<<DesignObjectType>>

RigidSortal

<<DesignObjectType>>

AntiRigidSortal

<<DesignObjectType>>

Kind

<<DesignObjectType>>

Subkind

<<DesignObjectType>>

Role

<<DesignObjectType>>

Phase

Mediates

<<DomainRelationship>>

<<DesignObjectType>>

SubKindPartition

<<DesignObjectType>>

PhasePartition

Type

Subtype

<<DomainRelationship>> Subtype

<<DomainRelationship>>

Subtype

<<DomainRelationship>>

<<DesignObjectType>>

RolePattern

Type
<<DomainRelationship>>

Type

<<DomainRelationship>>

<<DomainRelationship

<<DesignObjectType>>

RelationalDependency

Mediates

<<DomainRelationship>>

<<DesignObjectType>>

Universal

(a)

(b)

41

• Formal Competency Questions are specification in a formal language of informal

competency questions that were initially identified.

• Axioms and rules represent formal expressions that allow ontologists to (i) explicitly

define the semantics of an ontological concept by imposing constraints on its value

and/or its interactions with other concepts; (ii) verify the consistency of the knowledge

represented in the ontology, and/or (iii) infer new knowledge from the explicitly stated

facts.

 Fig. 4 presents the functional specifications of some of the operations included in

the OEDM. They give an outline of how these operations can be stated in the

computational environment. From an implementation point of view, these specifications

are instances of the entities defined in Operation Package (Fig. 2).

Figure 4. Specification of some operations belonging to the proposed model.

 Fig. 4 shows some simple operations (addConcept, addInformalCQ,

addFormalCQ) that allow adding design objects while developing a given ontology. It

also shows that more complex ontological operations can as well be implemented. This is

the case of the operation formalizeCQ, which allows formalizing a competency question,

and the deriveConcept one. In particular, the deriveConcept operation allows adding into

an ontology a list of new concepts that are identified from an informal competency

question. The competency question object version (cqversion) and the list of concepts to

be added (lcon), are the input parameters of this operation. As seen, all the proposed

operations are defined in terms of primitive ones (add, modify, delete), auxiliary

functions (getDescription, getOntology, attachAffectedTerm, among others), and/or

operations (addFormalCQ, addRelationship).

 As it was previously mentioned, the proposed OEDM defines design objects and

operations to be able to handle the UFO ontological categories during the development

of an ontology. Fig. 3 (part b) introduces a partial view of the resulting domain model

toKind(o,cversion)

 n:= getname(cversion)

 kversion:=addKind(n)

 addRelationship(o,kversion,BelongsTo)

 delete(cversion)

end

addRole(o,rname,relDep,aSortal)

 rversion:= add(rname,Role)

 addRelationship(o, rversion,BelongsTo)

 rdvers:= add(relDep,RelationalDependecy)

 addRelationship(o,rdvers,BelongsTo)

 addRelationship(rversion,rdvers,Mediates)

 addRelationship(rdvers,aSortal,Mediates)

end

addSubKind(o,skname)

 skversion:=add(skname,SubKind)

 addRelationship(o,skversion,BelongsTo)

end

applyRolePattern(o,pname,c,rname,rel,sv)

 rpversion:= add(pname,RolePatern)

 addRelationship(o,rpversion,BelongsTo)

 tversion:= type?(c)

 addRelationship(rpversion,tversion,Type)

 rversion:= addRole(o, rname,rel,sv)

 addRelationship(rpversion,rversion,Subtype)

end

applyPhasePartition(o,pname, kversion, lcon)

 ppversion:= add(pName,PhasePartition)

 addRelationship(o,ppversion,BelongsTo)

 addRelationship(ppversion,kversion,Type)

 for each cname in lcon

 phversion:= addPhase(cname)

addRelationship(phversion,ppversion,Subtype)

end for

end

addConcept(o,cname)

cversion:= add(cname,Concept)

addRelationship(o,cversion, BelongsTo)

end

addInformalCQ(o,ICQname,exp)

 icqversion:= add(ICQname,AtomicCQ)

 modify(icqversion,exp)

 addRelationship(o,icqversion,BelongsTo)

end

addFormalCQ(o,exp)

 CQversion:= add(exp, FormalCQ)

 addRelationship(o,CQversion,BelongsTo)

end

deriveConcept(o, cqversion,lcon)

 for each cname in lcon

 cversion:= addConcept(o,cname)

 addRelationship(cqversion,cversion,

 ExtractedFrom)

 end for

end

formalizeCQ(ICQversion, fexp)

 o:= get(ICQversion,Ontology)

 f:= addFormalCQ(o, fexp)

 addRelationship(ICQversion,f, Formalizes)

end

42

showing these new design objects. Table 1 presents the meanings of the concrete object

types Kind, SubKind, Phase and Role and the list of applicable operations.

 UFO is considered as a Pattern Language; i.e., in this language the choice of a

particular design object type causes a whole pattern to be manifested [Guizzardi et al.

2011]. For example, a phase is always defined as part of a partition; a role is always

played in relation to another sortal. Therefore, the adopted domain model also includes

the following design patterns proposed by UFO: SubKindPartition, PhasePartition and

RolePattern [Guizzardi et al. 2011].

Table 1. UFO Sortal Universals. Adapted from Guizzardi (2005)

UFO Ontological Categories

Kind

A Kind represents rigid, relationally independent object universals that supply a

principle of identity for their instances. Examples include instances of Natural Kinds

(such as Person, Dog, Tree) and of artifacts (Chair, Car, Television).

SubKind

A SubKind is a rigid, relationally independent restriction of a substance sortal that

carries the principle of identity supplied by it. An example could be the SubKind

MalePerson of the Kind Person.

Phase

A Phase represents anti-rigid and relationally independent universals defined as part

of a partition of a sortal. For instance, [Child, Teenager, Adult] is a partition of the

kind Person. A Phase is always defined as part of a partition.

Role
A Role represents an anti-rigid and relationally dependent universal. For instance, the

role student is played by an instance of the kind Person.

Proposed Operations

Basic Pattern related

addKind

addSubKind

addPhase

addRole

toKind

toSubKind

toRole

toPhase

remKind

remSubKind

remPhase

remRole

addPhasePartition

addRolePattern

addSubkindPartition

remPhasePartition

remRolePattern

remSubkindPartition

addPhase2Partition

addSubkind2Partition

remPhaseFromPartition

remRoleFromPartition

remSubkindFromPartition

 Table 1 also presents the operations required to capture and manage the UFO-

related design objects (Fig. 3 part b). It includes two groups of operations: basic ones,

which comprise operations to add, delete or modify simple design objects, and pattern-

related ones. These last operations are associated with the addition of the new set of

design objects that follows the application of a given UFO pattern. Fig. 4 also presents

the functional specification of some of these operations. As seen, the toKind(o, cversion)

operation adds into a given ontology (o) a Kind design object (kversion), which is a

refinement of a previously included concept (cversion). This operation also deletes the

cversion concept from the current model version. Similarly, the addRole and

addSubKind operations allow adding the Role and SubKind design objects to a given

ontology o. Fig. 4 also presents the applyRolePattern and apply PhasePartition

operations, which add a Role pattern and a Phase partition into a certain ontology,

respectively. The rest of the operations are defined in a similar way by means of primitive

operations (Primitive in Fig. 2), such as add(skname,SubKind), and non-primitive ones,

like addPhase(cname).

3.3. TracOED

TracOED is the computational environment that implements the conceptual model and

incorporates the OEDM, thus materializing the ONTOTracED framework. In order to

43

illustrate its features a case study is presented in this section. It is based on the

development of the well known travel ontology.

 As already mentioned, the Versions Manager enables the execution of each

ontology development project, and captures its evolution based on operations that are

accomplished and the instantiation of those design object types that have been specified

in the Ontological Engineering Domain Model by means of the Domain Editor tool.

 The development of the ontology starts with the definition of competency

questions from which the requirements of the ontology and some initial concepts are

identified. For instance, from the CQ1 competency question, which is shown below, one

of the ontologists recognized the concepts Person, Traveler and Destination, among

others.

CQ1: Given the preferences of a traveler, the age and some constraints (economical or

about the travel itself), which destinations are the most suitable?

 The identification of all the concepts from suitable competency questions marks

the end of the first stage of the ontology development process. In the following stage the

ontologist has to assign UFO ontological categories to the identified concepts, as well as

he/she has to define new concepts falling into these categories. In this case study, the

ontologist working on this part of the project considered that each of the Person and

Destination concepts should be represented as a Kind. This decision caused the creation

of a new ontology version where the Person and Destination concepts were replaced by

their corresponding kinds. In addition, during this stage the ontologist gathered more

domain knowledge, which allowed him/her to specify the ontology in more detail. In

particular, he/she identified that a person plays the role of Traveler related to a Travel

Agency. Moreover, considering the age of travelers, the involved ontologist distinguished

among young, adults and old travelers. Therefore, he/she applied a phase pattern to

represent this situation.

 Fig. 5 presents a schema that exemplifies how the development process is

captured by the Version Manager. The upper part of Fig. 5 shows the two ontology

versions that were described above and that are inferred from the captured knowledge.

In fact, the project evolves from a Root Model Version, which is empty, to Model

Version1 by applying the φ1 sequence of operations, which in turn is captured by the tool

from the operations that were performed by the ontologist during the first stage of the

process (definition of competency questions and derivation of concepts from them).

Then, the evolution from ModelVersion1 to ModelVersion2 is caused by the operations

included in φ2. These operations capture the activities carried out by the ontology

developer when he/she applied the role and phase partition UFO patterns.

 The first operations sequence, φ1, includes the addOntoloy, addInformalCQ and

deriveConcept operations that are responsible for creating the CQ1, cPerson and

cDestination versionable objects at the repository level, and their first corresponding

object versions (CQ1v1, cPersonv1 and cDestinationv1) at the version level. In turn, φ2

comprises the tokind, addSubKind, applyRolePattern and applyPhase Partition

operations. The execution of these operations has the following impact in

ModelVersion2: (i) the addition of kPerson (Kind), (ii) the incorporation of a

RolePattern, which comprises kPerson, TravelAgency (SubKind), rTraveler (Role) and

44

the clientOf (RelationalDependency), (iii) the inclusion of the byAgePh phase partition

having the YoungTraveler, AdultTraveler and OldTraveler phases, and (iv) the removal

of the cPerson and cTraveler concepts from the current model version.

Figure 5. Specification of some operations belonging to the proposed model.

 For each executed operation a version history link is created. For clarity reasons

Fig. 5 only shows the version history links that relate cTraveler (ObjectVersion) in

ModelVersion1 with kTraveler, OldTraveler, AdultTraveler, YoungTraveler and

byAgesPhPart (ObjectVersion) in ModelVersion2. By means of the history links it is

possible to reconstruct the history of a given model version starting from the root one.

The Version Manager presents such information in the so called History Window, which

is illustrated in Fig. 6. In this pane it can be seen that TracOED allows keeping

information about the development evolution of the ontoTravel ontology. From this

knowledge it is possible to identify which are: (i) the predecessor and successors of

ModelVersion1; (ii) the history links saving traces of the applied operation sequences, φ1

and φ2, which originated ModelVersion1 and ModelVersion2, respectively; (iii) the set of

object versions (byAgePh, YoungTraveler, AdultTraveler and OldTraveler) that

appeared as a result of a given operation execution (applyPhasePartition).

 Moreover, on the Version Manager History Window (Fig. 6) it is possible to see

detailed data about each applied operation. For instance, this pane presents information

about the time point at which a given operation was applied, who the involved actor was,

and the identification of the successor object versions. In this example, the history

window shows that an applyRolePattern operation was executed at ModelVersion2 by

mvegetti at time 11:40 -14/03/2012. It is possible to see that the execution of this

operation also implied the addition of both, the Traveler role and the clientOf relational

dependency.

<<Ontology>> TravelOnto

<<Ontology>> TravelOnto

<<Role>>

Traveler

<<Phase>>

YoungTraveler

<<Phase>>

AdultTraveler

<<Phase>>

OldTraveler

<<Kind>>

Person

<<PhasePartition>>

<<RolePattern>> <<SubKind>>

Travel Agency

<<RelationalDependecy>>

clientOf

<<mediates>>

<<mediates>> <<Concept>>

Traveler

<<CompetencyQuestion>>

CQ1

<<Concept>>

Person

<<extractedFrom>>

φ2={tokind(Person); addSubKind(“Travel Agency”) ;

applyRolePattern(rp1,traveler,”clientOf”, TravelAgency);

applyPhasePartition(“byAgesPhpat”,Traveler,

[YoungTraveler,AdultTraveler,OldTraveler])}

<<Concept>>

Destination

Repository level

cPersonv1

cTravelerv1

Version level

ModelVersion1 ModelVersion2

Inferred

Model 1

Inferred

Model 2

CQ1vo Travelervo

kPersonvo TravelAgencyvo

YoungTravelervo
OldTravelervo

Travelervo

AdultTravelervo

Concept

clientOfv1
kTravelerv1

TravelAgencyv1

AdultTravelerv1

YoungTravelerv1

OldTravelerv1

kPersonv1

clientOfvo

cPersonvo

Destinationvo

CompetencyQuestion

byAgesPhpat vo

byAgesPhPatv

RelationaDependecy

CQ v1

Destinationv1

Inferred

models level

Domain level

φ1={addOntology(“ontoTravel”)addInformalCQ(ont

oTravel,CQ1,” Given the preferences…”),

deriveCocept,(CQ1,[Person,Traveler, Destinarion] }

Root

Model

Version

Root Model

version

RolePattern

rp1vo

Ontology

OntoTravel v1

OntoTravelvo

PhasePartition

Kind

Role Phase
Destination

45

 It is important to remark that TracOED was developed with the aim of proving

the proposed ideas and materializing the ONTOTracED framework. Therefore, this tool

is not meant to replace traditional support environments. On the contrary, in the future

TracOED should be integrated with existing ontology development tools, such as the

OntoUML editor. In this way, TracOED would perform the capture of all the applied

operations by working in a background mode, without being noticed by ontologists.

Figure 6. TracOED history window.

4. Conclusions

This contribution presents ONTOTracED, which is a framework aimed at capturing and

tracing ontology development processes. The framework is based on a conceptual model

of generic engineering design projects, an Ontological Engineering Domain Model,

which specifies design objects and operations that are specific to ontology development

processes, and a computational environment, named TracOED, which implements these

models. The capabilities of TracOED have been presented and afterwards illustrated by

means of a case study. The example shows that it is possible to keep track of the

ontology development process along with its associated products, to store its history,

allowing for the future retrieval of knowledge and experience. The proposal is flexible

enough to be used in the development of ontologies that rely on particular methodologies

and/or approaches, or that address particular fields. If needed, the TracOED domain

editor can be used to extend the proposed Ontological Engineering Domain Model or to

create a new one. To further validate the proposal, future work will be oriented to

integrate TracOED with existing ontology development tools, like Protégé, the Neon

Toolkit or the ontoUML editor, in such a way that its execution would take place in a

background mode.

Acknowledgments

The authors wish to acknowledge the financial support received from ANPCyT (PAE-

PICT-2315 and PAE-PICT-51), CONICET (PIP2754), UTN(PID 25-O117 and PID 25-

0118), and UNL (CAI+D R4 N12).

TracOED - Version Manager

46

References

Bernaras, A., Laresgoiti, I., Corera, J. (1996). “Building and Reusing Ontologies for

Electrical Network Applications”. In: the European Conference on Artificial

Intelligence (ECAI’96), p. 298-302.

Cristani, M., Cuel, R. (2005). “A Survey on Ontology Creation Methodologies”,

International Journal on Semantic Web and Information System, 1, p. 49-69.

De Nicola, A., Missikoff, M., Navigli R. (2009). “A Software Engineering Approach to

Ontology Building”, Information Systems. 34, p. 258-275.

Fernández-López, M., Gómez-Pérez, A., Sierra, J. P. Sierra, A. P. (1999). Building a

Chemical Ontology Using Methontology and the Ontology Design Environment,

Intelligent Systems, 14, p. 37-46.

Gómez-Pérez, A., Fernandez-López, M., Corcho, O.: (2004). Ontological Engineering:

With Examples from the Areas of Knowledge Management, E-Commerce and the

Semantic Web, Springer, 2nd edition.

Guizzardi, G. (2005). Ontological Foundations for Structural Conceptual Models. PhD

with Cum Laude, Telematica Instituut Fundamental Research Series, 015, Enschede,

The Netherlands.

Guizzardi, G., Pinheiro das Graça, A., Guizzardi, R. (2011). “Design Patterns and

Inductive Modelling Rules to Support the Construction of Ontologically Well-

Founded Conceptual Models in OntoUML”. In: 3rd International Workshop on

Ontology-Driven Information Systems (ODISE 2011).

Gruber, T.R. (1993). “A Translation Approach to Portable Ontology Specification”,

Knowledge Acquisition. 5, p. 199-220.

Grüninger, M, Fox, M. (1995). “Methodology for the Design and Evaluation of

Ontologies.” In: Skuce D (ed). IJCAI95 Workshop on Basic Ontological Issues in

Knowledge Sharing, p. 258-269.

Roldán M. L, Gonnet S, Leone H. (2010). “TracED: A Tool for Capturing and Tracing

Engineering Design Processes”, Advances in Engineering Software, 41, p. 1087-

1109.

Staab, S., Schnurr, H. P., Studer, R., Sure, Y. (2001).” Knowledge Process and

Ontologies”, IEEE Intelligent Systems. 16, p. 26-34.

Suárez-Figueroa, M. C., Gómez-Pérez, A., Motta, E., Gangemi, A. (2012). Ontology

Engineering in a Networked World, Springer, First Edition.

Swartout, B., Ramesh, P., Knight, K., Russ, T. (1997). “Toward Distributed Use of

Large Scale Ontologies”. In: Symposium on Ontological Engineering of AAAI .

Uschold, M., Gruninger, M. (1996). “Ontologies: Principles, Methods and Applications”,

Knowledge Engineering Review, 11, p- 93–155.

Uschold, M., King, M., Moralee, S., Zorgios, Y. (1998). “The Enterprise Ontology”,

Knowledge Engineering Review, 13, p. 31–89.

47

